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  Minimizing make-span and maximizing remaining energy is 

usually of chief importance in the applications of wireless 

sensor actor networks (WSANs). The current task assignment 

approaches are typically concerned with one of the timing or 

energy constraints. These approaches do not consider the 

types and various features of tasks may need to perform, and 

thus may not be applicable to some types of real applications 

such as search and rescue missions. To this end, an optimized 

and type aware task assignment approach called type aware 

task assignment (TATA) is proposed that considers the 

energy consumption as well as the make-span. TATA is an 

optimized task assignment approach and aware of the 

distribution necessities of WSANs with a hybrid architecture. 

TATA comprises two protocols, namely a Make-span 

Calculation (MaSC) protocol and an Energy Consumption 

Calculation (ECal) Protocol. Through considering both time 

and energy, TATA makes a trade-off between minimizing 

make-span and maximizing the residual energies of actors. A 

series of extensive simulation results on the typical scenarios 

show a shorter make-span and larger remaining energy in 

comparison to when one of the three related approaches, 

namely, stochastic task assignment (STA), opportunistic load 

balancing (OLB), and task assignment algorithm based on the 

quasi-Newton interior point (TA-QNIP)  is applied. 
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1. Introduction 

A collection of sensor nodes and actor nodes that 

communicate wirelessly forms a special type of 

network called Wireless Sensor Actor Networks 

(WSANs) [1, 2], wherein the sensors collect the 

environmental data, and the actors act in response 

to the sensory data. The principal parts of WSANs 

can be set differently based on the demands and 

desideratum of applications and the available 

technologies. This paper studies the hybrid 

architecture of WSANs [2, 3], wherein the sensors 

convey the sensing information to the actors. The 

actors investigate information, and possibly will 

refer to the sink(s) before doing any action. This 

means that the actors may take decisions and do 

action without interfering the sink or might notify 

the sink and postpone for which are created and 

assigned by the sink. Hence, we deal with two 

type of tasks, local tasks and global tasks. “Local 

tasks” are the routine and simple tasks that are 

usually determined without interfering the sink.  

The sensed data of events are collected and 

processed by the sensors and then the related tasks 

(local tasks) are defined and dispatched to the 

appropriate actors. 
Global tasks are the more complex tasks defined 
based on the gotten sensory data by the sink, and 
then they are assigned by the sink to the proper 
actors to be done. The sink receives the sensory 
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information of the global tasks, and then it 
determines and assigns the global tasks to proper 
actor(s). Hence, finding the best possible task 
assignment to run on the available actors is an 
interesting influencing make-span and remaining 
energies of actors.  
This paper considers WSANs with hybrid 
architecture (Figure 1), wherein the sensory data 
is passed on to the sink to define the required 
actions (global tasks) to be carried out by the 
actors or sent to actors directly to decide and carry 
out appropriate tasks (local tasks). WSANs are 
typically used in critical applications in which the 
actors must react quickly; in that delays may 
result in a disaster [4, 5]. In addition, current 
restrictions such as energy constraints and 
dynamic features of environments have made this 
problem very challenging [6, 7]. Therefore, 
various task allocation approaches for ubiquitous 
systems have been presented so far in order to 
reduce the network make-span [8-11] but these 
approaches have usually neglected the energy 
consumption in the network. 

 
Figure 1. Typical WSAN with hybrid architecture. 

 

This paper presents an energy-efficient timing task 
assignment approach for WSANs. We have named 
our approach as TATA, which stands for type 
aware task assignment. In TATA, the local tasks 
are determined and assigned to actors without 
involving the sink but the sink determines the 
global tasks, and then it assigns them to 
appropriate actors. TATA achieves its superiority 
by considering both make-span and residual 
energies of actors in choosing actors to perform 
tasks. In Section 5, the applicability of TATA to 
small- and large-scale networks through extensive 
experiments is shown.  
The rest of the paper is organized as what follows. 
Section 2 discusses the outstanding relevant 
works. Section 3 presents our assumptions. 
Section 4 presents our proposed approach, TATA. 
In section 5 reports the simulation results, and 
Section 6 concludes the paper. 

2. Related works 
Considering the WSANs’ restrictions such as 
energy limitations, capability constraints, and 
dynamicity, the general-purpose task assignment 
approaches are typically inapplicable to WSANs. 

