[1] O. Reiter, V. Rotemberg, K. Kose, A. C. Halpern, “Artificial Intelligence in Skin Cancer,” Proc Natl Acad Sci U S A., 108, pp. 7265-70, 2011.
[2] M. E. Aktas, E. Akbas, A. E. Fatmaoui, “Persistence homology of networks: methods and applications,” Applied Network Science https://doi.org/10.1007/s41109-019-0179-3 4, (61), pp. 1-28, 2019.
[3] V. Buhrmester, D. Münch, M. Arens, “Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey,”, pp. 249-274, 2019, Available: arXiv:1911.12116.
[4] H. Edelsbrunner, “Persistent Homology in Image Processing,” Graph-Based Representations in Pattern Recognition. GbRPR 2013. Lecture Notes in Computer Science, vol 7877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38221-5_19
[5] M. Hosseini Moghadam, M. M. Pedram, "Topological Data Analysis for Classification of DeepSat-4 Dataset," 2020 10th International Symposium onTelecommunications (IST), 2020, pp. 246-250, doi:10.1109/IST50524.2020.9345829.
[6] N. Elyasi, M. Hosseini Moghadam, “An Introduction to a New Text Classification and Visualization for Natural Language Processing Using Topological Data Analysis,” 2019, available: arXiv preprint arXiv:1906.01726.
[7] S. Gholizadeh, , A. Seyeditabari, W. Zadrozny, “Topological Signature of 19th Century Novelists: Persistent Homology in Text Mining,” big data and cognitive computing, 2, pp. 1-33, 2018.
[8] H. Lee, H. Kang, M. K. Chung, B. Kim, D. Lee, “Persistent Brain Network Homology From the Perspective of Dendrogram,” IEEE TRANSACTIONS ON MEDICAL IMAGING., 31, pp. 2267-77, 2012.
[9] J. L. Nielson, J. Paquette, A. W. Liu, C. F. Guandique, C. A. Tovar, etal, “Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury,” Nature Communications, 6, pp. 1-12, 2015.
[10] M. E. Sardiu, , J. M. Gilmore, B. Groppe, L. Florens, M. P.Washburn, “Identification of Topological Network Modules in Perturbed Protein Interaction Networks,” Scientific Reports, 7, pp. 1-13, 2017.
[11] P. Tschandl, C. Rosendahl, H. Kittler, “The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions,” Scientific data, 5(1), 1-9, 2018.
[13] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251-1258, 2017.
[14] A. Zomorodian, G. Carlsson, “Computing Persistent Homology,” Discrete and Computational Geometry, 33, pp. 249-274, , 2005.
[15] P. Bubenik, P. A. Dłotko, “persistence landscapes toolbox for topological statistics,” J. Symbol. Comput., 78, 91–114, 2016.
[16] G. Singh, F. Mémoli, G. Carlsson, “Topological methods for the analysis of high dimensional data sets and 3d object recognition,” In Eurographics Symposium on Point-Based Graphics (eds Botsch, M., Pajarola, R.), 6, pp. 1-12, 2007.
[17]https://tmap.readthedocs.io/en/latest/how2work.html.
[18] `KeplerMapper', http://doi.org/10.5281/zenodo.1054444, accessed Jan 2019.
[19] A. Hekler, , J. S, Utikal, A. H. Enk, A. Hauschild, M. Weichenthal, R. C. Maron, ..., A. Thiem, “Superior skin cancer classification by the combination of human and artificial intelligence,” European Journal of Cancer, 120, 114, 2019.
[20] Y.M. Chung, C.S. Hu, A. Lawson, C. Smyth, “Topological approaches to skin disease image analysis,” In2018 IEEE International Conference on Big Data (Big Data), pp. 100-105, 2018 Dec 10.
[21] ISIC2018. Available online: https://challenge2018.isic-archive.com/ (accessed on 19 August 2018).
[22] M. Kurmanji and F. Ghaderi, “Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study,” Journal of AI and Data Mining, 8, 2, pp. 177-188, 2020.