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4.1. Word similarity task 

In order to analyze the proposed method, we 

firstly evaluate the method and the effect of 

different hyper-parameters in word similarity task 

on Wordsim353 dataset [46]. This dataset consists 

of word pairs and their similarity measure (which 

is a number in range [0,10]). We divide similarity 

measures of this dataset by 10 to be in the range 

[0,1] and be comparable with positive cosine 

similarity. 

To evaluate the embedding model, we get the 

embedding vector of each word pairs of the 

dataset, compute their cosine similarity, and 

compare it with the number suggested by the 

dataset itself (as mentioned, divided by 10).  We 

do this procedure for Word2Vec embedding 

method, as well. Mean squared error (MSE) of the 

numbers suggested by each embedding method 

with the gold standard numbers is a measure of 

goodness of each embedding method. MSE of the 

proposed embedding method for an undirected 

graph with self-edges, and vector dimension 70, 

walk length 14, number of walks 50, and window 

size 14, was 0.0317. MSE of Word2Vec on this 

dataset was 0.045. These results are obtained 

while the proposed method use smaller vector size 

(70, instead of vector size 300 for Word2Vec).  

This experiment shows the effectiveness of the 

proposed word embedding method on task of 

word similarity. The effect of using other values 

for hyper-parameters in the proposed embedding 

is illustrated in Table 1. 
 

Table 1. Evaluation of Structure-Aware WordNet 

Training Corpus and the Proposed Corresponding 

Embedding Method (Word2Node) in Word Similarity 

Task. 
Method 𝒹𝒻 𝓈𝒻 𝒹 𝒲𝓁 𝒩𝓌 𝓌 MSE 

Word2Vec - - 300 -- -- -- 0.123 

Word2Node 

(Proposed ) 

F T 70 14 50 14 0.063 

T T 70 13 50 13 0.080 
F T 100 17 60 10 0.081 

F T 25 12 40 7 0.049 

F T 40 12 40 7 0.053 

F T 50 12 40 7 0.058 

F T 50 5 40 7 0.060 

F T 50 7 40 7 0.060 
F T 70 14 50 10 0.066 

F T 70 14 50 5 0.066 
F T 70 14 50 7 0.063 

F T 70 17 60 14 0.071 

 

Furthermore, we evaluate the performance of the 

proposed word embedding method against three 

embedding methods [18]–[20], which used the 

information of knowledge graphs in word 

similarity task, as us. [18] reports the Pearson 

correlation of its method on various word 

similarity datasets (i.e. wordsim353 [46], RG [49], 

and MEN [50] dataset). We evaluate our method 

on another important word similarity dataset, MC 

[51], as well. Path2Vec [19] uses SimLex999 [52] 

dataset to evaluate the performance of its 

algorithm using Spearman correlation. It just uses 

666 noun similarities of the dataset. For fairness 

of comparison, we just use noun concepts of the 

SimLex999 dataset, as well.  Syn2vec [20] used 

the Spearman correlation as a criteria for 

performance evaluation on Multi-SimLex dataset 

[53]. As we use English WordNet, we compare 

methods just in monolingual English word 

similarities. Tables 2, 3 illustrate the results. 

Columns of these tables shows different datasets 

that are abbreviated as WS, RG, MEN, MC, 

SL99, and MuSL, respectively for wordsim353 

[46], RG [49], MEN [50], MC [51], SimLex999 

[52], and Multi-SimLex [53]. Moreover, 

Path2Vec, Word2Vec, and the proposed 

Word2Node methods are abbreviated in rows of 

tables as P2V, W2V, and W2N, resp. 
 

Table 2. Comparing Pearson Correlation of some 

Methods on Word Similarity Datasets. 

Method\

Dataset 

WS RG MEN MC SL99 MuS

L 

[18] 0.52 0.76 0.31 - - - 

W2V 0.65 0.77 0.76 0.79 0.46 0.44 

W2N 0.48 0.81 0.54 0.80 0.57 0.50 

 

Table 3. Comparing Spearman Correlation of some 

methods on Word Similarity Datasets. 

Method\

Dataset 

WS RG MEN MC SL99

9 

MuS

L 

S2V [20] - - - - - 0.47 

P2V [19] - - - - 0.51 - 

W2V 0.70 0.76 0.77 0.80 0.45 0.49 

W2N 0.48 0.79 0.54 0.74 0.56 0.50 

 

As it can be seen in these tables, the proposed 

method outperforms the two knowledge graph-

based embedding methods in all of the datasets. 

However, for some dataset the Word2Vec 

embedding works better than the proposed 

Word2Node embedding. 
 

 

4.2. Text classification task 

We used part of the Kaggle’s News category 

dataset [47] and IMBD dataset [48] to compare 

the effectiveness of the proposed embedding idea 

and method in the task of text classification. The 

Kaggle’s News category dataset [47] contains 

200853 news in 41 different categories. We 
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limited our work to three categories (name it as 

3CATS-News): ENTERTAINMENT, POLITICS, 

and TECH. This subset of the database contains 

50879 news items, 70% of which are used for 

training and 30% remained for testing. The IMDB 

dataset [48] is a dataset having 50K movie 

reviews for binary sentiment classification. A set 

of 40k movie reviews is provided for training. 

