
 

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 10, No. 4, 2022, 505-514. 

 
Shahrood University of 

Technology 

 

Journal of Artificial Intelligence and Data Mining (JAIDM) 
Journal homepage: http://jad.shahroodut.ac.ir 

 

 

 Research paper 

Benefiting from Structured Resources to Present a Computationally Efficient 

Word Embedding Method 
 

Fatemeh Jafarinejad
*
 

                               
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran. 

 

Article Info  Abstract 

 

Article History: 
Received 14 July 2022 

Revised 21 September 2022 

Accepted 25 September 2022 
 

DOI:10.22044/jadm.2022.12113.2362 

 In the recent years, new word embedding methods have improved the 

accuracy of NLP tasks. A review of the progress of these methods 

shows that the complexity of these methods is growing. Therefore, 

there is a requirement for methodological innovation to provide new 

word embeddings. Most current word embedding methods use a large 

corpus of unstructured data to train the word semantic vectors. The 

main idea of this paper is to directly use the knowledge embedded in 

the structure of structured data to introduce embedding vectors. 

Therefore, the need for high processing power, large amount of 

memory, and long processing time will be eliminated using structured 

resources, and conceptual knowledge hidden in them. For this purpose, 

a new embedding vector, Word2Node, is proposed. This method uses a 

well-known structured resource, the WordNet, as its training corpus. 

Our hypothesis is that it is possible to directly use the linguistic 

knowledge lies in WordNet's graphical structure to provide accurate 

and small embedding vectors. The evaluation of this method on the 

text classification task has shown that the proposed method works the 

same or better compared Word2Vec. This result has been achieved 

while the amount of training data has decreased by about 50000000%. 

Moreover, the comparison of the proposed method with some other 

knowledge graph based embedding methods indicates the superiority 

of the proposed method on the word semantic similarity task. These 

results show the capacity of structured data to improve the quality of 

existing word embedding methods and their resulting vectors. 
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1. Introduction 

Utilization of machine learning methods in 

symbolic data structures (e.g. texts or graphs) 

requires the use of methods to convert these data 

structures into numerical data structures. 

Embeddings are one of the common methods that 

map the basic elements of their underlying system 

(for example, words or phrases in text, and nodes 

or edges in graph) to a point in an N-dimensional 

vector space. Capability of coding the semantic 

information of the basic elements and their 

conceptual relationship (for example, synonymy 

of words in a text or the adjacency of nodes in a 

graph) while mapping to a compact 

representation, has led to improved accuracy, 

speed, and memory consumption of machine 

learning models that use these vectors.  

The word embedding methods have been shown 

to be effective for improving the performance of 

many tasks of Natural language processing (NLP). 

SENNA [1], Word2Vec  [2], GloVe [3], BERT 

[4], RoBERTa [5], GPT-3 [6], and XLNet [7] are 

some examples of word embedding methods. 

Word embeddings have greatly improved the 

accuracy of NLP tasks, so that nowadays, the best 

systems in many tasks include these types of 

information. Text classification [8], sentiment 

analysis [9]–[11] machine translation (MT) [12], 

text summarization [13], image captioning [14], 
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and question answering [15] are some examples 

of these NLP tasks.  

However, reviewing the progress of embedding 

methods shows that along with increasing the 

accuracy of NLP tasks, the new embedding 

methods have more and more training parameters. 

This forces the embedding methods to require 

larger training corpus, time and memory, and 

consequently, more powerful and expensive 

hardware for computation. Therefore, there is a 

need for methodological innovation to suggest 

strong and fast embedding methods. 

Actually, the existing word embedding methods 

use a large corpus of unstructured texts and ignore 

the structure of input, if any. The novelty of this 

article is to introduce a new paradigm for creating 

word embeddings. The basic idea is to use the 

structure of structured texts to present the 

embedding vector, and thus reduce the size of the 

training corpus, the number of training 

parameters, training time, and memory. 

We hypothesized that semantic information 

encoded within the structured resources could 

compensate for this data deficiency. 

