

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 10, No. 3, 2022, 311-320.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

A Simulated Annealing-based Throughput-aware Task Mapping

Algorithm for Manycore Processors

Alireza Tajary
*
 and Hossein Morshedlou

Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran.

Article Info Abstract

Article History:
Received 26 December 2021

Revised 11 April 2022

Accepted 24 May 2022

DOI:10.22044/jadm.2022.11518.2312

 With the advent of having many processor cores on a single chip in

many-core processors, the demand for exploiting these on-chip

resources to boost the performance of applications has been increased.

Task mapping is the problem of mapping the application tasks on these

processor cores in order to achieve a lower latency and a better

performance. Many research works are focused on minimizing the

path between the tasks that demand a high bandwidth for

communication. Although using these methods can result in a lower

latency, at the same time, it is possible to create congestion in the

network, which lowers the network throughput. In this paper, a

throughput-aware method is proposed that uses simulated annealing

for task mapping. The method is checked on several real-world

applications, and simulations are conducted on a cycle-accurate

network on a chip simulator. The results obtained illustrate that the

proposed method can achieve a higher throughput, while maintaining

the delay in the network on chip.

Keywords:
Simulated Annealing, Manycore

Processors, Task Mapping.

*Corresponding author
:tajary@shahroodut.ac.ir (A. Tajary).

1. Introduction

The demand for having more processing power

has resulted in having superscalar processors,

multicore processors, and finally many-core

processors [1] [2] [3]. In multicore and many-core

processors, more than one processor core exists on

a single chip [4] [5]. As the communication

infrastructure of the many-core processors is the

bus technology, and the bus technology does not

scale well with the number of connected modules

to it, the number of processor cores on multicore

processors is limited. In order to have more

processing cores on a single chip, many-core

processors have been introduced.

The underlying technology for communication in

many-core processors is the network on chip

(NoC) [6]. In NoCs, multiple cores known as the

processing elements (PEs) are connected through

a communication topology. Many communication

typologies like ring, 2D mesh, 3D mesh, and

hyper-cube are proposed in NoCs. Among them,

the 2D mesh is widely used as a baseline topology

in many research works on NoCs. In this

topology, each PE is connected to a local router,

and each router is connected to four adjacent

routers in the north, east, south, and west

directions. Having an optimal routing algorithm

and mapping of application on PEs are two of the

challenges in NoCs.

A directed graph can be generated for each

application. Each vertex in that graph shows a

task to be run, and each edge represents the

direction of padding data, and its weight shows

the required bandwidth to transfer data between

vertices. This directed graph is called a task graph

[7] [8]. The efficient mapping of each node in a

task graph on a processing element is one of the

challenges in NoC [9] [10]. For example, each

node in a task graph possibly sends and receives

data to and from more than four nodes, while a

processing element in NoC, at most, have four

neighbors and there is not a dedicated link

between each pair of nodes in NoC (in the 2D

mesh topology).

One heuristic to tackle the mapping problem in

NoC is a mapping in which the nodes with high

bandwidth edges should be adjacent to each other.

Tajary & Morshedloo / Journal of AI and Data Mining, Vol. 10, No. 3, 2022

312

This heuristic is used as the base idea for many

research works in the literature [7] [9] [10]. In

order to implement this idea, a cost function

(known as the communication cost function) is

proposed, in which the mapping with the lowest

cost is considered as the best one. This means that

the mapping problem can be expressed as an

optimization problem. Since the search space of

the cost function is large, many meta-heuristic

methods like simulated annealing [11], genetic

algorithm [12] [13], and PSO [14] are proposed to

find the best solution.

Solving the mentioned optimization problem leads

to having short paths between nodes during the

program execution. This makes congested areas in

the NoC around the high bandwidth demand

nodes. On the other hand, based on the routing

and switching algorithms, this congestion can

result in having a higher latency for delivering

packets. For example, for transferring packets in

the wormhole switching algorithm [15], the whole

path will be reserved for a packet, which means

that no other packets can be delivered if it uses

any hops from that path. High latency has been

reported by [9] in mapping the MPEG-4

application on a 4x4 mesh NoC, resulting in 9000

clock cycles required to deliver a flit, while it

should be a value around 7.

Moreover, the congestion in NoC can lead to

lowering the network throughput. Since many

packets are blocked by other packets, we reach a

lower ratio of packet delivery in NoC. This means

that the network throughput decreases.

In this paper, a throughput-ware task mapping

algorithm is presented that considers the true

throughput of NoC in the cost function of the

optimization problem. The optimization problem

is solved using the simulated annealing meta-

heuristic algorithm. The simulation results show

that the proposed algorithm can achieve a higher

throughput compared to the related works.

The main contributions of the paper are

summarized as what follows.

 We proposed a new cost function that uses the

dynamic features of the task graph.

 We modified the noxim cycle accurate

simulator to generate the traffic patterns based

on the task graph and its corresponding

mapping.

 We investigated the required simulation time

in the simulator to achieve the acceptable

results.

