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In video prediction, it is expected to predict the next frame of a video 

by providing a sequence of input frames. Whereas numerous studies 

exist that tackle frame prediction, a suitable performance is not still 

achieved, and therefore, the application is an open problem. In this 

work, multi-scale processing is studied for video prediction, and a new 

network architecture for multi-scale processing is presented. This 

architecture is in the broad family of autoencoders. It is comprised of 

an encoder and decoder. A pretrained VGG is used as an encoder that 

processes a pyramid of input frames at multiple scales simultaneously. 

The decoder is based on the 3D convolutional neurons. The presented 

architecture is studied using three different datasets with varying 

degrees of difficulty. In addition, the proposed approach is compared 

with two conventional autoencoders. It is observed that using the 

pretrained network and multi-scale processing results in a performant 

approach. 
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1. Introduction

Videos are a sequence of still frames. 

Individually, each frame consists of a series of 

pixels. By showing the sequence of frames in a 

predetermined order and a predetermined delay, 

an observer would perceive the sequence as video 

or motion picture. Based on this definition, there 

are two dependencies in videos. First, the spatial 

dependency or intra-frame dependency between 

the pixels of a frame. This dependency is formed 

by the depicted scene of the frame. Therefore, in a 

frame, the values of adjacent pixels are dependent. 

The complete set of these adjacent pixel 

dependencies are spatial context. The second 

dependency is called temporal or inter-frame 

dependency. This dependency is formed between 

the corresponding pixels of two consecutive 

frames [1]. In its most naïve form, temporal 

dependency is a function of object displacement 

in the scene among consecutive frames. The 

assumption here is that the video is continuous in 

time. This assumption can sometimes be broken, 

e.g. key frames in videos. The complete set of 

these temporal dependencies between consecutive 

frames of a video is the temporal context. 

Video prediction is the prediction of a single 

video frame from a timeseries of video frames. In 

other words, having frames Ft-1 to Ft-n, it is 

desirable to predict frame Ft. The approach that 

would fully exploit the spatial and temporal 

context would have better predictions. 

Video prediction application is a relatively young 

field, and was a non-application prior to the 

introduction of deep neural networks and 

performant hardware, e.g. powerful graphical 

processing units. Powerful hardware made heavy 

workloads possible in acceptable timeframes. On 

the other hand, deep neural networks made the 

process of manual feature generation easier, and 

in some cases obsolete. This has revolutionized 

the process of designing prediction pipelines, and 

has changed the classic and time-consuming 

process of design, implementation and 

deployment of learning approaches. 

Video prediction is important from two 

viewpoints. First, it powers many applications 

such as video anomaly detection [2], weather 

forecasting by satellite imagery [3], robotics [4] 

and hand gesture recognition [5] among others. 

Second, in almost all instances of video 
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prediction, a broad family of deep networks 

named convolutional autoencoder are used. This 

set of architectures has some key properties. Their 

input and output are the same, and they attempt to 

reconstruct the input in the output with some 

preconditions and modifications. Therefore, they 

can be categorized as self-supervised methods. 

Therefore, video prediction application is one of 

the toy problems to gauge the performance of 

these architecture. It is to be noted that the focus 

of this paper is on videos and in addition to spatial 

context, temporal context is also considered. 

Prior to deep neural networks, vast amount of 

information in a frame virtually prevented from 

predicting or estimating the next frames. As it was 

mentioned, an acceptable prediction would require 

to process interframe and intraframe dependencies 

and decoding these data without employing big 

neural networks is challenging. In reviewing the 

deep network architectures, three separate 

categories of approaches can be discerned. 

In the first category, recurrent networks are 

employed. These networks (especially the ones 

that use the relatively newer LSTM and GRU [6]) 

are efficient in modeling long-term temporal 

dependencies. One of the most prominent of such 

approaches belongs to Shi and colleagues [3]. The 

main obstacle in these networks is the ability to 

simultaneously model temporal and spatial 

dependencies. To this end, Shi et al. [3] has 

introduced an LSTM variant that can also model 

the intraframe dependencies. They have used the 

new ConvLSTM neuron to predict weather 

forecasting videos. Lotter has also studied the 

effect of neural networks' loss functions, and has 

deduced that using and merging multiple loss 

functions in the network would lead to superior 

results [5, 6]. Although approaches based on 

recurrent networks and their hybrid models has 

seen relative success, they also have some issues. 

