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 Doing sports movements correctly is very important in ensuring body 

health. In this work, an attempt is made to achieve the movements 

correction through the usage of a different approach based on the 2D 

position of the joints from the image in 3D space. A person 

performing in front of the camera with landmarks on his/her joints is 

the subject of the input image. The coordinates of the joints are then 

measured in 2D space which is adapted to the extracted 2D skeletons 

from the reference skeletal sparse model modified movements. The 

accuracy and precision of this approach are accomplished on the 

standard Adidas dataset. Its efficiency is also studied under the 

influence of cumulative Gaussian and impulse noises. Meanwhile, the 

average error of the model in detecting the wrong exercise in the set 

of sports movements is reported to be 5.69 pixels. 
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1. Introduction 

Doing sports exercises correctly in order to 

prevent injury and achieve the desired result is 

one of the most important factors in ensuring the 

health of the body, and therefore, is very 

important [1]. The lack of access to a coach, 

closure of gyms during the epidemic of diseases, 

and other factors affect public sports. Machine 

vision technologies are used to deal with such 

problems in the present work. Therefore, it is 

required to train the visual system to monitor the 

athlete and provide the necessary corrections in 

performing his/her sports movements. In this 

regard, extracting the three-dimensional position 

of the athlete's body and the coordinates of his 

joints is considered as a challenge in this area. In 

the following, first, the four groups of the body 

position extraction approaches are reviewed, and 

then the proposed solution is presented. These 

four groups can be organized as: 1) methods based 

on supervised learning, 2) methods based on 

unsupervised learning, 3) methods based on semi-

supervised learning, and 4) methods based on 

sparse modeling; it should be mentioned that the 

proposed solution falls into the fourth group. 

The first group emphasizes learning based on 

monitoring the supply of labeled datasets to create 

a mapping between the received image and the 

desired coordinates. As examples of the 

supervised learning, Lee and Chan [2] have 

proposed a common multifunctional deep learning 

framework for estimating three-dimensional 

positioning and identifying two-dimensional body 

organs. Tekin et al. [3] have provided a structured 

deep learning framework that includes a pre-

trained automated encoder for reconstructing 

human three-dimensional situations. However, in 

addition to the need for educational data, the 

segregation and analysis of residual learning error 

is also one of the challenges in this area [4]. In 

other words, the segmentation is more related to 

the separation of image components by the 

network convolution section or to the error of the 

network mapping section after the convolution 

section 

The second group, unsupervised learning, does 

not require the provision of labeled datasets. 

However, there are challenges in extracting the 

desirable features and segregating them. In this 
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regard, the researchers have tried not to pay the 

cost of labeled data by overcoming this challenge. 

As an example of unsupervised learning, Kodo et 

al. [5] have proposed learning three-dimensional 

positioning without the use of three-dimensional 

datasets. In this method, using generative 

adversarial networks, a three-dimensional image 

is projected from two-dimensional common joints 

in an image. In another approach, Chen et al. [6] 

have used an unsupervised domain adapter 

network for this purpose. Tripati et al. [7] have 

also extracted two-dimensional joints as the input 

and three-dimensional skeleton as the output using 

the Pose Net unsupervised neural network 

framework.  

In the third group, semi-supervised learning is 

considered as an intermediate approach. For 

example, [8] introduces a semi-supervised 

regulatory framework for estimating the human 

condition. Unlabeled data is used to compensate 

for the complexities of the input space, and is 

modeled by the nearest neighbor. It has also been 

shown in [9] that 3D video situations can be 

effectively estimated with a fully torsional model 

based on discrete time complexities, and a simple 

and effective semi-supervised training method is 

presented that uses unlabeled video data, and in 

case of the shortage of data, it has used labeled 

data. First, they started with the 2D key points 

projected for the unlabeled video, and then they 

estimated the 3D positions, and finally, they went 

back to the 2D input key points. It should be noted 

that estimating the human three-dimensional state 

of an integrated image requires large amounts of 

tagged two-dimensional and controlled three-

dimensional data contained in the tagged data set, 

which are costly. In [10], to reduce this 

dependency, a contradictory semi-supervised 

learning multiplex framework is presented that 

uses the similarity of unlabeled and uncontrolled 

mode information. In this method, synchronous 

multiplayer videos of human movements are used 

as an additional signal of poor monitoring to guide 

the regression of the human 3D state. This 

framework uses hard negative mining based on 

temporal relationships in multiplayer videos to 

achieve a fixed embedded multipurpose display. 