 We developed a simulated annealing

algorithm to optimize the proposed cost

function.

 We explain and analyse the results by the

mann-whitney statistical test.
The rest of the paper is as what follows. In

Section 2, we cover the background knowledge of

NoC and task mapping. Section 3 covers the

related works. The proposed method will be

presented in Section 4. The simulation results are

shown in Section 5, and Section 6 concludes the

paper.

2. Background

In this section, we first introduce the NoC and

routing in NoC, and then the application task

graph and mapping will be discussed.

2.1. NoC and routing

NoC is accepted as the underlying technology for

the communication infrastructure of the future

many-core processors [4]. The NoC topology

defines the arrangement of PEs and their

connections in an NoC. For example, 2D mesh is

a widely used topology, in which PEs are

arranged in a row and column fashion. In this

topology, each PE will be connected to a router

and that router will be connected to its neighbor

routers in the four main directions. Figure 1 shows

a 4x4 NoC with 2D mesh topology, which

contains 16 routers.

Figure 1. 4x4 2D mesh NoC with 16 routers, with XY

routing.

Transferring data in NoC is a step-by-step process

[6]. In the wormhole switching algorithm [16],

each packet will be split into some flits; the first

flit acts as the head of a worm, which reserves a

path for the packet from sender to receiver. Other

flits will follow the head pack to reach the

destination. The last flit, known as tail, releases

the path, which allows other packets to reserve it.

The routing algorithm defines the movement

strategy for the head flit, which will be

implemented in the routers of NoC.

XY [17] is a routing algorithm that splits the

routing into two steps: 1) going through the x-

direction to reach the column of the destination,

and 2) going through the y-direction to reach the

A Simulated Annealing-based Throughput-aware Task Mapping Algorithm for Manycore Processors

313

row of the destination. Figure b1 shows the paths

to send data from node #15 to node #0 and vice

versa. It is important to note that in this figure, the

two paths do not use the same routers.

2.1. Task graph and mapping problem

Since there are many cores in the NoC

architectures, they are suitable for running parallel

applications. Parallel applications contain tasks

that run parallel and cooperate with each other.

Tasks exchange data between themselves to

perform their processing requirements [7]. The

task graph G(V, E) is a directed graph in which the

vertex vi ∈ V is a task in the application and the

edge eij ∈ E is directed edge from vi to vj with the

weight wij that represents the required bandwidth

for delivering data from vi to vj.

The task graphs of several applications exist in the

literature. For example, the task graph of Video

Object Plane decoder (VOPD) application is

shown in Figure 2. As shown in this figure, this

application has 16 main tasks shown as nodes in

this graph. Each task does a special processing on

its inputs. For example, the task #1 is the variable

length decoder, the task #2 is run length decoder,

and the task #3 is inverse scan. The edges of the

graph show the required bandwidth for

transferring data between tasks in MB/S.

Figure 2. Task graph of VOPD.

Moreover, there is an NoC topology graph N(P, L)

that represents the processing elements as vertices

and the connection links between them as edges.

The weight of each edge in L represents its

capacity of bandwidth. A mapping from a task

graph to an NoC is a one-to-one mapping of task

graph vertices to NoC PEs [7]. Therefore, a

mapping is a function that can be describe as:

:

, |

f V P

f v p v V p P

(1)

There are two constraints for this function: 1) each

element of P can be mapped by at most one

element of V, and 2) each link in the NoC has a

limited capacity; therefore, the next constraint of

mapping is that the maximum requested

bandwidth of each edge in L should be less than

or equal to its capacity.

It is commonly accepted that having nodes near

each other results in a lower latency and a better

throughput [7] [9]. In order to find the best

mapping, an optimization problem has been

formulated. For each mapping, a cost can be

computed as the sum of multiplying each edge

weight (from task graph) to the length of the path

from source and destination routers (in NoC). This

cost function is shown in Equation 2 [7]. In this

equation, w is the weight of the edge from the task

graph, and dist(s,d) is the Cartesian distance

between the source and the destination of the

corresponding edge in NoC (as shown in Equation

3). Since the space of the solutions is very large,

several evolutionary algorithms have been

proposed to find the best solution that minimizes

the cost function [11] [18] [14].
| |

1

() ((), ())
E

i i i

i

cost weight e dist src e dst e

(2)

(,) | () () |

| () () |

dist s d col s col d

row s row d

(3)

3. Related Works

Application mapping is a challenging job in the

NoC architecture design. The researchers have

proposed many algorithms to overcome its

complexity. These methods differ from the exact

methods to the evolutionary and meta-heuristic

methods.

Integer linear programming (ILP) is used in [19]

for application task mapping on 2D mesh NoC.

As the search space for some applications is very

large, finding the optimal mapping by ILP

requires a vast processing power and execution

time. The communication cost (Equation 2) is

used as the objective function to be reduced in

[19]. In order to reduce the runtime overhead of

ILP, the researchers in [20] have used clustering-

based relaxation for the formulation of ILP. They

broke the objective function of [19] into two parts.