There are, however, various task assignment 
approaches for WSANs with various purposes 
such as reducing delays, enhancing remaining 
energy, and reducing response time of the 
network.   
Byun and So [12] have proposed a scheduling 
approach for WSANs that tries to meet the delay 
requirements while increase the average 
remaining energy. Their work is based on an 
epidemic-inspired algorithm for data 
dissemination. They predict behavior of the 
system based on converge time through 
mathematical analysis. It is asserted the approach, 
extends the lifetime of network, and decreases the 
overall energy consumption of nodes in WSANs 
but make-span is not considered by their 
approach.  
Okhovvat et al. [13] have proposed an analytical 
task assignment approach to reduce tasks 
completion time in WSANs. In this work, the 
appropriate dispatching rates of tasks are 
calculated. They also presented a formal model 
based on generalized stochastic Petri net (GSPN). 
According to the reported results, the total 
completion time of tasks is minimized but energy 
consumption is neglected by their approach. 
Kong et al. [14] have presented a task assignment 
strategy to increase balance of workloads on the 
resources and to minimize the task execution time 
in multi-robot networks. Their strategy includes 
two steps. In the first step, finding the proper 
combination of robots and tasks is done based on 
the particle swarm optimization (PSO) algorithm. 
In the second step, the execution order of tasks is 
sorted using a greedy algorithm, and then the 
overall cost of tasks execution is calculated. This 
procedure is repeated until the optimal task 
assignment solution is found. Although the 
proposed approach considered execution time of 
tasks, it overlooked energy consumption of 
resources. 
Huang et al. [15] have presented a task 
assignment mechanism for heterogeneous multi-
robot systems based on the auction theory. They 
categorized the capabilities of robots using 
distributed auction algorithm. In this algorithm, 
both tasks and robots are modeled, and 
considering the features of tasks, the distance 
between robots and tasks, and capabilities of 
robots tasks are mapped to the robots. However, 
the proposed mechanism focuses on the 
possibility of performing tasks by heterogeneous 
robots but it considers neither energy nor time, 
explicitly. 
Wang et al. [16] have proposed an algorithm 
called link quality matrix (LQM) for real-time 
resource retrieval in adhoc networks. This 
algorithm is based on the auction theory, and 
considers real-time requirements of multi-robot 
(multi-actor) systems. It tries to decrease global 
communication and redundant computation but 
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energy consumption of nodes is ignored. 
M. Younis et al. [17] have proposed a task 
assignment technique in wireless sensor networks 
(WSNs). They have simplified the scheduling of 
tasks on CHs by taking into account the 
computation time of collected data lags in 
cycle(s). Their algorithm tries to minimize the 
network lifetime but the implementation time of 
tasks in assigning tasks is ignored, and thus the 
make-span would be increased. 
Nevertheless, little study has been done on the 

optimal task assignment in WSANs with multiple 

objectives such as reducing make-span and 

enhancing remaining energies of actors. Hence, 

this paper presents an energy-efficient and time-

aware task assignment approach for WSANs that 

addresses the aforementioned issues. 

3. Assumptions and System Model 
In this section, the assumptions and the system model 

are described. In order to present the proposed task 

assignment approach, firstly our assumptions and then 

models are presented.  

3.1. Assumptions 

We assumed a typical WSAN with a hybrid 

architecture including a sink, sensors, and actors 

wherein n tasks Ti (i=1,…, n) should be done 

by m actors Aj (j=1,…, m). The sensors are 

collecting data from the surroundings, and 

define local tasks or transmitting them to the 

sink to define global tasks. A local task assigns 

to an actor directly based on an assignment 

approach but if the sensory information 

received by the sink, the sink node determines 

the proper global tasks and then assigns tasks 

to appropriate actors. The actors are idle at 

first, and they can search the entire network 

without any restriction on routing hops. It is 

assumed that an actor can run only one task at 

once, and the entire network is monitored by 

the sink. 

We have constrained the objectives of our task 

assignment approach to reduce both make-span 

and energy consumption. In order to achieve 

this goal, the information of the capability of 

actors such as its speed and its current task 

load are considered. The tasks are independent, 

and their generations follows a Poisson 

distribution. 

3.2. Actor model 

There are a set of m actors Aj (j=1,…, m) that 

perform their assigned tasks. We used the M/M/1 

queuing system [18, 19] to model each actor. The 

arrival rates of global tasks and local tasks at the 

actor Ai are λi and λ'i, respectively, but the tasks 

are done with µi rate.  