The network parameters in a modest sized 

network can get massive relatively easily. This 

leads to two side-effects. First, their learning is 

slow, and second, considering the hardware 

limitations; the number of layers is limited that 

would lead to a limited performance. 

The second category is GAN-based approaches. 

While the discriminative approaches learn the 

decision boundary, the generative approaches 

learn the underlying cause of the boundaries. 

These approaches learn based on a zero-sum 

game. The main benefit of these approaches for 

video prediction is their ability to adapt to 

uncertainty in future frames [8]. In other words, 

when there is the possibility of multi-modal 

prediction, discriminative approaches predict the 

mean of possibilities, and therefore, reduce their 

error, while generative approaches can potentially 

predict all possibilities. For example, Jin et al. [9] 

have used GANs for video prediction and video 

parsing. They have made a clear distinction 

between the two, and have separated the video 

prediction and video parsing steps. In the first 

step, the frames are predicted. Afterwards, the 

same network architecture is also used to parse the 

frames. In another example, Walker et al. [10] 

have used GAN to predict frames. Their main 

motivation is not to predict pixels. Therefore, in 

the first step, they have predicted the pose of 

active objects in the frame, and in the second step, 

they have used the pose prediction through a 

conditional GAN to reconstruct the next frame. 

Their visual results might show the need for more 

performant approaches. Overall, the GAN-based 

approaches have good performances but at the 

same time, their training is challenging and can 

easily diverge and the mode collapse is a serious 

problem [11]. In addition, the generated frames 

are sharp but unrealistic in a closer inspection 

[12]. 

The third category is based on convolutional 

neurons. The 2D convolutional neurons are 

classically used for modeling intra-frame 

dependencies and their numerous hybrid 

approaches even in other categories. On the other 

hand, these neurons do not have the capability to 

process temporal context. This can be remedied 

by using the 3D convolutional neurons. As an 

example, Van Amersfoort et al. [13] have 

predicted image transforms to transform frame t to 

frame t+1 instead of predicting pixel intensities. 

Their approach suffers from pixel blur. Some 

approaches prefer to preprocess the input through 

the use of foreground/background segmentation 

[14], and then proceed to only use foreground or 

process the two segments individually. For 

example, Vonderick et al. [12] have separated the 

foreground and background predictions, and 

process each in individual network streams. This 

approach allows the network to focus on the 

important foreground, and lowers the overall 

error. In a more general viewpoint, many 

approaches prefer to use some form of recurrent 

networks for frame prediction. 

In actuality, many approaches are hybrid 

approaches, but the categorization gives us the 

capability to study the pros and cons of each 

category separately. This paper's proposed 

approach can be categorized in the convolutional 

(3
rd

 category), which will be reviewed in the next 

section. 
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The main contribution of this paper is presenting a 

convolutional autoencoder architecture for video 

prediction. While many studies attack the problem 

through the use of recurrent networks, it will be 

shown that a purely convolutional approach is 

possible and even better. To this end, the new 

architecture is compared with other related works. 

In order to compare these architectures, various 

datasets are used, namely moving MNIST [15], 

flying things [16] and KITTI [17]. These datasets 

have varying degrees of challenges, and would 

paint a comprehensive picture of the approach that 

shows the importance of multi-scale processing. 

In addition, the proposed architecture's 

effectiveness and performance is shown to be 

superior compared to the previous approaches. 

The rest of the paper is organized as follows. 

Section 2 discusses the basic concepts. Section 3 

introduces the proposed approach, Section 4 will 

discuss the results, and Section 4 concludes the 

paper. 

 

2. Basic Concepts 

Figure 1 shows the overall architecture of 

autoencoders. This architecture consists of an 

encoder and a decoder. The encoder transforms 

the input to a compressed feature representation, 

and the decoder transforms (or reconstructs) the 

feature representation back to an output that aims 

to be the same as the original input data. In the 

encoding phase, the feature maps are usually 

compressed to lower the width and height of 

feature maps, whereas the count of feature maps is 

increased. In the decoding phase, the width and 

height are increased, while feature map count is 

decreased.  