The first one is the objective function toward the

X axis, and the next one is the objective function

toward the Y axis. They showed that their method

could reach optimal or near optimal solutions in a

manageable time based on the objective function.

In [21], the authors have proposed a performance-

aware mapping algorithm on NoCs with express

channels. Express channels are dedicated channels

between distant nodes in NoC. They proposed a

heuristic based mapping algorithm to minimize

Tajary & Morshedloo / Journal of AI and Data Mining, Vol. 10, No. 3, 2022

314

the communication cost. The simulation results

showed that this method could achieve a better

energy consumption and performance compared

to the ILP method. The method in [22] converts

the application graph to an abstract graph, and

maps this abstract graph on NoC. They used a

heuristic method for the mapping, and used the

communication cost as the objective function and

tried to reduce the packet latency by placing tasks

close to each other.

In [23], the researchers have presented the NMAP

method that tries to reduce the routing path

between the routers in NoC considering the

required bandwidth between the nodes, which

results in a lower communication delay. An

optimized version on NMAP has been presented

in [24] as ONMAP. It uses an optimized, search

based near-optimal mapping heuristic for task

mapping to reduce the energy consumption and

packet latency in NoCs. In [25], the authors have

proposed the CastNet, which considers the power

consumption of NoC in addition to the

communication delay in NoC. In [26], the LMAP

method has been proposed, which uses a bi-

partitioning method for mapping based on the

bandwidth demand.

Simulated annealing has been used in [11] for the

task mapping problem in NoC considering the

distance of the routers in the cost function of the

simulated annealing algorithm. The same idea on

the cost function has been presented in [18] to

find the optimal solution by the ant colony

technique. The objective function in these

methods is the communication cost function. A

genetic algorithm is also used to find the optimal

solution in NoC [12] [13]. Particle swarm

optimization has been used in [14] to find the

optimal solution to the task mapping problem in

the NoC that considers the statics operations of

the NoC. In [30], the authors have proposed a

multi-level mapping algorithm for deep learning

neural networks on NoCs. One of the objectives

of this method is reducing the communication cost

based on the static parameters of the mapping.

Finally, in [8], the authors have used the cuckoo

search optimization with lévy flight for

application mapping in NoC. Their method works

in two steps. In the first step, they place the

maximum communicating tasks together. The

second step optimizes the first placement on NoC.

The objective in this method is also reducing the

cost function.

Table 1 shows a summary of the related works. As

shown in this table, the related works try to

minimize the communication cost using different

algorithms. It is important to note that in some

applications, reducing the communication cost

does not result in a better mapping. Therefore, an

updated objective function is required for the

mapping algorithms.
Table 1. Summary of the related studies

Type Reference Objectives

Exact [19] [20] reducing
communication cost in

manageable time using
ILP

Heuristic [21] [22] [23] [24] [25]

[26] [30]

reducing

communication cost to

achieve lower latency
and power

consumption

Meta
heuristic

[8] [11] [12] [13] [14]
[18]

reducing
communication cost

4. Proposed Method

The proposed method uses a custom objective

function to be used in the simulated annealing

algorithm. The motivation for using this custom

objective function is described in the next sub-

section.

4.1 Motivation and contributions

The cost function defined in Equation 2 tries to

minimize the path between nodes, especially

between the high communicating nodes. Finding

the optimum mapping for this objective function

does not yield the best configuration for NoC

while running the application. In order to further

illustrate this idea, we use an example. Please

consider Figure 3. In this figure, (a) shows a task

graph of an application that contains three tasks.

This task graph should be mapped on an NoC

with six PEs arranged in two rows and three

columns. Figures 3.a and 3.b are two mappings

for this task graph. The cost of mapping for (b) is

40, while the cost of mapping for (c) is 45. Hence,

the optimization algorithm prefers the first

mapping over the second one. Now consider the

required bandwidth for each link in the NoC. In

the first mapping, we have two links that are

shared between two paths. The first link (the link

between nodes 1 and 2) requires a bandwidth of

25, and is shared for sending data from node #1 to

the other nodes. The second link (the link between

nodes 2 and 3) is also shared, and requires a

bandwidth of 15. On the other hand, in the second

mapping, just one of the links is shared, and it

requires the bandwidth of 15. Therefore, the

second mapping shows better results in terms of

the packet delay and the network throughput.

Based on this discussion, we consider a new

objective function based on the throughput of

NoC for each mapping.

A Simulated Annealing-based Throughput-aware Task Mapping Algorithm for Manycore Processors

315

Figure 3. A task graph with two mappings: a) task graph,

b) first mapping, c) second mapping.

4.2. Routing-aware cost function

The cost function of the optimization problem will

be the negative of the network throughput of NoC.

The reported throughput value will be extracted

from the output of the NoC simulator that the task

graph of the application is mapped on it and

simulates execution of the application. As the

delivery of data in NoC is executed by the routing

algorithm, the effect of the routing algorithm on

the network throughput of the NoC will be

considered. It is also important to note that the

more network throughput, the better the mapping.