We consider an assignment function Ti → Aj. The 

related assignment vector noted by Xi,j, where: 

,

1

0


 


i j

i j

if T is assigned to A
X

otherwise
 

                       (1) 

3.3. Energy model 

An energy model is proposed to calculate the 

energy consumption of an actor Aj as follows: 

 Consume
j j jE Time                           (2) 

In (2),    
        denotes the required energy to 

carry out all tasks assigned to the actor Aj. The 

average rate of energy consumption by the actor 

Aj per unit of time is shown by     and the period 

of time that the actor Aj passes to run its assigned 

tasks is shown by Timej. Thus the remaining 

energy of the actor  Aj,   
   ,  can be calculated 

by (3), wherein EAj denotes the current energy of 

the actor Aj. 
Re  m Consume
j j jE EA E                           (3) 

3.4. Network model 

A typical WSAN with a hybrid architecture 

containing a sink, actors, and sensors is 

considered. The sensors gather the environmental 

information, and the actors are responsible to 

execute the tasks. The actors and sensors are 

spread uniformly, and the number of sensor nodes 

is bigger than the number of actor nodes. We used 

the queuing theory to model and analyse the task 

assignment problem. Figure 2 shows the queuing 

model of such a network.  

 

Figure 2.  Model of WSAN based on queueing theory.  

 

The network make-span is defined as the finish 

time of entire tasks in the network. The make-

span can be calculated by (4), wherein Timej 
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denotes the expected finish time of tasks in an 

actor Aj, and m is the number of actors. Hereafter, 

the words make-span and Make-spanassignment are 

used interchangeably.  
 

 max ;1jMakespan Time j m                  (4)    

4. Proposed Approach 

According to the policy of TATA in assigning 

tasks to actors that is optimization of the make-

span and energy consumption, a fitness function is 

defined to find the best assignment rates of tasks 

to the actors. The pseudo-code of TATA is as 

follows: 

 Pseudo-code of TATA 

Input: Information of each available actor Aj(e.g. 

), importance of time and energy in 

the application (W1, W2), and the entrance rates 

of tasks to the sink (  ) 

Output: Assignment of tasks to actors 

1. MaSC ( ); 

2. ECal ( ); 

3. For j=1 to m do 

4.   {Compute the global arrival rates    resulted from:  

        

min
1

max min

2

.

.

allocation

Consume Consume
allocation min

Consume Consume
max min

Makespan Makespan
W

Makespan Makespan
Min

E E
W

E E

  
  

  
 

        

; 

//determining arrival rates that minimize the 

FitnessFunction 

5. Assign global and local tasks to the related Aj with 

the rates of   ,   
 , respectively;}} 

Equation (5) shows the fitness function. TATA 

tries to determine the best dispatching rate of tasks 

to actors in such a way that lead to the lowest 

value of the fitness function.  

min
1

max min

2

.

.



 
 

 

 
  

  

allocation

Consume Consume
allocation min

Consume Consume
max min

FitnessFunction

Makespan Makespan
W

Makespan Makespan

E E
W

E E

 

            (5)                   

Here, Make-spanmin and Make-spanmax are the 

minimum make-span and maximum make-span, 

respectively, while     
        and     

        are 

the minimum and maximum values of total energy 

consumption of actors, respectively. The fitness 

function has two parts. The first part computes the 

make-span, while the second part calculates the 

energy consumption of the actors. To be valid 

aggregating the first part to the second part, each 

part should be normalized. W1 and W2 are the 

fitness values, and are set based on the trade-off 

requirement of the application. TATA uses two 

protocols called MaSC and ECal in order to 

determine the first half and the second half of the 

Fitness Function, respectively, and tries to 

determine the assignment rates of tasks to the 

actors that minimize the Fitness Function. These 

methods are presented in Sections 4.1 and 4.2. 

4.1. Make-span calculation protocol 

In order to calculate the make-span of the 

network, a protocol called MaSC is proposed. As 

mentioned in Section 3.2, the M/M/1 queuing 

system is used to model an actor. The tasks are 

arrived to the actor Aj with (   
 +   ) rate, and they 

are run with the rate of µi. Total rate of global 

tasks (λT) and total rate of local tasks (  
 ) can be 

computed by (6), in which m denotes the total 

number of actors. 