Albeit limited works have been done in literature 

in the field of embedding information of 

knowledge graphs (e.g. BabelNet [16], WordNet) 

as synset embeddings [17]–[20]. AutoExtend [17] 

finds the unknown WordNet synset embedding 

vectors from the known word embedding vectors 

of Word2Vec with huge computations using 

machine learning methods. Denis et al. [18] uses 

WordNet to proposed a synset embedding. They 

proceed by constructing some different similarity 

graphs over synsets using various synset similarity 

algorithms [21]. Their method learns word 

representation from synset embedding. Path2Vec 

[19] uses graph distance measures to propose 

node embeddings for WordNet nouns. Syn2Vec 

[20] builds a large-scale synset graph using 

different monolingual and cross-lingual 

colexification graphs, popular embeddings. They 

compute word embeddings from the embeddings 

of synsets using various fusion approaches. 

In this paper, WordNet as a structured data is used 

for proposing a computationally efficient word 

embedding and test the performance of the basic 

hypothesis of the paper: graphical structure of the 

WordNet includes valuable linguistic knowledge 

that can be considered and not ignored to provide 

cost-effective and small-sized embedding vectors. 
To take advantage of this graph, we went to a 

simple node embedding method, Node2Vec. Of 

course, different types of graph embedding 

methods can be used in this field. However, since 

the Node2Vec algorithm utilizes the Word2Vec 

method, by choosing this graph embedding 

method, a significant round trip has been done 

between the text and node embedding algorithms, 

which will show the high power of combinability 

of these methods together. Node2Vec generates 

node embeddings by applying Word2Vec to the 

corpus of graph random walks. Needless to say, 

newer types of word embeddings can also be used 

to construct node embedding using the corpus of 

random walks. 

In this paper, WordNet is considered as the input 

graph. Words of WordNet are considered as nodes 

of WordNet graph. Applying the Node2Vec 

algorithm to this graph, suitable embeddings for 

words will result. 

The evaluation of the proposed approach in two 

tasks of word similarity and text classification 

shows the efficiency of this method and its 

resulting embedding vector (named Word2Node) 

in comparison to its embedded basic embedding 

method (Word2Vec). Word2Node embedding 

vector is trained on PC hardware with little 

memory consumption in a short time. 

Furthermore, benefiting from a smaller number of 

elements in the embedding vector (70 instead of 

300 elements in Word2Vec) will increase the 

speed and decrease the training parameters of the 

new embedding in the underlying machine 

learning tasks that will use it. In this work, we will 

analyze the efficiency of the proposed idea from 

these perspectives, as well. 

The structure of the paper is as what follows. In 

Section 2, some theoretical backgrounds are 

explained. Graph embedding methods, word 

embeddings, and WordNet structure are briefly 

discussed in this section. The third section 

describes the proposed method. In Section 4, we 

will evaluate the proposed method in two tasks: 

word similarity and text classification. Lastly, we 

will conclude and describe the future work in 

Section 5. 

 

2. Materials and Methods 

2.1. Node embeddings 

Graph embedding approaches, also known as 

network representation learning, embed some 

elements of the input graph (e.g. nodes [22], edges 

[23] or the entire or sub-graph [24]) into a 

continuous low-dimensional vector space. This 

mapping should preserve network properties so 

that, after an optimization step of the learned 

embeddings, geometric relationships in the 

embedding space reflect the structure of the 

original network  [25]. Learned embeddings are 

then used as useful semantic-aware input to 

machine learning algorithms. Different graph 
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embedding approaches are categorized in [26] as: 

geometric embeddings [27], stochastic and 

probabilistic embeddings [22, 23], and neural 

network embeddings [24, 25]. 

Utilizing adjacency matrix of the graph, matrix 

factorization is one of the methods that can be 

used for graph embedding [26, 27]. Another way 

of thinking about graph embedding is to provide 

closer embedding vectors (e.g. higher cosine 

similarity) to similar element (e.g. nodes) of the 

underlying graph (according to some criterion). 

Adjacency-based similarity [22, 24, 28], multi-

hop similarity [32], and closeness in random 

walks [23, 29] can be used in this regard to 

measure similarity among nodes. Random walk-

based methods use some generated random walks 

(with different strategies, e.g. DFS walks, BFS 

walks or biased walks) to propose a node 

embedding.  

Node2Vec  [29] is a node embedding method in 

which Word2Vec [2] is applied to fixed-length 

random walks of graph. To do this, originating 

from each of the graph nodes, several biased 

random walks are produced. Thereafter, set of all 

walks are considered as sentences of a corpus 

whose words are the node names. Applying 

Word2Vec embedding on this corpus will result in 

the embedding of corpus words (nodes of the 

underlying graph). This method can be applied to 

directed/undirected graphs with/without weights. 