Therefore, the cost function is defined as the

negative of the network throughput.

Since we want to use the simulated annealing

algorithm for optimizing the cost function, we are

required to compute the cost function for many

task mappings on NoC. Therefore, the time for

computing each cost function should be small.

One main issue about extracting the network

throughput is the runtime overhead for running

the NoC simulator. In order to overcome this

issue, we simulate NoC for a small time, extract

the network throughput, and use that value to

compute the cost function. The simulated

annealing method optimizes this cost function.

Simulated annealing is a meta-heuristic algorithm

to find the global optimum of a given function. It

is widely used in research to find the best solution

to the optimization problems [27]. The

temperature is the main parameter in this

algorithm. At the start of the algorithm, the

temperature is high, and during the runtime of the

algorithm, the temperature decreases based on a

cooling function. The algorithm uses one solution

during its runtime. In each step, a new solution

will be generated from the current solution based

on a perturbation function. Then the cost of the

new solution will be computed. If the cost

function of the new solution is better than the cost

function of the current solution, the current

solution will be replaced by the new solution;

otherwise, replacing the current solution with the

new solution is based on probability. This

probability is higher when the temperature is high

or the difference in the costs is low. The

probability of accepting a solution is shown in

Equation 4.

(, ,)
c ncost cost

n c

e
P cost cost T

T

 (4)

The detailed design of the algorithm is shown in

Algorithm 1. As shown in this algorithm, the

algorithm begins with setting the initial

temperature and temperature reduction rate

(alpha) and having a random mapping as the first

solution. The main loop of the algorithm iterates

until the temperature is small enough. The

temperature value decreases by the rate of alpha.

At each temperature, we generate 20 new

mappings from the previous one. The best

mapping (in terms of the cost) will be selected as

the candidate for the next temperature. Generating

these new mappings from the last one is done

through the perturb function.

The perturb function makes a new mapping from

the old one. It uses three methods for its job, as

shown in Figure 4. In the first method, it selects

two routers in NoC and exchanges their

corresponding tasks numbers (Figure 4.a). In the

second method, three routers will be selected and

their corresponding task numbers will be changed

roundly (Figure 4.b). In the third method, four

routers will be selected and their task number will

be exchanged two by two, as shown in Figure 4.c.

4.3. Framework of proposed method

The main framework of the proposed method is

shown in Figure 5. As shown in this figure, the

first step in this framework is creating a random

mapping. In a random mapping, the tasks in the

Tajary & Morshedloo / Journal of AI and Data Mining, Vol. 10, No. 3, 2022

316

task graph will be randomly mapped to PEs in

NoC. In the next step, a new mapping will be

generated from the last mapping using the perturb

function (as shown in Figure 4). After that, the

cost of mapping should be computed (the dotted

box).

Algorithm 1: Proposed simulated annealing algorithm for

task mapping.
Inputs:
 initT: the initial temperature

 minT: the minimum temperature

 alpha: the alpha value for temperature reduction
 nipt: number of iterations per temperature

 nipm: number of perturbs for each mapping

Outputs:
 bestAnswer: the mapping with the lowest cost

Main Variables:

 bestAnswer: the mapping with the lowest cost

 bestCost: the cost of the bestAnswer
 currentAnswer: the current mapping

 currentCost: the cost of the currentAnswer

 T: the temperature

Procedure:

 currentAnswer = a random mapping
 currentCost = Cost(currentAnswer)

 best Answer = currentAnswer
 bestCost = currentCost

 T = initT

 While (T < minT) do

 for i from 1 to nipt

 mapping = Perturb(currentAnswer)

 cost = Cost(mapping)

 for j from 1 to nipm

 anotherMapping = Pertrurb(currentAnswer)

 anotherCost = Cost(anotherMapping)

 if anotherCost < cost then

 mapping = anotherMapping
 cost = anotherCost

 end if

 end for

 if cost < bestCost then

 bestCost = cost
 bestAnswer = mapping

 end if

 if cost < currentCost then

 currentAnswer = mapping

 currentCost = cost

 else

 delta = cost - currentCost

 r = a random from [0,1)

 if r < P(cost, currentCost, T) then

 currentAnswer = mapping
 currentCost = cost

 end if

 end if

 end for

 update T

 end while

Figure 4. Three methods in perturb function: a) swapping

two nodes, b) circulating three nodes, and c) swapping

four nodes, two by two.

Cost of a mapping is the negative of its

corresponding NoC throughput. Therefore, in

order to extract the throughput of a mapping, we

modified the noxim simulator to generate the

traffics based on the task graph and mapping.

Hence, the inputs of the noxim will be the

mapping, the task graph, and its base

configuration. After running the noxim simulator,

n script extracts the NoC throughput from its

output. Finally, the cost of the mapping will be

computed as the negative of the extracted NoC

throughput.

After computing the cost of a mapping, the cost

will be compared to the current cost in the SA

algorithm. The SA algorithm maintains a cost

value for accepting new mappings. If the cost of

the new mapping is less than the current cost, the

mapping will be accepted, and the current cost

will be updated; otherwise, the new mapping will

be accepted based on the acceptance probability.