The fourth group has a different approach. In this 

approach, the main goal is to provide a sparse 

display model by combining basic models to 

approximate a given system. Therefore, in 

estimating a three-dimensional position, a linear 

combination of several two-dimensional base 

positions can be used. In [11], to retrieve the exact 

three-dimensional position of a set of two-

dimensional joints, the sparse display model has 

been used as one of the effective ways. In the 

sparse display model, a three-dimensional position 

is presented as a linear combination of several 

main base positions. The advantage of approaches 

based on the sparse display model is that it does 

not require paired training data (2D, 3D). 

Although the solitude-based approach is appealing 

because of its simplicity, it often encounters 

estimation errors. This error is related to the 

estimated three-dimensional position and the 

expected three-dimensional position, which is not 

directly measurable in the sparse display model 

[12-15]. As another example in [13], the three-

dimensional position is taught from the training 

dataset. This model is then reinforced by showing 

sparse by adding greedy principles to the model. 

Along the way, Wang et al. [12] have used    

norm to measure the difference between the two-

dimensional input and the projected joints. Zhou 

et al. [14] have optimized the model [13]. In [16], 

an image sequence is used to three-dimensionally 

estimate the complete position of the human body. 

This approach uses a deep fully convolutional 

network to predict the location uncertainty of two-

dimensional joints. The three-dimensional state 

extraction is then accomplished through an 

expectation-maximization algorithm throughout 

the sequence. Fan et al. [17] have divided the 

whole-body gesture training space into sub-spaces 

with smaller dimensions, and then used the 

dictionary to teach the block structure based on 

this sub-space. 

In this work, an attempt has been made to 

introduce a different approach in achieving the 

goal based on the two-dimensional position of the 

joints from the image in three-dimensional space. 

In this regard, first, using the Yolo neural 

network, the two-dimensional position of the 

joints in the image is determined and extracted. It 

should be noted that the athlete uses a set of 

simple wearable landmarks Figure 1 on his 

clothing to help extract the position of the joints. 

The Yolo network extracts the position of the 

joints by extracting the position of these 

landmarks in the two-dimensional image. The 

skeletal model is then calculated based on the 

position of the joints in two-dimensional space. 

The proposed solution uses a set of 3D sparse 

models based on simple 3D basic models. The 

sparse model includes correct skeletal positions. 

This three-dimensional model is mapped in two 

directions on two-dimensional space. Then, 

according to the skeletal model extracted from the 

Yolo network, the best and closest mapped 

models are selected. The difference between the 

two models shows the athlete's movement error. 
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This error can be reported in two-dimensional 

space and/or with the help of a three-dimensional 

sparse model transferred to three-dimensional 

space and used to correct sports movement. In the 

second part, the extraction of the position of the 

joints in two-dimensional space is examined in 

detail. The third section discusses the three-

dimensional sparse model and skeletal 

reconstruction. Then, in the fourth section, the 

proposed solution is verified. The fifth section is 

devoted to summarizing and future suggestions. 

 
 

Figure 1. Wearable landmark (left), landmark on human 

body (right). 

 

2.Extracting Position of Joints in Two-

dimensional Space 

In this work, the use of Yolo neural networks is 

suggested for the stable extraction of the position 

of body parts in the image. Yolo, as an example of 

area-based torsional networks, can be very 

effective in this regard. Figure 2 shows the Yolo 

network approach. As shown in the figure, the 

four steps in this approach are clear. First, a set of 

proposals is selected in the image (for example, 

2000 proposals). Then, each proposal is resized to 

a predefined size to be used by torsional neural 

networks for feature extraction. Finally, a 

separator is used for separation and labeling. It 

should be noted that in the Yolo network, object 

recognition is seen as a regression problem that 

extends directly from image pixels to box 

coordinates and class probabilities. There is only 

one torsional grid that receives the image by 

resizing the input and then simultaneously 

predicts several boxes with the probability of 

classes. 

 

2.1.Yolo architecture 

In the Yolo architecture, the input image with 

dimensions of 448 × 448 × 3 is divided into an S 

× S × 1 network and sent to a torsional grid. The 

output of the torsional grid will be a matrix 

measuring S × S× 30. Each of the S × S matrix 

elements has an output equivalent to one cell in 

the S × S network. The S × S × 30 output contains 

the coordinates of the boxes and the probabilities. 