The decoder's output dimensionality is the same 

as the original input frame. All autoencoders share 

this property [12, 16]. 

Where the layers of an encoder consist of 

convolutional layers, it is called a convolutional 

autoencoder. These layers would let the 

autoencoder model spatial context, and make the 

overall architecture suitable for image or sound 

processing. In order to consider the temporal 

context, one possible approach is to feed multiple 

input frames to the network. For example, by 

feeding 5 video frames as input to the network 

(and having the capability to process them), the 

temporal dependencies are considered [19]. 

Autoencoders are considered self-supervised 

algorithms, in the sense that the input data and 

label data are the same. 

 

Figure 1. Overall architecture of autoencoders. 

 

3. Proposed Approach 

Figure 2 shows the overall architecture of 

proposed network. Like many other convolutional 

autoencoders, the architecture consists of an 

encoder and a decoder. 

 

 
 

Figure 2. Proposed network architecture. 
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Figure 3. Decoder architecture. 

 

In the encoder, the architecture consists of three 

separate input streams. These streams are fed by a 

pyramid of input images. Each stream's input is a 

sequence of 4 frames. In other words, Ft-1 to Ft-4 

are considered as input, and are shown by   . In 

addition, the input pyramid has a 1/2 multiplier, 

and each image is half the previous one in each 

dimension. The total count of encoder streams is 

equal to the multiplication of pyramid levels and 

input frame count. Therefore, in Figure 2, there 

are 12 total encoder streams. 

The input streams use the bottom part of VGG 

network [20] with pretrained and shared weights. 

The bottom part contains only convolutional 

layers that would lead to flexibility of input 

dimensionality. In other words, due to the fully 

convolutional VGG, input dimensionality can 

vary (as in each level of input pyramid), and VGG 

would process the inputs accordingly. 

Furthermore, the weight sharing between encoder 

streams enable the architecture to increase its 

encoder stream count with minimum performance 

penalty. The multi-stream approach helps the 

algorithm process the inputs in multiple scales 

explicitly. 

There are some notable points that should be 

mentioned. First, due to limitations imposed by 

VGG, the inputs consist of RGB channels. This 

forces the conversion of grayscale frames to RGB 

ones. Second, VGG is not designed to consider 

temporal context, whereas the inputs are 

comprised of several frames (4 in this article). In 

the encoder, this is not dealt with. In other words, 

each input frame in the encoder is processed 

separately, and all the resulting feature maps are 

concatenated. 

Due to the pyramid of images, the input frames 

are in different sizes. Therefore, their encoder 

output is also different in size. In order to have 

uniform encoder output sizes, second pyramid 

stream in upsampled by a factor of 2, and the third 

pyramid stream is upsampled by a factor of 4. 

Our proposed decoder is shown in Figure 3 . The 

decoder has a single stream and is fed by the 

concatenation of encoders' feature maps. For the 

decoder to be able to process multiple frames at 

the same time and access the temporal context, the 

decoder uses 3D convolutional layers. The 

decoder consists of 3 main blocks and several 

independent layers. The blocks gradually decrease 

the feature map count, while increasing its height 

and width. Additionally, similar to inception 

module [21] and through the use of convolutional 

layers with filter size of (1,1,1) features are 

reduced, and the overall weight count has been 

reduced. Furthermore, the decoder will output 

estimation of frame Ft, which is also called   . 

The training label ( ̂ ) is Ft that makes the 

approach self-supervised. 

Finally, the loss function is the binary 

crossentropy function, and the L2 weight loss is 

also employed. 

 

4. Results  

The proposed approach's results are presented 

with three datasets, which are ordered by their 

challenge levels. These are moving MNIST, 

flying things and KITTI. The moving MNIST and 

KITTI are used in various video prediction 

literature to gauge the performance of algorithm 

[20–23], whereas the flying things is not 

commonly used but can be a middle ground in 

terms of image complexity. 