In both cases, the temperature of the SA algorithm

will be decreased based on the temperature

reduction policy. If the temperature is less than

the margin value, the algorithm will be finished

and the best accepted mapping will be reported;

otherwise, a new mapping will be generated by

perturbing the current mapping, and this process

will be repeated for the new mapping.

4.4 Complexity analysis of proposed method

The main idea of the proposed method is using

another cost function for the comparing mappings.

The complexity of the traditional cost function

(Equation 2) can be expressed as O(|V|+|E|). The

|V| factor is used since each vertex in V should be

mapped on a PE in NoC and each mapping is

done in a constant time. The |E| factor is used

because for each edge in E, its weight should be

multiplied by its Cartesian length, which is a

constant time.

A Simulated Annealing-based Throughput-aware Task Mapping Algorithm for Manycore Processors

317

Figure 5. Framework of proposed method.

In the proposed method, the cost function will be

calculated after simulation of NoC for k cycles.

The number of cycles (k) is a constant. For each

cycle, each node in NoC receives data from its

neighbors and sends data to them based on the

edges in the task graph. For each node, this

delivery of data will be done in a constant time.

Therefore, the complexity of the proposed method

can be expressed as O(k*(|P|+|E|)). Usually, the

number of nodes in NoC is almost equal to the

number of the vertices in the task graph. On the

other hand, k is a constant value, Hence, the

complexity of the proposed method can be

expressed as O(|V|+|E|). Of course, there are

constant values in each complexity functions, and

the constant values in the proposed method is

much greater than the traditional methods but the

complexity of the proposed method is equal to the

complexity of the traditional methods. Therefore,

for large-scale applications, the proposed method

behaves likewise the related works.

5. Experimental Results

The simulated annealing algorithm is

implemented in the C++ programming language,

and has been compiled using the gcc compiler

[28], in the Linux operating system. The

simulations are run on a computer with Core i5

processor and 8 GB ram. The Noxim NoC

simulator [29], which is a cycle accurate NoC

simulator, is also used. Noxim uses the system

library and can be compiled and run on the Linux

operating system with the gcc compiler. We also

used the benchmark applications from the [7] for

the NoC simulation. The parameters of the

environment and simulation framework are shown

in Table 2.

Table 2. Environment and simulation framework
Parameter Value

Compiler gcc 7.5

CPU Intel Core i5

Number of rows in NoC Based on task graph

Number of columns in NoC Based on task graph

NoC Flit Width 32 bit

NoC Clock Cycle 1 GHz

Warm-up time during search 100 cycles

Simulation length during search 1K cycles

Warm-up time 1000 cycles

Simulation length 500K cycles

5.1 Simulation results

For extracting the throughput while searching for

the best mapping, we used 100 cycles for warm-

up time and 1K cycles for simulation time. These

values are replaced by 1000 and 500K for final

simulations, respectively. The heuristic was to use

the throughput of the network for a small number

of cycles as an estimation of the final throughput

of the network. In order to validate this idea, we

created several configurations for different

numbers of simulation cycles. Figure 6 shows the

normalized throughput of the NoC with 1K cycles

to the NoC with 500K cycles for various

applications. In this figure, we are interested in the

columns that their value is close to 1 (which is the

base throughput for 1M cycles). We are also

interested in the columns that their cycles are

smaller. As shown in this figure, although the

columns differ, on average, the difference is less

than 5%.

Figure 6. Normalized throughput of NoC with 1K cycles

to NoC with 500K cycles.

Tajary & Morshedloo / Journal of AI and Data Mining, Vol. 10, No. 3, 2022

318

In order to see the effect of alpha (temperature

reduction rate) on the result of the simulated

annealing algorithm, we used several values for it

and extracted the value of the cost function during

the execution of the algorithm for the VOPD

benchmark program. Table 3 shows the value of

the cost function (negative of the throughput) for

different values of alpha. As shown in this table,

the best cost corresponds to the alpha of value

0.99. Higher values for alpha cause the

temperature to decrease slowly that yields having

more iteration of the main loop.

Table 3. Value of cost function for different values of

alpha
Alpha Number of iterations Best cost

0.1 6 -7.38264

0.3 10 -7.43125

0.5 17 -7.45417

0.8 52 -7.47292

0.9 110 -7.53681

0.95 225 -7.53889

0.98 570 -7.53681

0.99 1146 -7.52847

In order to show the effectiveness of the proposed

method, we compared the throughput of the

proposed method with the throughput of the

methods with a distance-based cost functions.

Figure 7 shows the network throughput for

various methods introduced in the related works

for the VOPD application. In this figure, the

proposed method has two configurations: 1) the

output of the proposed method with 10K

simulation cycles for extracting the mapping, and

2) the output of the proposed method with 1K

simulation cycles for extracting the mapping. As

shown in this figure, the proposed method

achieves a better throughput compared to the

related works.

Figure 7. The throughput of proposed method compared

to distance-based methods.