If we are in the training process, the output of S × 

S × 30 along with the actual boxes or the ground 

truth is given to the loss function. The value of S 

in the first version of Yolo is equal to 7. If we are 

in the testing process, the output of S × S × 30 is 

given to the non-maximum suppression algorithm 

so that the weak boxes are eliminated and only the 

correct boxes are displayed in the output. Yolo 

includes a torsional neural network with twenty-

four torsional layers for feature extraction as well 

as two fully-connected layers to predict the 

coordinates and probability of objects. The Yolo 

network architecture is shown in Figure 3. 

 

 
Figure 2. Yolo network approach. 

 

Figure 3. Yolo network architecture with twenty-four torsional layers. 
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In the fast version of Yolo, a neural network with 

fewer torsional layers is used. In this version, 

instead of 24 torsional layers (main yolo), 9 

torsional layers are used, and of course, the 

number of filters per layer in fast yolo is less than 

the main yolo. The input size of both networks is 

448 × 448 × 3, and the output of the network is a 7 

× 7 × 30 of the projection’s tensor. The Leaky 

ReLU activation function is used in all layers. 

Also, the output size of the network is 7 × 7 × 30. 

In this structure, the input images are divided into 

a 7 × 7 network. Therefore, the output of 7 × 7 

corresponds to the gridded input image. Each 

entry of matrix at 7 × 7 output corresponds to a 

cell in the gridded input image. In addition, each 

output of this 7 × 7 output matrix has a vector of 

length 30. This vector contains probability 

prediction information and box coordinates. In 

this way, each cell of this 7 × 7 matrix can draw 

two boxes. 5 parameters (x, y, w, h, confidence) 

are needed to draw each box. The x and y 

parameters show the coordinates of the row and 

column of the source box (center of the box). The 

coordinates w and h correspond to the width and 

height of the box, respectively. With these four 

parameters, the box can be drawn. The fifth 

parameter is the confidence multiplier. It should 

be noted that Yolo uses a modified version of sum 

of the squared error function. Equation (1) 

presents the mentioned loss function. 
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(1) 

In this regard, using the relation of the sum of 

squares error, the positions of the origins of the 

two projected and real boxes       are compared. 

The indices   and   represent the cells (49 cells) 

and boxes ( ), respectively.   
   

 denotes if object 

is present in cell  .     
   

 denotes the j
th
 bounding 

box responsible for prediction of object in the cell 

 . Dual Sigma is responsible for examining 

individual cells and boxes.        and        are 

the regularization parameters required to balance 

the loss function. In the second part of the 

formula, an almost similar relationship is seen 

with the first part. However, instead of x and y, w 

and h are used. The purpose here is to compare 

the width and height of the projected box with the 

actual box. In the image, objects of different sizes 

from very small to very large can appear. When 

the boxes of these objects are compared to the real 

ones, all the boxes of any size will be compared 

by one criterion. It should be mentioned that the 

error in large boxes is not the same as the error in 

small boxes, thus one pixel of error in a large box 

should be less penalty than one pixel of error in a 

small box. The rationale for this relationship is to 

penalize large boxes less than small boxes. The 

third and fourth parts of the formula provide the 

reliability for the presence or absence of an object 

in the box. The third part is for the confidence 

multiplier of the boxes that contain the object, and 

the fourth part is for the boxes that do not contain 

any object. Behind the sigmas of the fourth 

section is a hyper parameter λ. The value of this 

parameter is considered 0.5; because in every 

image many boxes do not contain an object and 

the number of boxes without an object 

outnumbers the boxes with an object. Therefore, 

in order for the amount of loss of objectless boxes 

not to prevail over the boxes with object, a 

coefficient of 0.5 is placed behind it to reduce the 

amount of waste of objectless boxes. 