Walk length, number of walks of nodes, word2vec 

sliding window size, and the vector size are the 

hyper-parameters of this method. 

 

2.2.  Word embeddings 

Compact representation of word embeddings 

allows machine learning methods to be used faster 

than spars matrices of one-hot or term frequency-

inverse document frequency (tf-idf) 

vectorizations. Utilization of singular value 

decomposition (SVD) on matrix of point wise 

mutual information (PMI) or latent semantic 

analysis (LSA) [36] was one of the earliest 

methods to achieve this compact word 

representation. SENNA [1] is one of the first 

methods using neural networks to compute the 

word embeddings. The basic idea of it was to 

avoid task-specific man-made input features for 

NLP tasks (including part-of-speech tagging, 

chunking, named entity recognition, and semantic 

role labeling). Instead, it learns internal word 

representations on the basis of vast amounts of 

mostly unlabeled training data. SENNA requires 

about 200MB of RAM and should run on any 

IEEE floating point computer
1
. Word2Vec [2] 

uses a feed-forward neural network architecture 

with one hidden layer. Its 300-dimensional 

pretrained vector is trained on the Google News 

dataset (about 100 billion tokens, and 3 million 

word types). GloVe [3] learns to encode the 

information of the probability ratio of word co-

occurrences in form of word vectors. It is trained 

on Wikipedia 2014 + Gigaword5 (with 6B tokens, 

400K vocab). BERT [4] uses a bidirectional 

transformer to learn a language representation. 

16GB of Books Corpus and English Wikipedia 

are used as training corpus in BERT and training 

time was 4 days using 4 TPU Pods. 

Lately, several methods have been presented to 

improve BERT on either its prediction metrics or 

computational speed but not both. BERT uses 

masked language model (MLM), where only the 

masked tokens (15%) are predicted. To achieve 

better performance, XLNet [7] introduces 

permutation language modeling, where all tokens 

are predicted in random order. XLNet uses a 

larger data and more computational power to be 

able to do so. Actually, it was trained with over 

130 GB of textual data and 512 TPU chips 

running for 2.5 days. 

RoBERTa [5] introduces dynamic masking, so 

that the masked token changes during the training 

epochs. RoBERTa uses 160 GB of text for pre-

training, which is 1000% more data than the data 

used in BERT. It uses 1024 V100 Tesla GPU’s 

running for a day to get the pretrained embedding 

vector. 

Therefore, it seems that so far most of the 

performance improvements of word embeddings 

are either due to increased data, computation 

power or training procedure. The need for faster 

inference speed tends to a new embedding: 

DistilBERT [37]. It uses the idea of distillation to 

approximate BERT’s large neural network by a 

smaller one. However, it needs BERT’s neural 

network to be trained firstly. It only uses half the 

number of BERT’s parameters but retaining 95-

97% performance of BERT in different 

applications.  

In this paper, we address the idea of utilizing 

knowledge encoded in the structured data to faster 

develop an embedding vector in a most memory 

efficient manner. 

 

2.3. Princeton WordNet 

WordNets are one of the most important language 

resources created in different languages. They are 

                                                      

1 https://ronan.collobert.com/senna/ 
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structured data containing linguistic knowledge 

such as set of words, synonyms, antonyms, and 

taxonomic relations. In fact, the words, different 

meanings of them, and the set of synonymous 

words (synsets) can be considered as nodes of this 

lexical network. Relations between words or 

synsets form the edges of this graph, which 

encodes high-level information of the underlying 

language. Princeton WordNet [38] (simply called 

WordNet in this paper) was the first WordNet 

created for English. In WordNet, the relations 

between nodes include two categories: lexical 

relations (relations between words), and semantic 

relations (relations between two sets of 

synonymous words). Information related to words 

(in the 4 syntactic categories of noun, verb, 

adjective, and adverb) and their lexical relations 

(e.g. antonymy and derivation) are coded in this 

hyper-graph. Each word may have several senses 

depending on its different meanings. A word 

sense (or lemma) is a representation of one aspect 

of different meanings of a word. Set of synonyms 

form another important type of nodes in the 

hyper-graph of WordNet, called Synsets. 

A synset contains all of the word senses with a 

specific meaning. Thus each synset has different 

lemmas, and is identified by its most commonly 

used lemma. Different types of semantic relations 

including hypernymy, hyponymy, meronymy, 

holonymy, and entailment form other types of 

edges of WordNet graph connecting two different 

synsets. Set of synsets and the most important 

semantic relation between them (i.e. taxonomic 

relations) form a lexical ontology of language. 