Figure 8 shows the normalized throughput of the

proposed method compared to the simulated

annealing method with the objective of reducing

the communication cost for four other benchmarks

namely: MPEG-4, 263enc, 263dec, and mp3enc.

For extracting these results, the simulator was run

for 200K cycles. As shown in this figure, on

average, the proposed method can achieve 8%

more throughput, compared to the simulated

annealing method.

Figure 8. Normalized throughput of proposed method

compared to simulated annealing method for different

benchmark programs.

It is also important to note that the distance cost of

the proposed method is higher than the related

works. The distance cost of the proposed method

and related works are shown in Figure 9. As

shown in this figure, the distance cost of the

proposed method is at least 4% more than the

distance cost of the related works.

Figure 9. Distance cost of proposed method compared to

related works.

As the final result, we compared the network

throughput, power consumption, and average

delay of flits with the related works in Table 4 for

VOPD benchmark program. As shown in this

table, the proposed method achieved a better

network throughput with the same power

consumption and flit delivery delay.

Table 4. Final result as a table comparing throughput,

power, and delay of proposed method with distance-based

methods for VOPD.
Method Distance cost Network

throughput

Flit delivery

delay

Proposed
method-10K

7134 7.17692 7.94533

Proposed

method-1K

12224 7.16182 6.76437

ONMAP 5007 7.1607 7.04287

XY_ADB 4568 7.15248 8.54206

Map_graph 4119 7.16002 6.54371

NMAP 4297 7.15074 7.84658

LMAP 4346 7.15801 9.0228

GA 4471 7.15185 6.54009

CastNet 4135 7.1542 5.79931

ILP 4119 7.16179 8.87753

100

102

104

106

108

110

112

114

116

118

120

MPEG-4 263dec 263enc mp3enc Average

N
o

rm
al

iz
e

d
 T

h
ro

u
gh

p
u

t
(%

)

A Simulated Annealing-based Throughput-aware Task Mapping Algorithm for Manycore Processors

319

5.2 Statistical testing of results

Statistical testing is used for verification of the

results compared to related works. Several

statistical testing methods exist, and each one is

suitable for a specific task. For example, the

KSPA test is used for determining the accuracy of

two sets of forecasting [31]. In this paper, we used

the Mann-Whitney U test, which is a non-

parametric test to compare two groups of data

without assuming that values have a normal

distribution. In this test, the null hypothesis is that

the median of the two groups are identical. On the

other hand, the alternative hypothesis is that the

median of the two groups are not identical; hence,

the two groups differ. To compare the two groups,

this test extracts a U value from the data, and for

each significance level (for example 0.05), it

generates a Ucritical value. If U value is greater than

Ucritical, then the result is not significant, and the

null hypothesis will be accepted; otherwise, the

null hypothesis will be rejected (the alternative

hypothesis will be accepted), which indicates that

the groups differ.

For comparing the results of the proposed method

with the results of the related works, we executed

each algorithm ten times and extracted the

throughput value for each execution. Then group

of ten values will be created for each method.

After that, we compared the group of the proposed

method to each group of the related works using

the Mann-Whitney U test. The results of the tests

for the significance level of 0.05 are shown in

Table 5. The method column in this table shows

the algorithm that the proposed method is

compared to it. The last column shows whether

the two groups are different. Therefore, the results

of Table 4 will be verified.

Table 5. Mann-whitney U test results for comparing

proposed method with related works.
Method U value Ucritical (at 0.05) is significant?

ONMAP 1 27 Yes

XY_ADB 1 27 Yes

Map_graph 2 27 Yes

NMAP 2 27 Yes

LMAP 2 27 Yes

GA 0 27 Yes

CastNet 0 27 Yes

ILP 1 27 Yes

6. Conclusions and Future Works

Task mapping is the first stage for running

applications in the many-core processors. The

main idea is to map the tasks with nodes that

require more communications to be adjacent to

each other. In some situations, this idea leads to

having more congestion around the corresponding

routers in the NoC, which results in a lower

network throughput. In order to overcome this

issue, we proposed a meta-heuristic-based

mapping algorithm that considered the routing

algorithm of the NoC and tried to maximize the

throughput of the network (by minimizing the cost

function). The simulation results showed that the

proposed method could achieve more throughputs

while maintaining the same power consumption

and flit delivery delay. One of the drawbacks of

the proposed method is having a very slow cost

function. As a future work, we try to propose a

faster cost function that does not need running the

NoC simulator.

References
[1] P. Kansakar and A. Munir, “A design space

exploration methodology for parameter optimization in

multicore processors,” IEEE Transactions on Parallel

and Distributed Systems, Vol. 29, No. 1, pp. 2–15,

2018.

[2] A. Balakrishnan and A. Naeemi, “Optimal global

interconnects for networks-on-chip in many-core

architectures,” IEEE Electron Device Letters, Vol. 31,

No. 4, pp. 290–292, 2010.