Moving MNIST [15] is a set of video clips, which 

show two numbers moving in an image frame, 

bouncing off the edges of the image, and 

overlapping in some other cases. This dataset is 

basic and fairly easy. Each frame is a 64 by 64 
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grayscale image. Each video clip consists of 20 

frames, and there is a total of 10000 clips. The 

authors have divided these into 6000 training 

sequences, 1000 validation sequences, and 3000 

test sequences. 

Flying things [16] is a subset of SceneFlow 

dataset. The set of images of each video clip 

contains not only the frame but also the optical 

flow, which is not used in this article. The images 

are created by computer graphics; therefore, they 

are not from the real world. The frames show 

objects that are translated and rotated with 6 

degrees of freedom in the scene. In addition, the 

camera is also rotating, though it does not have 

translation. The dataset creators have divided the 

sequences into the training and test subsets. 

KITTI [17] uses a set of cameras, which are 

mounted on a driving car. Most clips show the 

translation and rotation of car (camera), and 

generally, the objects in the scene have little 

movements. This dataset is grayscale, and consists 

of real-world scenes. This dataset is also divided 

into the training and test sets by the dataset 

creators. A small subset of the training set is 

chosen as the validation set by the authors. 

In the experiments, in order to report the 

performance, two metrics are used, namely mean 

squared error and mean of structural similarity 

[26]. Mean structural similarity is a full reference 

metric (in image quality assessment, full reference 

metrics are metrics that use both the original and 

degraded images to measure the performance. 

These metrics are usually slow but at the same 

time better metrics) used to measure the amount 

of degradation between two images (original and 

degraded or in this case reconstructed image). It is 

first presented by Wang et al. [26]. This metric's 

values are between -1 and 1. The value of 1 

represents a perfect reconstruction.  
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In the above equations,    is the result of the 

network using the i
th
 sample, whereas  ̂  is the i

th
 

sample's label or in other words the next frame. x 

and y are two corresponding 11x11 windows that 

are on    and  ̂ . N is total sample count and M is 

total pixel count (121). In addition,    and    are 

two small variables that stabilize the equation 

when the denominator is zero or very small.    

and    are 0.01 and 0.03 respectively, and L (the 

dynamic range) is 255. The result of (5) is a 

structural similarity image that is the same size 

and dimension as the network output, and each 

pixel is a representation of degradation between 

network's output and label image. The mean 

structural similarity measure is the mean of this 

matrix, and is more precisely referred to as 

MSSIM. 

The training is done by Adam's gradient descent 

algorithm with a learning rate of 0.0001. In 

addition, the network uses L2 regularization with 

the rate of 0.0005 and dropout probability of 0.5. 

In the first experiment, the proposed approach is 

tested with Moving MNIST dataset, and is 

compared with a network completely comprised 

of ConvLSTM [3]. Table 1 shows the results of 

this experiment. The compared works are some of 

the most recent studies in video prediction. The 

proposed approach and [3] represent two different 

frameworks for video prediction. The proposed 

approach receives a limited frame history, in this 

case, a sequence of 4 frames, while ConvLSTM 

can potentially save and extract infinite temporal 

dependencies through the use of its recurrent 

gates. The proposed approach has a 20% lead 

compared to ConvLSTM. It is shown in Table 1 

that performance lead holds for more recent 

recurrent-based networks such as [20–22]. 

Table 1. Result comparison of proposed approach using 

moving MNIST dataset. 

 Structural 

similarity 
(MSSIM)% 

Mean squared 

error (MSE) 

Derivable memory [27] N/A 0.044 

Z-Net [24] 87.7 N/A 
PredRNN [23] 86.7 N/A 
PredRNN++ [22] 89.8 N/A 
ConvLSTM [3] 71.3 0.014 
3D U-Net 85.9 0.013 

Proposed approach 90.5 0.009 

Three points stand out in Table 1. First, in the 

video prediction research, the mean squared error 

is presented in two ways; on one hand it can be 

the result of image matrix whose elements are 
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integers between 0 and 255, and on the other 

hand, it can be the result of image matrix whose 

elements are real numbers between 0 and 1. In the 

first case, the mean squared error is a big number, 

whereas in the second case, it is a number much 

smaller than 1. In this work, the mean squared 

error is presented in the small form (for 

normalized images). Second, in the table, some 

values are not presented by the original authors 

but there are other researchers that have reported 

their own results. Where it was possible to obtain 

these results it has been done, otherwise their 

value is not available. Third, in this experiment 

and all the next ones, ConvLSTM and 3D U-Net 

is implemented by the authors according to their 

respective articles. 