Due to the high level linguistic information coded 

in WordNet lexical network, this lexicology have 

been used as one of the most important tools to 

solve many high level semantic problems of 

languages. Word sense disambiguation [39], 

sentiment Analysis [40], information retrieval 

[41], question answering [37, 38], word 

embedding vector construction [44], and machine 

translation [45] are some but not all applications 

of the WordNets. In this work, graphic structure 

of the Princeton WordNet is used to provide a 

small-sized cost-efficient embedding for words of 

language. 

 

3. Theory and Calculations 

3.1. Proposed idea 

A review of the progress of word embedding 

methods shows that the complexity of these 

models, their training parameters, and therefore, 

memory consumption grows increasingly. 

Therefore, there is a need for methodological 

innovation for presenting new word embedding 

methodologies. We see that most current word 

embedding methods use a large corpus of 

unstructured data (and neglect corpus structural 

information, if any) to train the semantic vectors 

of words. The amount of corpus leads to more 

memory consumption and training time. If we 

could use a smaller corpus, the memory 

consumption and the training time will be 

reduced. The training corpus must contain some 

semantic information, and the proposed 

embedding method should use this semantic 

information to compensate the issue of small 

amount of training data. The basic hypothesis was 

that structure of structured data can provide us 

with this information. As a well-known structured 

data utilizing from semantic knowledge of human 

language, we went to WordNet. Therefore, the 

need for strong hardware, large amount of 

memory, and long processing time will be met 

using structures and conceptual knowledge lies in 

WordNet. In order to provide a novel word 

embedding method, we construct a graph from 

WordNet. By applying the Node2Vec algorithm 

to the constructed graph we produce embeddings 

for the graph nodes (i.e. all words of WordNet). 

Therefore, we use Node2vec and Word2vec (that 

lies in Node2Vec) embedding methods to evaluate 

our idea of using semantic-aware training corpus 

to train word embeddings in a simpler manner 

(with less memory consumption and training 

time). We evaluate the resulting word embedding 

in two tasks and consider its effectiveness, while 

using simple embedding methodologies. Note that 

newer more powerful graph and word embedding 

methods can be used in this regard. Nevertheless, 

profit from small structured and semantic-aware 

training corpus to reduce amount of required 

processing power. 

 

3.2.  Methodology 

The idea of using semantic-aware corpus to train 

word embeddings simpler is addressed in the 

previous section. Utilizing linguistic knowledge 

encoded in WordNet, we evaluated this idea. We 

need a method to benefit from this semantic 

information. Algorithm 1 outlined the procedure 

of resulting Word2Node embedding. Graphical 

structure of WordNet leads us to use a graph 

embedding technique (Node2Vec) in this regard. 

Princeton WordNet 3.0 [38] (simply referred to as 

WordNet) is used for this purpose. We firstly 

construct a graph from WordNet. The nodes of 

this graph correspond to the set of all words of the 

WordNet. The edges of the graph also show the 

direct/indirect relationships between the words. 

By direct relations we mean lexical relations that 
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already exist in WordNet and map two different 

words to each other. Indirect relations between 

two words, however, can be distinguished using a 

round trip to synsets containing a lemma of the 

words and semantic relations of them. Finally, 

applying the Node2Vec algorithm to the 

constructed graph will produce embedding for the 

graph nodes (i.e. all words of WordNet).  
 

 

Algorithm 1: Word2Node: Node2Vec-based word 

embedding method using WordNet as semantic-aware 

training corpus 

Inputs: Hyper-parameters 𝒩𝓌, 𝒲𝓁, 𝒹, 𝓌, 𝒹𝒻, 𝓈𝒻. 𝒩𝓌: 

number of walks in Node2Vec, 𝒲𝓁: walk length of 

Node2Vec, 𝒹: dimension of embedding vectors, 𝓌: size of 

sliding window in Node2Vec and its corresponding 

Word2Vec algorithm, 𝒹𝒻, 𝓈𝒻: Boolean flags set to True,  if 

the graph is directed, and has self-edges, resp. 