[3] F. N. Sibai, “A two-dimensional low-diameter

scalable on-chip network for interconnecting thousands

of cores,” IEEE Transactions on Parallel and

Distributed Systems, Vol. 23, No. 2, pp. 193–201,

2012.

[4] Y. Liu, S. Kato, and M. Edahiro, “Analysis of

memory system of tiled many-core processors,” IEEE

Access, Vol. 7, pp. 18964–18977, 2019.

[5] H. Jang et al., “Developing a multicore platform

utilizing open risc-v cores,” IEEE Access, Vol. 9, pp.

120010–120023, 2021, doi:

10.1109/ACCESS.2021.3108475.

[6] A. Vijaya Bhaskar and T. Venkatesh, “Performance

analysis of network-on-chip in many-core processors,”

Journal of Parallel and Distributed Computing, Vol.

147, pp. 196–208, 2021.

[7] P. K. Sahu and S. Chattopadhyay, “A survey on

application mapping strategies for network-on-chip

design,” Journal of Systems Architecture, Vol. 59, No.

1, pp. 60–76, 2013.

[8] M. J. Mohiz, N. K. Baloch, F. Hussain, S. Saleem,

Y. B. Zikria, and H. Yu, “Application mapping using

cuckoo search optimization with lévy flight for noc-

based system,” IEEE Access, Vol. 9, pp. 141778–

141789, 2021, doi: 10.1109/ACCESS.2021.3120079.

[9] P. Mazaheri Kalahroudi, E. Yaghoubi, and B.

Barekatain, “IAM: An improved mapping on a 2-d

network on chip to reduce communication cost and

energy consumption,” Photonic Network

Communications, Vol. 41, No. 1, pp. 78–92, Feb. 2021,

doi: 10.1007/s11107-020-00911-x.

Tajary & Morshedloo / Journal of AI and Data Mining, Vol. 10, No. 3, 2022

320

[10] W. Amin et al., “Performance evaluation of

application mapping approaches for network-on-chip

designs,” IEEE Access, Vol. 8, pp. 63607–63631,

2020, doi: 10.1109/ACCESS.2020.2982675.

[11] C. Marcon, A. Borin, A. Susin, L. Carro, and F.

Wagner, “Time and energy efficient mapping of

embedded applications onto nocs,” in Proceedings of

the asp-dac 2005. asia and south pacific design

automation conference, 2005, pp. 33–38. doi:

10.1109/ASPDAC.2005.1466125.

[12] T. Lei and S. Kumar, “A two-step genetic

algorithm for mapping task graphs to a network on chip

architecture,” in Euromicro symposium on digital

system design, 2003, pp. 180–187. doi:

10.1109/DSD.2003.1231923.

[13] W. Zhou, Y. Zhang, and Z. Mao, “An application

specific noc mapping for optimized delay,” in

International conference on design and test of

integrated systems in nanoscale technology, 2006, pp.

184–188. doi: 10.1109/DTIS.2006.1708657.

[14] P. K. Sahu, P. Venkatesh, S. Gollapalli, and S.

Chattopadhyay, “Application mapping onto mesh

structured network-on-chip using particle swarm

optimization,” in 2011 IEEE computer society annual

symposium on VLSI, 2011, pp. 335–336. doi:

10.1109/ISVLSI.2011.21.

[15] I. Lang, N. Kapre, and R. Pellizzoni, “Worst-case

latency analysis for the versal noc network packet

switch,” in Proceedings of the 15th ieee/acm

international symposium on networks-on-chip, 2021,

pp. 55–60.

[16] E. Stergiou, “A study of multistage

interconnection networks operating with wormhole

routing and equipped with multi-lane storage,”

International Journal of Parallel, Emergent and

Distributed Systems, Vol. 36, No. 3, pp. 221–239,

2021.

[17] S. D. Chawade, M. A. Gaikwad, and R. M.

Patrikar, “Review of xy routing algorithm for network-

on-chip architecture,” International Journal of

Computer Applications, Vol. 43, No. 21, pp. 975–8887,

2012.

[18] C. Chen and S. Cotofana, “Link bandwidth aware

backtracking based dynamic task mapping in noc based

mpsocs,” in Proceedings of the 2014 international

workshop on network on chip architectures, 2014, pp.

5–10. doi: 10.1145/2685342.2685343.

[19] S. Tosun, O. Ozturk, and M. Ozen, “An ilp

formulation for application mapping onto network-on-

chips,” in 2009 international conference on application

of information and communication technologies, 2009,

pp. 1–5. doi: 10.1109/ICAICT.2009.5372524.

[20] S. Tosun, “Cluster-based application mapping

method for network-on-chip,” Adv. Eng. Softw., Vol.

42, No. 10, pp. 868–874, Oct. 2011, doi:

10.1016/j.advengsoft.2011.06.005.

[21] S. D’souza, J. Soumya, and S. Chattopadhyay, “A

constructive heuristic for application mapping onto an

express channel based network-on-chip,” in 2015 19th

international symposium on vlsi design and test, 2015,

pp. 1–6. doi: 10.1109/ISVDAT.2015.7208147.