 

3.Three-dimensional Sparse Model and 

Skeleton Reconstruction 

In this process, the skeleton is given with N joints, 

and the three-dimensional position of the skeleton 

is represented by a set of three-dimensional joints, 

namely          
      .     is the three-

dimensional coordinate of the i-th joint. The 

corresponding two-dimensional position (2) is 

shown in the projected image as follows [22]: 

(2) 
100

( ) .
010

x S R Y T
 

  
 

 

where   {   }   

 
      is two-dimensional 

joints projected from three-dimensional joints. In 

(2),            S and T are the rotation, scaling, 

and transformation matrices, respectively. R and T 

are together the calibration parameters of the 

external camera.  When we have       (     ) 

                  s set along the x and y 

directions, which reflect the inherent camera 

calibration parameters. In addition, the T transfer 

matrix is usually omitted because the data is 

already centralized. As a result, the above 

equation is simplified as follows: 

(3) *( )X SR Y  
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where        . Equation (3) is nothing more 

than a linear projection from a three-dimensional 

to a two-dimensional state, and is formulated with 

a projected model by a weak-perspective camera. 

Such an approximation is reasonable when the 

depth of the object along the path of view (as 

opposed to the distance from the camera) is small. 

With the sparse representation model [13], the 

three-dimensional position can be approximated 

as a linear combination from   to the value of the 

three-dimensional base. 

(4) 
1

k

j j
i

Y C B



  

where         is a ground state, and    is the 

corresponding multiplier. The basic state is 

already trained by the sparse learning algorithms 

[18-20]. By placing (4) in (3), we conclude:  

(5) X SR B c   

where           
  and    [      ]

  . It is 

also obvious that       . In this case, both the 

two-dimensional modes of the X matrix and the 

calibration parameters of the inherent camera (i.e. 

S) are known. The problem of estimating the 

matrix Y has become the problem of solving the 

parameters of the external camera     and the 

coefficient vector   [      ]
  from the sparse 

display model. In addition, c is expected to have a 

fraction of non-zero inputs only according to the 

SR model. Therefore, the problem is formulated 

as an optimization problem: 

(6) 

* *

*
R ,c

c 0 s.t. X=(SR )(B c)min  

Since (6) directly solves the NP problem, the 

objective function is also relaxed as follows: 

(7) 
1 . . ( )( )

,

min c s t X SR B c

R c

 



 

The problem of minimization in (7) is usually 

solved in two different ways. In [13], standard 

anthropometrics is performed in (7) and 

solved by the matching tracking algorithm. 

Zhou et al. [14], on the other hand, modify it 

as a convex shape. Therefore, an efficient 

algorithm is proposed to solve the convex 

optimization problem. However, as 

mentioned earlier, the errors due to the norm 

approximation ℓ1 and the three-dimensional 

to two-dimensional projection have not been 

carefully examined in any of them. To reduce 

the two types of estimation errors ℓ1 due to the 

norm approximation and three-dimensional to 

two-dimensional predictions in the solitude-based 

estimation model, first consider the sparse 

representation by re-weighting. 

(8) 
,

1 . . ( )( )min c

R c

w s t X SR B c 



  

In this regard, the W matrix starts with the identity 

matrix, and is updates in each iteration. The 

intermediate solutions S, R*, and B are used to 

place in W. The resulting W is used in turn to 

solve S, R*, and B in the next iteration. Unlike the 

weighting scheme in [15], [21],    has been 

comparatively updated using the original 3D 

position. The weight upgrade steps are as follows: 

Step 1: Select the basis of the positions from 

the comprehensive dictionary with indicators of 

non-zero inputs in c. 

Step 2: Place the weight    based on the 

similarity between the two-dimensional position 

of the input image and the main position selected 

by (9). 

(9) 

( ),
2

22

0

X SR B j j IC

j C

if
w j I

e otherwise

  




 



 

where σ is the width of the Gaussian nucleus. 

    represents a set of indices with non-zero inputs 

in c. 

In practice, the constraint in (8) makes the 

presence of noise challenging, and the difference 

between X and the projected estimate (SR*) (B* 

c) is expected to be as small as possible. As a 

result, the Lagrangian multiplier (in (10) has been 

considered to solve (8) as follows: 

(10) 1

,

21
( )( ) .

2
min c

R c

X SR B c w
F

 



   

Here, α > 0 is the parameter that strikes a balance 

between error and regularity. (10) is the loss 

function of this method in which  ‖ ‖  is the 

Frobenius norm. The variables R*, C, and W are 

alternately optimized by updating one of them 

(while the others are fixed). When c reaches the 

desired level, the human three-dimensional 

position Ŷ can be reconstructed using the original 

three-dimensional position model in (4). 