The second experiment studies the results of the 

proposed approach on the KITTI dataset and 

compares the proposed approach with another 

common convolutional autoencoder named U-Net 

[18]. The U-Net architecture was proposed for 

still images at its inception. However, there are 

applications that have replaced the 2D 

convolutional layers with 3D ones, and have 

therefore included the temporal context in their 

model [28]. Thus, comparing the proposed 

approach with this architecture can give a bigger 

picture of the approaches. The U-Net results in 

Table 2 is implemented with the 3D approach. As 

it is evident, the proposed approach has a superior 

effectiveness. 

In a more general term and similar to the proposed 

approach, U-Net also has an encoder and a 

decoder, and is also multi-scale. The main benefit 

of the proposed approach compared to U-Net is 

the pretrained VGG that affects convergence 

speed and effectiveness. In addition, the fact that 

the decoder has access to multi-scale features 

simultaneously is also beneficial. 

Table 2. Result comparison of proposed approach using 

KITTI dataset. 

 Structural similarity 

(MSSIM)% 

Mean squared 

error (MSE) 

ConvLSTM [3] 41.7 0.093 
3D U-Net  47.3 0.050 

Proposed approach 53.1 0.025 

The third experiment studies the results of flying 

things dataset in Table 3. Although this dataset is 

not commonly used in video prediction works, it 

can be a middle ground (in terms of dataset 

complexity) for this application. Therefore, the 

results are reported. 

Table 3. Results of proposed approach using flying things 

dataset. 

 Structural similarity 
(MSSIM)% 

Mean squared 
error (MSE) 

ConvLSTM [3] 56.73 0.058 

3D U-Net 66.61 0.028 

Proposed approach 71.92 0.011 

 
Figure 4. Visual results. Top left: KITTI result, Bottom 

left: KITTI label, Top right: flying things result, Bottom 

right: flying things label. 

 

Figure 4 shows the visual results of the KITTI 

dataset along with the flying things dataset. 

One of the key aspects of measuring video 

prediction approaches' performance is their long-

term effectiveness. In other words, suppose that a 

sample with 4 consecutive frames is predicted. In 

the next step, the prediction with the previous 3 

frames are fed into the algorithm as the new input, 

and this approach is repeated many times. The 

result of this experiment is a set of predictions that 

only the first four predictions have access to the 

original dataset samples, and the rest of the input 

test samples are comprised of partial or complete 

prediction frames. Yet, in other words, let us 

assume that a video clip consists of 20 frames 

named        . In the first step, the input 

sample is        and the output is   . 
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Figure 5. Visual results of long-term experiment. Time progresses to the right. Top row: dataset input, Second row: 

ConvLSTM results, Third row: U-Net results, Bottom row: proposed approach. 

 

 
Figure 6. Performance comparison of ConvLSTM and 

proposed approach in long-term experiment. 

This output is compared with  ̂  (that is equal to 

  ), and its performance is measured by MSE and 

MSSIM. For the second time, the sample consists 

of            For the third time, it consists of 

             and likewise. This method of 

prediction allows the approach to be benchmarked 

in the long term. The experiment shows the 

performance results of long-term tests. They are 

shown in Figure 6. This experiment is done with 

the moving MNIST dataset. 

Figure 5 shows the visual results of long-term 

experiment, and compares it with the ConvLSTM 

and U-Net approach. ConvLSTM and the 

proposed approach's architectures are different, 

and represent two completely different approaches 

to video prediction. The ConvLSTM uses 

recurrent layers and predicts with accumulation of 

memory, whereas the proposed approach is 

memoryless and uses 2D and 3D Convolutional 

layers. On the other hand, the U-Net's architecture 

is more similar to the proposed approach (it is 

based on convolution layers).  