Validation and test both contain 5k reviews. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Architecture of the Used Classification Model. 

 

The same deep learning architecture is used to 

evaluate the performance of Word2Vec and 

proposed embedding in text classification. This 

model is a sequential model containing an 

embedding layer, a LSTM layer, a max pooling 

layer, and two fully connected layers. Figure 1 

shows the architecture of the model for 

Word2Node. In case of Word2Vec, the same 

model is used except the output dimension of 

embedding layer of which is equal to (None, 100, 

300). In other words in the embedding layers, the 

application of pretrained Word2Vec weights is 

compared with using the proposed Word2Node 

embedding. 

Table 2 demonstrates the accuracy and timing of 

each of the two mentioned embeddings. We 

consider 4 timing factors for each word 

embedding model: spent time to load the 

embedding model (load), time for construction of 

embedding matrix for deep learning models 

(const.), average training time of the deep model 

per epochs (train), and the prediction time (pred.) 

in seconds. As it can be seen in the table, the 

accuracy of the proposed method is approximately 

equal to that of the Word2Vec, while the predict 

speed is 23% faster than the Word2Vec method. 

Moreover, the loading time of the model and the 

construction of its embedding matrix are much 

less than Word2Vec. This difference in processing 

speed and time will be more pronounced in large 

datasets. 
 

Table 4. Evaluation of Semantic-Aware WordNet 

Training Corpus and corresponding method, Word2Node 

on Text Classification Task. 
Datas

et 

Method/Crit

eria 

Accura

cy 

Loa

d 

Con

st. 

Trai

n 

Pred

. 

3CAT

S-

News 

Word2Vec 93.933 35.7
98 

0.16
93 

51.5 7.21
73 

Word2Node 

on 3cats-
news 

93.436 2.43 0.03

12 

34.1 5.50

16 

IMDB Word2Vec 87.60 35.7

98 

0.25

78 

200 2.48

13 
Word2Node 84.58 2.43 0.14

72 

34 1.91

38 
 

4.3.  Cost analysis 

In order to further evaluate the efficiency of the 

idea of utilizing a semantic-aware training corpus 

in embedding vectors, in this section, we will 

examine factors affecting the training cost of the 

proposed embedding method. The required 

processing power of the hardware used for 

training procedure is one of these factors. The 

amount of memory consumed and training time 

are some other factors that are of course related to 

the size of the training corpus. Table 5 shows the 

results of these factors. As it can be seen, utilizing 

structured data in presenting an embedding 

method will lead to a much reduction in the size 

required for the training corpus. In comparison to 

Google’s pretrained vectors for Word2Vec, the 

required training data is reduced by about 

50,000,000%. This factor will further affect the 

processing time, memory, and processing power. 
 

Table 5. Required Processing Power to Train Word2Node 

Embedding Method. 
 System 

Spec 

Memor

y 

Training 

Time 

Trainin

g 

Corpus 

Size 

Word2

Node 

(propos

ed) 

PC with 

Intel i7-
8700K CPU 

@ 3.70GHz 

8GB 14351seconds 

(≈4hours) 

188097* 

 

 

)*The number of words of WordNet used was 

147,306. However, in terms of semantic relations 

and considering that we worked with synsets, 

some of lemmas of synsets do not exist in set of 

words of WordNet (inconsistency!) and added as 

nodes to the graph. Therefore, the number of final 

nodes of our graph is more than the number of 

words of WordNet(. 

 

5. Conclusions and Future Work 

Nowadays, word embedding methods do a trade-

off between prediction and computation metrics. 

Fundamental improvements that can increase 

performance while using fewer data and resources 

are required. In this paper, the basic idea of 

InputLayer: (None, 100) 

 
Embedding: (None, 100, 70) 

LSTM: (None, 100, 128) 

 

Dense: (None, 64) 

 

GlobalMaxPooling1D: (None, 128) 

 

Dense: (None, 3) 
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utilizing from structure of the corpus was 

addressed. Utilizing linguistic knowledge encoded 

in WordNet, this idea was developed. Graphical 

structure of WordNet tends to produce word 

embedding vectors using a simple node 

embedding algorithm. Evaluation of the produced 

vectors in two tasks of word similarity and text 

classification shows the efficiency of this new 

paradigm shift in word embeddings. Faster 

training procedure and less memory consumption 

while are the results of this new embedding that it 

has an accuracy comparable to Word2Vec in these 

tasks. This idea can be more developed to extract 

word vectors using more powerful graph 

embedding and word embedding techniques. 

Nevertheless, benefit from small structured and 

semantic-aware training corpus to reduce amount 

of required processing power. 
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