' '

1 1
,   

 
  

m m

T j T jj j
 

              (6)    

In order to have a steady state analysis of the 

CTMC, we write the flow equations as shown by 

(7), wherein Pi indicates the steady state 

probability of existing tasks in state i. 

   

   

' '
0 2 1 1

' '
1 3 2 2

.

.

.

     

     

    

    

j j j j j j

j j j j j j

P P P P

P P P P

 

          (7)          

Considering the fact that total probability is equal 

to 1, (8) computes Po. 

0
'

0

1

 




 
 
 
 


n

k j j

n
j

P  
              (8)    

Lemma 1. Since each Pn is a function of P0, every  

Pn is more than zero if and only if P0 is more than 

zero. Considering lemma 1, (9) is resulted 

wherein   is a positive constant. This relation 

indicates P0, and hence all Pn are bigger than zero. 

'

' '

0
; , , ,

 
    



     
  

   


n

n j j

j j j jj
j

 

     (9)                   

Therefore, (10) can compute Pn for states of actor 

Aj: 

  

'

0

 



 
  
 
 

n

j j

n
j

P P  

            (10)    
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Analyzing the steady state case of the CTMC 

gotten from the M/M/1 queues, the finish time of 

the actors, Timej, is calculated by (11). 

 '

1

  


 
j

j j j

Time  
            (11)    

To compute the maximum make-span (Make-

spanmax), we find the maximum assignment rate 

(   ) to the actor (AMT) with the lowest service 

rate result in TimeMT. TimeMT denotes the time that 

AMT needs to finish its all allocated tasks, and 

hence (12) is derived:  

max  MTMakespan Time              (12)    

Considering (4) and (11), Make-spanmin can be 

calculated by (13): 

                                                         

 
min '1

1

  

  
        

  


m

j
j j j

Makespan Min  

(13)            

Having Make-spanmax, Make-spanmin, and Make-

spanassignment, the first half of Fitness Fuction can 

be calculated. Figure 2 illustrates the pseudo code 

of MaSC. 

Pseudo-code of MaSC 

Input: Information of each available actor Aj (e.g. 

), importance of time and energy in the 

application (W1,W2), and the entrance rate of tasks to 

the sink (  ) 

Output: Makespanmin, Makespanmax, Makespanassignment  

1. }For all  actor Aj do 

2. Find the  local arrival rates  
   

3. For j=1 to m do // m is the number of actors 

4. Makespanmin←Min {∑  
 

j  ( jj ' )

    
                             

5. Calculate TimeMT using (11) and    ; 

6. Makespanmax←TimeMT; 

7. For all  actor Aj do 

8. {  Compute Timej; 

9. Makespanassignment←Max        ; 

10. Return Makespanmin, Makespanmax, 

Makespanassignment; } 

                                                                                             

4.2. Energy consumption calculation protocol 

The Energy Consumption Calculation (ECal) 

method calculates the average energy 

consumption of actor j (  
       ) participating in 

the task assignment. ECal aims to determine the 

second half part of the Fitness Function derived 

from (5). As described in Section 3.3,   
        

can be calculated by (2), and hence, the energy 

consumption of actors to perform allocated tasks 

(           
       ) would be equal to the total energy 

consumption of the actors. The pseudo-code of 

ECal is as follows: 

Pseudo-code of  ECal 

Input: Information of each available actor Aj(e.g. 

) 

Output:     
        ,     

       , and  

1. {                         

2. For j=1 to m do 

3.      {  Calculate Timej based on Eq. (11) 

4.             

5.           + ; } 

6.   MaEC( ); 

7.   MiEC ( ); 

8.    Return     
        ,     

        , and ; } 

 

ECal uses two functions called MaEC and MiEC 

to calculate maximum energy consumption 

(    
       ) and minimum energy consumption 

(     
       ), respectively. MaEC and MiEC are 

based on two lemmas, as follows: 

Lemma 2. Total energy consumption of actors is 

maximum when the tasks are assigned to the most 

energy consuming actors. Similarly, total energy 

consumption of actors is minimum when the tasks 

are assigned to the least energy consuming actors. 

Lemma 3. If the maximum task assignment rate is 

assigned to the most energy consuming actor, the 

maximum energy consumption of the actor is 

resulted. 

Considering lemma 3, the maximum energy 

consumption can be calculated by considering the 

maximum task assignment rate to the actor with 

maximum   . The actor and its assignment rate 

are shown by AEMax and      , respectively. 