Equation (10) allows a slight difference between a 

given two-dimensional position and an estimated 

two-dimensional position (estimated from a 

projected three-dimensional position) in terms of 

fault tolerance. This difference is called the 

residual source   , and is as follows: 

(11) ˆ.s X SR Y    

in which,   is estimated the three-dimensional 

position. 
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It is assumed that the correct basis of the three-

dimensional position,   , and the input of the two-

imensional position, X is also a direct two-

dimensional plot of   , i.e.         . Thus (11) 

is written as follows: 

(12) ˆ
s gSR Y SR Y     

The organized form of (12) is as follows: 

(13) ˆ( )s gSR Y Y    

The term      is nothing more than the 

discrepancy between estimated 3D and the true 

3D pose. This discrepancy is given as residual 

target    in our paper. As a result, the relation 

between source residual    and target residual     

is presented as follows: 

(14) 1 † 1( ) .t s sSR R S        

where R  † is the pseudo-inverse of the rotation 

matrix R  . To this end, the source residual that is 

obtained by our minimization procedure can be 

related to the residual target. From this viewpoint, 

it is very important to know the discrepancy 

between the estimated 3D and the true 3D pose. 

To estimate the three-dimensional position, it is 

necessary to estimate the difference between Ŷ 

and   . With the help of   , Ŷ of the sparse 

display model is adapted. As a result, the 
estimated final three-dimensional position is 

expressed as follows: 

(15) † 1ˆ ˆ ˆ
final t sY Y Y R S       

At the end of the optimization, the minimum 

error,   , is obtained in the projected two-

dimensional range. According to (15), this residue 

can be used to estimate the difference in three-

dimensional estimates from the correct basis. In 

addition, to obtain a more accurate position Ŷ, the 

statistical range of the mean squares of the error is 

extended by imposing the residual source     in 

(10). This is to minimize the effects of random 

disturbances during the optimization process and 

to smooth error reduction. In this way, the 

additive error of two consecutive iterations is 

considered, i.e. (10) is rewritten as a stronger loss 

function      
         

(16) 
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where β is the equilibrium coefficient, and 𝑙 also 

represents the current iteration. In the 

optimization iteration, the remaining expression is 

computed by the previous iteration solution. 

“Equation (16)” minimizes two-dimensional 

position input X and 
1 1( )( ) ( )( )

.
1

l l l lSR B c SR B c



     


 

4. Verification and Laboratory Results 

In order to extract the three-dimensional state of 

the human body and also to evaluate the amount 

of error, the Adidas database [23] including 

correct and incorrect sports movements has been 

used Figure 4. Figure 5 describes the testing 

process. As shown in Figure (5-a), the input image 

is an image of an athlete whose body joints are 

labeled. Figure (5-b) shows the adaptation of the 

skeleton on the athlete's body. The test scenario is 

in the way that the person performs sports 

movements in front of a camera. The camera is 

placed on a tripod at a distance of about one to 

two meters from the person and monitors the 

person. Then, based on the proposed solution on 

the athlete's body, the coordinates of the joints are 

measured in two-dimensional space. The two-

dimensional skeleton is matched with the two-

dimensional skeletons extracted from the 

reference model and stored in the form of a sparse 

matrix. The comparison of the nearest two-

dimensional model extracted from the reference 

with the athlete's movement model is evaluated to 

measure the athlete's movement error (Figure (5-

c)). 

 
Correct movements Incorrect movements 

a) 

 

b) 

 
c) 

 

d) 

 

Figure 4. An example of an Adidas database image, (a 

and c) correct gestures, (b and d) incorrect gestures. 

For example, Figures 6 show the correct and 

incorrect cases of movement of plank exercise, 

which includes three rows of input image, 

matching skeleton on the body, and extraction 

skeleton. 
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a) b) c) 

 

 

 

Figure 5. Testing process: a) a person under monitoring 

of camera performs sports movements, b) Extraction of 

the skeleton from the athlete's movement, c) Extraction 

of two-dimensional model from reference three-

dimensional model at different angles. 

In the correct movement, the elbow is placed 

directly on the ground and parallel to the shoulder 

to form a 90-degree angle with the ground, the 

back of the body should be perfectly flat, and the 

spine should be in a neutral position. The person's 

hips should not be bent. In the incorrect position 

1, the hips are upwards, and in the incorrect 

position 2, the hips are downwards. These 

deviations cause Planck to move incorrectly. 