[22] E. Alikhah-Asl and M. Reshadi, “XY-axis and

distance based noc mapping (xy-adb),” in 8th

international symposium on telecommunications (ist),

2016, pp. 678–683. doi: 10.1109/ISTEL.2016.7881908.

[23] S. Murali and G. De Micheli, “Bandwidth-

constrained mapping of cores onto noc architectures,”

in Proceedings design, automation and test in Europe

conference and exhibition, 2004, Vol. 2, pp. 896–901

Vol. 2. doi: 10.1109/DATE.2004.1269002.

[24] S. Khan, S. Anjum, U. A. Gulzari, F. Ishmanov,

M. Palesi, and M. K. Afzal, “An optimized hybrid

algorithm in term of energy and performance for

mapping real time workloads on 2d based on-chip

networks,” Applied Intelligence, Vol. 48, No. 12, pp.

4792–4804, Dec. 2018, doi: 10.1007/s10489-018-

1246-7.

[25] S. Tosun, “New heuristic algorithms for energy

aware application mapping and routing on mesh-based

nocs,” Journal of Systems Architecture, Vol. 57, No. 1,

pp. 69–78, 2011.

[26] P. K. Sahu, N. Shah, K. Manna, and S.

Chattopadhyay, “A new application mapping algorithm

for mesh based network-on-chip design,” in annual

ieee india conference (indicon), 2010, pp. 1–4. doi:

10.1109/INDCON.2010.5712700.

[27] A. Tajary and E. Tahanian, “A routing-aware

simulated annealing-based placement method in

wireless network on chips,” Journal of AI and Data

Mining, Vol. 8, No. 3, pp. 409–415, 2020, doi:

10.22044/jadm.2020.8964.2034.

[28] GNU Project, “GCC, the gnu compiler

collection.” [Online]. Available: https://gcc.gnu.org/

(accessed Dec. 01, 2021).

[29] V. Catania, A. Mineo, S. Monteleone, M. Palesi,

and D. Patti, “Improving the energy efficiency of

wireless network on chip architectures through online

selective buffers and receivers shutdown,” in 13th ieee

annual consumer communications networking

conference (ccnc), 2016, pp. 668–673. doi:

10.1109/CCNC.2016.7444860.

[30] Z. A. Khan, U. Abbasi, and S. W. Kim, “An

efficient algorithm for mapping deep learning

applications on the noc architecture,” Applied Sciences,

Vol. 12, No. 6, 2022, doi: 10.3390/app12063163.

[31] G.-F. Fan, L.-Z. Zhang, M. Yu, W.-C. Hong, and

S.-Q. Dong, “Applications of random forest in

multivariable response surface for short-term load

forecasting,” International Journal of Electrical Power

& Energy Systems, Vol. 139, p. 108073, 2022.

 1041 سال ،سوم شماره هم،دوره د ،کاویمجله هوش مصنوعی و داده تجری و مرشدلو

های سازی شده برای پردازنده یک الگوریتم نگاشت وظایف آگاه از توان عملیاتی و مبتنی بر تبرید شبیه

 ای بسا هسته

 و حسین مرشدلو *علیرضا تجری

 .شاهرود، ایرانمپیوتر، دانشگاه صنعتی شاهرود، دانشکده مهندسی کا

 60/40/6466 پذیرش؛ 11/40/6466 بازنگری؛ 62/16/6461 ارسال

 چکیده:

افزارهاایی کاه بار ای، نیاز به استفاده بهینه از این منابع برای بهبود کاارییی نارم قرار گرفتن تعداد زیادی هسته بر روی تراشه پردازنده های بسا هستهبا

افزار، در زماان اجارا بار ای است که در ین، وظایف مربوط به اجزای یک نرم ، افزایش یافته است. نگاشت وظایف، مسئلهشوند ها اجرا می روی این پردازنده

ت شاده باه منراور شافزار بهبود یابد. تحقیقات زیادی بر روی کاهش مسیر بین وظایف نگا شوند تا کارییی اجرای نرم های پردازنده نگاشت می روی هسته

شاوند کاه در ها، سعی در کاهش تاخیر دارند، اما با اینکار، باعث ایجاد تراکم در شبکه مای اند. هر چند این روش کاهش تاخیر و افزایش کارییی ارائه شده

سازی شاده و یگااه از بر تبرید شبیهیابد. برای حل این مشکل، ما یک روش نگاشت وظایف مبتنی نتیجه ین، توان عملیاتی و کارییی پردازنده کاهش می

اناد. نتاای باا دقات سایکل سااعت اجارا شاده سااز افزار واقعی بر روی یک شابیه ایم. برای ارزیابی روش پیشنهادی، چندین نرم توان عملیاتی ارائه کرده

 ستم را افزایش بدهد.تواند بدون تاثیر بر روی تاخیر، توان عملیاتی سی اند که روش پیشنهادی می نشان داده یساز شبیه

 ای، نگاشت وظایف. های بسا هسته سازی شده، پردازنده تبرید شبیه :کلمات کلیدی