The experiment shows interesting results. U-Net 

destroys the input much sooner than the proposed 

approach (and ConvLSTM). Therefore, it tends to 

become an image that is zero in every pixel. 

However, at the same time, an all zero image 

yields a relatively large SSIM (Figure 6) because 

after all the two images (label and result) have 

much in common. In other words, in the 

comparison, U-Net becomes a naïve prediction 

much sooner than the other two approaches. As it 

is evident, in the long-term prediction, the 

proposed approach preserves the visual properties 

of the objects better and has less blur. However, 

this prediction is only better than a naïve 

prediction for 8 frames. One can determine this 

threshold by looking at crossing point of U-Net 

and proposed approach in Figure 6. 
 

5. Conclusion  

In this work, in order to predict video frames, a 

new multi-scale framework was introduced. In 

this framework, a new convolutional autoencoder 

architecture was used. Our proposed deep neural 

network architecture consisted of three VGG 

stream to encode the input sample. Streams make 

the multi-scale processing of inputs possible. The 

decoding was done by transposed Conv3D layers. 

These layers had also access to the encoders' 
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feature maps in multiple scale. The combination 

of spatiotemporal and multi-scale processing lead 

to a better performance. 

In order to compare this framework, three datasets 

were used, named Moving MNIST, KITTI and 

Flying things, and the approaches performance 

was measured by structural similarity and mean 

squared errors metrics. 

The proposed multi-scale convolutional approach 

was compared with the recurrent-based 

approaches on moving MNIST dataset, which 

lead to at least 0.7% boost to MSSIM. This can be 

attributed to multi-scale processing of the inputs. 

In addition, from the results, one can deduce that 

unlike applications that work on text and sound, 

video prediction does not benefit from long term 

history. After all, video prediction largely requires 

estimating displacing objects by using their speed, 

and in the strictest definition, deducing speed does 

not require more than two frames. 

In another experiment, the proposed approach was 

compared with the 3D U-Net on KITTI dataset, 

and showed 5.7% advantage. 

In spite of the results of the proposed approach, it 

can probably be further optimized. In particular, 

we are working on the loss functions that decrease 

blur. In addition, while the proposed framework's 

performance is considerably improved, the 

resulting network architecture is quite big (in 

terms of parameter count), and this results in an 

increased run time. Using more compact 

architectures in place of VGG could probably 

remedy this. The sensitivity test of input sample's 

frame count can also be mentioned as a future 

work. 
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 چکیده:

انجاام شاده    بینی قااب های ورودی است. با اینکه تحقیقات زیادی در مورد پیش قاب ای از بینی قاب بعدی با وجود دنبالهبینی ویدیو، هدف پیش در پیش

دمقیاساه  است، کارایی بالا دور از دسترس بوده و این موضوع باعث شده که همچنان این کاربرد، زمینه مورد مطالعه باشد. در ایان تحقیا ، پاردازش  ن   

رمگذشاا تشاکی     بینی ویدیو بررسی شده و معماری شبکه جدیدی برای پردازش  ندمقیاسه ارایه شده است. این معماری از یا  رمگذاذار و  برای پیش

های ورودی را باه واورت همگماان در  ناد مقیااس       از پیش آموزش دیده شده تشکی  شده است که هرمی از قاب VGGشده است. بخش رمگذذار، از 

جاه ساختی   های پیچشی سه بعدی طراحی شده است. معماری ارایه شده با استفاده از سه مجموعه دادذان با در کند و کدذشا بر اساس نرون پردازش می

دازش متفاوت آزموده شده است. به علاوه، روش ارایه شده با دو خودرمگذذار متداول مقایسه شده است. اساتفاده از شابکه از پایش آماوزش دیاده و پار      

 شود.  ندمقیاسه، باعث کارا بودن نتایج می

 .یاسهبینی ویدیو، پردازش  ندمقهای عصبی عمی ، خودرمگذذار پیچشی، پیش شبکه :کلمات‌کلیدی

 