 
 Correct form Incorrect form 1 Incorrect form 2 

Input 

image    
Matching 

skeleton 

on the 

body    

Extractio

n skeleton 

   

Figure 6. Planck`s correct and incorrect movement. 

Table 1. comparing values of correct and incorrect 

Plank movement’s coordinates in two-dimensional 

space. 

No 
Organ 

name 

Correct 
movement 

coordinates 

Incorrect 
movement 

coordinates 

Difference 

1 Head (157,253) (154,364) (3,93) 
2 shoulder (305,279) (301,301) (4,2) 

3 Elbow (304,423) (255,478) (49,55) 

4 Wrist (95,423) (95,477) (0.54) 
5 Hip (533,292) (531,231) (2,61) 

6 Knee (753,307) (738,348) (15,41) 

7 Ankle (959,358) (939,436) (20,78) 
 

Table 1 compares the Planck's correct and 

incorrect movement coordinate values with each 

other. Tables 2 and 3 do the same comparison for 

the time that the input image is affected by 

retractable Gaussian noise and impulse noise. 

Studying Tables 2 and 3 show that increasing the 

noise may cause some data to be missing, also 

under the influence of this noise, the amount of 

variance and the mean of the error increase, i.e. by 

increasing the Gaussian noise variance from 0.01 

to 0.1 (i.e. by increasing the amount of noise by 

10 times), the mean error increases by about 2.5 

times, and the error variance increases by about 3 

times. Meanwhile by increasing the magnitude of 

the impulse noise from 0.01 to 0.1 (i.e. by 

increasing the amount of noise by 10 times), the 

average error increases by about 2 times, and the 

variance of the error increases by about 3 times. 
 

Table 2. Comparing values of correct and incorrect Plank 

movement’s coordinates in two-dimensional space after 

Gaussian noise effect with zero mean and variance 

(values * not found by Yolo network). 

Organ name 
Noise 

variance 

0.01 

Noise 
variance 

0.02 

Noise 
variance 

0.05 

Noise 
variance 

0.1 

Head * * * * 

Shoulder (395,280) (304,280) * * 

Elbow (302,423) (303,424) (302,424) (302,424) 

Wrist (97,423) (97,423) * * 

Hip (533,291) (533,300) * * 
Knee (756.308) (756,307) (757,307) (758,307) 

Ankle (960,355) (960,351) (960,350) (958,351) 

Average error rate (1.33,1) (1.33,283) (2.33,3) (2.66,2.66)) 
Average variance rate (1.46,1.2) (1.06,13.36) (2.33,19) (4.33.14.33) 

 

Table 3. Values of Yolo output coordinates impregnated 

with additive impulse noise with variable size. 

 

Organ name 

Noise 

variance 

0.01 

Noise 

variance 

0.02 

Noise 

variance 

0.05 

Noise 

variance 

0.1 

Head * * * * 

Shoulder (306,280) (307,279) (305,280) (304,278) 

Elbow (305,423) (306,422) (304,422) (303,423) 
Wrist 96,422) (98,423) (99,423) * 

Hip (533,292) (534,291) (535,293) * 

Knee (755,308) * (755,308) (755,308) 
Ankle (959,357) (959,354) (960,354) (959,355) 

Average error rate (0.83,0.26) (16,1.2) (1.5,1.33) (1,1.25) 

Average variance rate (0.56,0,26) (1.3,2.7) (2.3,1.86) (0.66,1.58) 

 
Table 4. Proposed maximum error for each sports 

movement across entire dataset` 
Maximum 

error 
Incorrect form Correct form 

Exercise 
name 

4.14 cm 

7.68 pixels 
  

Bridge 

4.14 cm 

7.68 pixels 
  

Donkey 

Kick 

4.14 cm 

7.68 pixels 
  

Push-up 

4.14 cm 
7.68 pixels 

  

Plank 

7.24 cm 

7.68 pixels 
  

Squat 

7.24 cm 

7.68 pixels 
  

Lunge 

7.24 cm 

7.68 pixels 
  

Side 

Lunge 

7.24 cm 

7.68 pixels 
  

Triceps 

Dip 
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Table 4 reports the maximum error of the method 

on the dataset. In calculating the values related to 

the mentioned table, the following items are 

considered: 1) The image's resolution according to 

the YOLO input image standard is considered 256 

x 256 [24]. 2) The maximum calculation error has 

been calculated based on AP75 of YOLO 

outcomes [25]. 3) According to [24], the 

maximum size for small objects is considered 0.12 

of the image sizes. 4) As the landmarks 

introduced in the manuscript are considered in the 

category of small objects, the maximum diameter 

of the landmark is 30.72 pixels (256*0.12). 5) 