 

Output: Word embedding vectors 

 

1. Compute 𝒲 , the set of all words of WordNet 

2. Make a new directed/undirected (according to the value 

of 𝒹𝒻) graph 𝒢  with 𝒲 as set of its nodes  

3. Compute the graph edges: 

Construct_GraphEdges(𝒢,𝒲,𝒹𝒻,𝓈𝒻) 

4. Generating 𝒩𝓌 walks of length 𝒲𝓁 from the graph  

5. Compute 𝒹-dimensional node embeddings with window 

of length 𝓌𝓁 using Node2Vec algorithm 

 
 

Algorithm 1 has two important phases: graph 

construction (lines 1 to 3), and calculation of 

embedding vectors using Node2Vec (lines 4 and 

5). The procedure of computing the edges of the 

WordNet graph (line 3) is described in Algorithm 

2. As mentioned before, edges of this graph could 

contain indirect relations of words indicating 

semantic relations of synsets containing words’ 

lemmas, as well as direct lexical relations. For 

each word of WordNet as nodes, this procedure 

calculates these edges. 

In lines 1.A.a-1.A.e, the relations between the 

synsets containing the lemma of each the senses 

of a word and lemma of their hypernym, 

entailment relation, hyponym, holonym, and 

meronym synsets are added to the set of graph 

edges. Note that since these relations are coded as 

semantic relations in WordNet, we must use 

different lemmas of these synsets (as a word) 

instead of the synsets themselves. 

In line 1.A.f, calculation of the 

synonyms/antonyms of an adjective word is 

addressed. Note that a set of synonyms of a word 

can be calculated using lemmas of the synset 

containing the word. Moreover, antonymy 

relations are encoded as lexical relations in 

WordNet, and could be added to set of graph 

edges easily. 

Suitable selection of WordNet graph structure as 

well as the hyper-parameters of Node2Vec 

(number of walks, walk length, embedding vector 

dimension, and sliding window size) affect the 

performance of the resulting embedding. We got 

them by trial and error, and investigated the effect 

of these hyper-parameter selections in the task of 

word similarity in Table 1 of the next section. 
 

 

Algorithm 2: Construct _GraphEdges: Compute edges 

between WordNet words as nodes of WordNet graph, 𝒢  

Inputs: 𝒢: the returned graph initially have nodes without any 

edges between them, 𝒲: set of all nodes of the graph, 𝒹𝒻: a 

Boolean flag which is set to True, if the graph is directed, 𝓈𝒻: 

a Boolean flag, set to True, if the graph has self-edges. 

 

Output: WordNet Graph 

 

1. For 𝓌 in 𝒲, set of all words of WordNet: 

A. For 𝓈 in set of all synsets of word 𝓌 in WordNet: 

a. for 𝓁1 in the set of all lemmas of all hypernyms of 

𝓈: 

i. add the edge (𝓁1.name(), 𝓌) to the 𝒢 

ii. if 𝒹𝒻, add the edge (𝓌, 𝓁1.name()) to the 𝒢 

b. for 𝓁1 in the set of all lemmas of all entailments of 

𝓈: 

i. add the edge (𝓁1.name(), 𝓌) to the 𝒢 

ii. if 𝒹𝒻, add the edge (𝓌, 𝓁1.name()) to the 𝒢 

c. for 𝓁1 in the set of all lemmas of all hyponyms of 

𝓈: 

i. add the edge (𝓌, 𝓁1.name()) to the 𝒢 

ii. if 𝒹𝒻, add the edge (𝓁1.name(), 𝓌) to the 𝒢 

d. for 𝓁1 in the set of all lemmas of all holonyms of 𝓈: 

i. add the edge (𝓁1.name(), 𝓌) to the 𝒢 

ii. if 𝒹𝒻, add the edge (𝓌, 𝓁1.name()) to the 𝒢 

e. for 𝓁1 in the set of all lemmas of all meronyms of 

𝓈: 

i. add the edge (𝓌, 𝓁1.name()) to the 𝒢 

ii. if 𝒹𝒻, add the edge (𝓁1.name(), 𝓌) to the 𝒢 

f. for 𝓁𝓁1 in the set of all lemmas of 𝓈: 

i. add the edge (𝓌, 𝓁𝓁1.name()) to the 𝒢 

ii. for 𝒶𝒶1 in antonyms of 𝓁𝓁1: 

Z. add the edge (𝓌, 𝒶𝒶1.name()) to 

the 𝒢 
 

4. Results and Discussion 

In order to analyze the performance of the 

proposed idea and the new word embedding 

methodology, we evaluate it in the two tasks of 

word similarity and text classification. We 

compare the results of Word2Node embedding 

with the result of Word2Vec as its base word 

embedding method. For word2Vec, we download 

and use the pretrained 300-dimensional word 

vectors trained on Google news using Word2Vec 

CBOW algorithm [2]. Wordsim353 dataset [46] is 

used for word similarity task. Kaggle’s News 

category dataset [47] and IMBD dataset [48] are 

used for text classification. The following 

provides results of applying Word2Node 

embedding on these datasets. 
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4.1. Word similarity task 

In order to analyze the proposed method, we 

firstly evaluate the method and the effect of 

different hyper-parameters in word similarity task 

on Wordsim353 dataset [46]. This dataset consists 

of word pairs and their similarity measure (which 

is a number in range [0,10]). We divide similarity 

measures of this dataset by 10 to be in the range 

[0,1] and be comparable with positive cosine 

similarity. 

To evaluate the embedding model, we get the 

embedding vector of each word pairs of the 

dataset, compute their cosine similarity, and 

compare it with the number suggested by the 

dataset itself (as mentioned, divided by 10).  We 

do this procedure for Word2Vec embedding 

method, as well. Mean squared error (MSE) of the 

numbers suggested by each embedding method 

with the gold standard numbers is a measure of 

goodness of each embedding method. MSE of the 

proposed embedding method for an undirected 

graph with self-edges, and vector dimension 70, 

walk length 14, number of walks 50, and window 

size 14, was 0.0317. MSE of Word2Vec on this 

dataset was 0.045. These results are obtained 

while the proposed method use smaller vector size 

(70, instead of vector size 300 for Word2Vec).  

This experiment shows the effectiveness of the 

proposed word embedding method on task of 

word similarity. The effect of using other values 

for hyper-parameters in the proposed embedding 

is illustrated in Table 1. 
 

Table 1. Evaluation of Structure-Aware WordNet 

Training Corpus and the Proposed Corresponding 

Embedding Method (Word2Node) in Word Similarity 

Task. 
Method 𝒹𝒻 𝓈𝒻 𝒹 𝒲𝓁 𝒩𝓌 𝓌 MSE 

Word2Vec - - 300 -- -- -- 0.123 

Word2Node 

(Proposed ) 

F T 70 14 50 14 0.063 

T T 70 13 50 13 0.080 
F T 100 17 60 10 0.081 

F T 25 12 40 7 0.049 

F T 40 12 40 7 0.053 

F T 50 12 40 7 0.058 

F T 50 5 40 7 0.060 

F T 50 7 40 7 0.060 
F T 70 14 50 10 0.066 

F T 70 14 50 5 0.066 
F T 70 14 50 7 0.063 

F T 70 17 60 14 0.071 

 

Furthermore, we evaluate the performance of the 

proposed word embedding method against three 

embedding methods [18]–[20], which used the 

information of knowledge graphs in word 

similarity task, as us. [18] reports the Pearson 

correlation of its method on various word 

similarity datasets (i.e. wordsim353 [46], RG [49], 

and MEN [50] dataset). We evaluate our method 

on another important word similarity dataset, MC 

[51], as well. Path2Vec [19] uses SimLex999 [52] 

dataset to evaluate the performance of its 

algorithm using Spearman correlation. It just uses 

666 noun similarities of the dataset. For fairness 

of comparison, we just use noun concepts of the 

SimLex999 dataset, as well.  Syn2vec [20] used 

the Spearman correlation as a criteria for 

performance evaluation on Multi-SimLex dataset 

[53]. As we use English WordNet, we compare 

methods just in monolingual English word 

similarities. Tables 2, 3 illustrate the results. 

Columns of these tables shows different datasets 

that are abbreviated as WS, RG, MEN, MC, 

SL99, and MuSL, respectively for wordsim353 

[46], RG [49], MEN [50], MC [51], SimLex999 

[52], and Multi-SimLex [53]. Moreover, 

Path2Vec, Word2Vec, and the proposed 

Word2Node methods are abbreviated in rows of 

tables as P2V, W2V, and W2N, resp. 
 

Table 2. Comparing Pearson Correlation of some 

Methods on Word Similarity Datasets. 