Due to the image frame's proportionality with its 

resolution, each pixel in the image will be 

equivalent to 0.944 cm in length and 0.54 cm in 

height. 6) Therefore, the maximum calculation 

error in the length related to the extraction of the 

location of the landmarks is 7.68 pixels or 7.24 

cm. Also, the maximum calculation error in the 

height related to the extraction of the landmark's 

location is 4.14 pixels or 7.68 cm. It is necessary 

to explain that, according to the type of exercise, 

the error of each exercise in the dataset will be 

different. 

 

5. Conclusion and Future Suggestions 

In this work, we attempted to use Yolo neural 

network to extract the two-dimensional position of 

the joints from the image of the athlete. The Yolo 

network extracts the position of the joints by 

extracting the position of the wearable landmarks 

in the two-dimensional image. Then the skeletal 

model based on the position of the joints in two-

dimensional space is calculated and compared 

with two-dimensional maps of the three-

dimensional reference skeletal model. The 

difference between the two models shows the 

athlete's movement error. The proposed model 

shows effective stability. By increasing the 

cumulative Gaussian noise variance of the input 

data from 0.01 to 0.1, the resistance of the model 

is 2.5 ± 3 times the error compared to the normal 

state. Also, for cumulative impulse noise with a 

magnitude between 0.01 and 0.1, the resistance of 

the model is 2 ± 3 times the error compared to the 

normal state. The verification of this approach 

shows its accuracy and stability against additive 

Gaussian and impulse noises. 

As a future work, and in order to develop the 

present approach, two suggestions can be pointed 

out: 1) Given that Yolo is a relatively heavy 

neural network, it is recommended to provide an 

alternative light model that can meet the great 

goals of research on mobile applications.  

2) The proposed algorithm is based on 

wearable labels. Redesigning the mentioned 

algorithm that can calculate the position of body 

parts independently of these labels is suggested as 

a future work. 
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 با تطبیق و یولو عصبی شبکه کمک به مفاصل موقعیت دوبعدی استخراج بر مبتنی ورزشی حرکات حلااص

 بعدی سه اسکلتی خلوت مدل

  

 *کامبیز رهبر و انیس راحتی

 .ایران، تهران، دانشگاه آزاد اسلامی، واحد تهران جنوبدانشکده فنی و مهندسی،  مهندسی کامپیوتر، گروه

 10/40/2422 پذیرش؛ 40/40/2422 بازنگری؛ 40/40/2422 ارسال

 چکیده:

 اساس بر متفاوت رویکردی از استفاده با تا است شده سعی پژوهش این در. است مهم بسیار بدن سلامت تضمین در ورزشی حرکات صحیح انجام

ی هامفصل روی شده گذاری برچسب تصویر یک ورودی، تصویر. حاصل شود بعدی سه فضای در حرکات اصلاح، تصویرروی  از مفاصل دوبعدی موقعیت

 با دوبُعدی اسکلت. شودمی سنجیده دوبُعدی فضای در هامفصل مختصات سپس .دهدمی انجام را ورزشی تاحرک دوربین مقابل در شخص. است بدن

 یاد رویکرد دقت و آزمایی راست. شود حاصل حرکتی حاتاصلا تا شودمی داده تطبیق مرجع اسکلتی خلوت مدل از شده، استخراج دوبُعدی اسکلتهای

 میانگین .است شده مطالعه ضربه و تجمعی گوسی نویز تاثیر تحت آن بازدهی دهدهمچنین .است شده انجام آدیداس استاندارد داده مجموعه روی شده

 .شودمی گزارش پیکسل 0600 ورزشی حرکات مجموعه در اشتباه حرکت تشخیص در مدل خطای

 مددل ، یولو عصبی شبکه، مفاصل گذاری برچسب، مفاصل موقعیت دوبعدی استخراج، ورزشی حرکات اصلاح، ورزشی حرکات تشخیص :کلمات کلیدی

 .بعدی سه اسکلتی خلوت

 