Method\

Dataset 

WS RG MEN MC SL99 MuS

L 

[18] 0.52 0.76 0.31 - - - 

W2V 0.65 0.77 0.76 0.79 0.46 0.44 

W2N 0.48 0.81 0.54 0.80 0.57 0.50 

 

Table 3. Comparing Spearman Correlation of some 

methods on Word Similarity Datasets. 

Method\

Dataset 

WS RG MEN MC SL99

9 

MuS

L 

S2V [20] - - - - - 0.47 

P2V [19] - - - - 0.51 - 

W2V 0.70 0.76 0.77 0.80 0.45 0.49 

W2N 0.48 0.79 0.54 0.74 0.56 0.50 

 

As it can be seen in these tables, the proposed 

method outperforms the two knowledge graph-

based embedding methods in all of the datasets. 

However, for some dataset the Word2Vec 

embedding works better than the proposed 

Word2Node embedding. 
 

 

4.2. Text classification task 

We used part of the Kaggle’s News category 

dataset [47] and IMBD dataset [48] to compare 

the effectiveness of the proposed embedding idea 

and method in the task of text classification. The 

Kaggle’s News category dataset [47] contains 

200853 news in 41 different categories. We 
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limited our work to three categories (name it as 

3CATS-News): ENTERTAINMENT, POLITICS, 

and TECH. This subset of the database contains 

50879 news items, 70% of which are used for 

training and 30% remained for testing. The IMDB 

dataset [48] is a dataset having 50K movie 

reviews for binary sentiment classification. A set 

of 40k movie reviews is provided for training. 

Validation and test both contain 5k reviews. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Architecture of the Used Classification Model. 

 

The same deep learning architecture is used to 

evaluate the performance of Word2Vec and 

proposed embedding in text classification. This 

model is a sequential model containing an 

embedding layer, a LSTM layer, a max pooling 

layer, and two fully connected layers. Figure 1 

shows the architecture of the model for 

Word2Node. In case of Word2Vec, the same 

model is used except the output dimension of 

embedding layer of which is equal to (None, 100, 

300). In other words in the embedding layers, the 

application of pretrained Word2Vec weights is 

compared with using the proposed Word2Node 

embedding. 

Table 2 demonstrates the accuracy and timing of 

each of the two mentioned embeddings. We 

consider 4 timing factors for each word 

embedding model: spent time to load the 

embedding model (load), time for construction of 

embedding matrix for deep learning models 

(const.), average training time of the deep model 

per epochs (train), and the prediction time (pred.) 

in seconds. As it can be seen in the table, the 

accuracy of the proposed method is approximately 

equal to that of the Word2Vec, while the predict 

speed is 23% faster than the Word2Vec method. 

Moreover, the loading time of the model and the 

construction of its embedding matrix are much 

less than Word2Vec. This difference in processing 

speed and time will be more pronounced in large 

datasets. 
 

Table 4. Evaluation of Semantic-Aware WordNet 

Training Corpus and corresponding method, Word2Node 

on Text Classification Task. 
Datas

et 

Method/Crit

eria 

Accura

cy 

Loa

d 

Con

st. 

Trai

n 

Pred

. 

3CAT

S-

News 

Word2Vec 93.933 35.7
98 

0.16
93 

51.5 7.21
73 

Word2Node 

on 3cats-
news 

93.436 2.43 0.03

12 

34.1 5.50

16 

IMDB Word2Vec 87.60 35.7

98 

0.25

78 

200 2.48

13 
Word2Node 84.58 2.43 0.14

72 

34 1.91

38 
 

4.3.  Cost analysis 

In order to further evaluate the efficiency of the 

idea of utilizing a semantic-aware training corpus 

in embedding vectors, in this section, we will 

examine factors affecting the training cost of the 

proposed embedding method. The required 

processing power of the hardware used for 

training procedure is one of these factors. The 

amount of memory consumed and training time 

are some other factors that are of course related to 

the size of the training corpus. Table 5 shows the 

results of these factors. As it can be seen, utilizing 

structured data in presenting an embedding 

method will lead to a much reduction in the size 

required for the training corpus. In comparison to 

Google’s pretrained vectors for Word2Vec, the 

required training data is reduced by about 

50,000,000%. This factor will further affect the 

processing time, memory, and processing power. 
 

Table 5. Required Processing Power to Train Word2Node 

Embedding Method. 
 System 

Spec 

Memor

y 

Training 

Time 

Trainin

g 

Corpus 

Size 

Word2

Node 

(propos

ed) 

PC with 

Intel i7-
8700K CPU 

@ 3.70GHz 

8GB 14351seconds 

(≈4hours) 

188097* 

 

 

)*The number of words of WordNet used was 

147,306. However, in terms of semantic relations 

and considering that we worked with synsets, 

some of lemmas of synsets do not exist in set of 

words of WordNet (inconsistency!) and added as 

nodes to the graph. Therefore, the number of final 

nodes of our graph is more than the number of 

words of WordNet(. 

 

5. Conclusions and Future Work 

Nowadays, word embedding methods do a trade-

off between prediction and computation metrics. 

Fundamental improvements that can increase 

performance while using fewer data and resources 

are required. In this paper, the basic idea of 

InputLayer: (None, 100) 

 
Embedding: (None, 100, 70) 

LSTM: (None, 100, 128) 

 

Dense: (None, 64) 

 

GlobalMaxPooling1D: (None, 128) 

 

Dense: (None, 3) 
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utilizing from structure of the corpus was 

addressed. Utilizing linguistic knowledge encoded 

in WordNet, this idea was developed. Graphical 

structure of WordNet tends to produce word 

embedding vectors using a simple node 

embedding algorithm. Evaluation of the produced 

vectors in two tasks of word similarity and text 

classification shows the efficiency of this new 

paradigm shift in word embeddings. Faster 

training procedure and less memory consumption 

while are the results of this new embedding that it 

has an accuracy comparable to Word2Vec in these 

tasks. This idea can be more developed to extract 

word vectors using more powerful graph 

embedding and word embedding techniques. 

Nevertheless, benefit from small structured and 

semantic-aware training corpus to reduce amount 

of required processing power. 
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 چکیده:

روشهها نشهان    نیا ایمقایسه یاست. بررس دهیرا بهبود بخش کاربردهای مختلف پردازش زبان طبیعی دقت تعبیه کلمات دیجد یهاروش ر،یاخ یهادر سال

وجهود   دیه جد کلمهات  هیه تعب روشهای ارائه یبرا یبه نوآور ازین ن،ی. بنابرارشد استروبهآنها  یآموزش یمدلها و تعداد پارامترها نیا یدگیچیدهد که پیم

یهده الهلی   . اکننهد  یکلمات استفاده م ییمعنا یآموزش بردارها یبدون ساختار برا یها از داده یاز مجموعه بزرگ یفعل اتکلم تعبیه یها روش اکثردارد. 

بهه قهدرت    ازیه ن ترتیه  بهدین . تعبیه کلمات است یبردارها یمعرف یبرا افتهیساخت یهاشده در ساختار داده هیاز دانش تعب مستقیم استفاده، مقاله این

منظهور،   نیا ی. براشودبرطرف میدر آنها نهفته  یو دانش مفهوم افتهیبا استفاده از منابع ساختار یو زمان پردازش طولان ،حافظه ادیپردازش بالا، حجم ز

 یآموزشه  پیکهره ، بهه عنهوان   WordNetمعروف،  افتهیمنبع ساختار کیز روش این شده است. ا شنهادی، پWord2Node ،روش تعبیه کلمات جدید کی

 شهده  هیه تعب یارائه بردارها یراب WordNet یکیساختار گراف توان بدون واسطه از دانش زبانی موجود درمی است که نیاما  هیکند. فرضیخود استفاده م

آن  درنهفتهه   ات کلمه  هیه با روش تعب سهیدر مقاپیشنهادی ن نشان داده است که روش ومت یبنددر طبقه دهیا نیا یابی. ارزاستفاده نمودو کوچک  دقیق

(Word2Vec) اسهت.  افتهه ی% کهاهش  24444444حهدود   یآموزشه  یهها هکهه حجهم داد   شدهحالل  یدر حال جهینت نیکند. ایبهتر عمل م ای کسانی 

همچنین مقایسه روش پیشنهادی با برخی روشهای تعبیه کلمات مبتنی بر گراف دانش، در کاربرد تشخیص شباهت کلمهات نیهز حهاکی از برتهری ایهن      

   از آنهاست.حالل  یموجود و بردارهاتعبیه کلمات  یروشها تیفیبهبود ک یبرا افتهیساخت یهاداده تیظرف نشان دهنده جینتا نیا روش است.

 کلمات. ، شباهت معناییNode2Vec، وردنت، تعبیه گراف، کلماتتعبیه  :کلیدی کلمات

 