Having      , TimeEMax is calculated using (11), 

and then using (2), the energy consumption by 

AEMin (EMin) can be calculated. This process is 

repeated for the actor with the next highest  j 

until    is distributed to the actors. Accordingly, 
    

       can be computed by MaEC. Similarly, if 

the maximum task assignment rate is assigned to 

the least energy consuming actor, the maximum 

energy consumption of the actor is resulted. 

The actor and its assignment rate are shown by 

AEMin and      , respectively. Having      , 

TimeEMin can be calculated using (11), and then 

using (2), EMin can be figured. Consequently, 

     
       can be computed, which is equal to the 

https://abadis.ir/entofa/c/consequently/
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total energy consumption of the least consumed 

actors. The pseudo-code of MaEC is as follows: 

Pseudo-code of  MaEC 

Input: Context information of each actor Aj(e.g. 

,   
 ),  arrival rate of tasks to the sink (  ) 

Output:     
        as the maximum energy 

consumption of actors 

1. }     
       ← 0;          ; 

2.      X      // X is theset of actors with higher energy 

consumptions  

3.      For all actor Aj  not in set X do    

4.         {  Sort all actors in terms of     

5. Determine maximum assignment rate (     ) 

for the actor (AEMax) with biggest    

6.    Calculate Timej using      based on  (11) 

7.             EMax ←         ; 

8.                  
        EMax+     

       ; 

9.             If              

10.        {   ←        ; 

11.          Add Aj to set X; 

12.           Repeat line 3 to 7; } } 

13. Return     
       ;} 

To compute     
       , ECal uses the MiEC 

function, which is similar to MaEC but it differs 

from MaEC in that it assigns the maximum rates 

of tasks to the least energy consuming actors, i.e. 

in line (5) of Pseudo-code of MaEC, the word 

“biggest” should be changed to “least”. 

Consequently, the terms     
       

, EMax,      , 

and AEMax, should be changed to      
       , EMin 

,     , and AEMin, respectively. Finally, 

having            
       ,     

       , and      
         

the second half of the Fitness Function can be 

computed. 

5. Experimental Results 

In order to evaluate the performance of TATA, it is 

compared with TA-QNIP [21], OLB [22], and 

stochastic task assignment (STA) [23] in terms of 

make-span, residual energies of actors, and 

network life time. Furthermore, to evaluate the 

role of scale on the efficiency of TATA, 

simulations are run in small and large scales with 

two different settings, wherein the actors are 

chosen from various groups with fast, <μm ≤ μj ≤ 

μmax>, medium, <μe ≤ μj ≤ μm>, and slow service 

rates <μj ≤ μe>, wherein μj denotes the service rate 

of actor, and Aj, μe and μm show the minimum and 

maximum threshold of medium service rates, 

respectively.   

 In the Setting I (small scale), a 10 m × 10 m 

field is assumed including 100 sensors with 

1 m transmission range and 4 actors. It is 

assumed that both local tasks and global 

tasks may exist in any time that should be 

executed by the actors. The primary energy 

of each actor is supposed to be the same as 

the others and equal to 25 J. 

 In the Setting II (large scale), a 100 m × 100 

m field is assumed including 1,000 sensors 

with 10 m transmission range and 10 actors. 

The primary energy of each actor is 

supposed to be the same as others and equal 

to 25 J.  

Figures 3 and 4 show the results of simulations in 

terms of make-span.  

 

Figure 3. Make-span in setting I. 

As shown in Figure 3, in the small scale settings, 

TATA reduced the make-span by nearly 6% in 

compare with TA-QNIP but TA-QNIP operated 

better than STA and OLB in reducing make-span. 

Since STA assigns tasks to the actors 

stochastically, it has the worst operation in terms 

of make-span. 

In the large scale settings (Figure 4), TATA 

performed about 11% better than TA-QNIP but 

STA still shows the worst performance compared 

to the other three approaches. However, one of the 

strengths of TATA compared to TA-QNIP is the 

reduction of additional overhead. Since the 

number of tasks and overhead in large scale 

setting is greater than as they are in small scale 

setting, in large scale, a greater difference between 

TATA and TA-QNIP is observed. 
In order to achieve a better evaluation, TATA also 

was compared with three mentioned approaches in 

terms of the residual energies of the actors. As 

Figure 5 shows, in small scale setting, TATA and 

TA-QNIP consume about the same amount of 

energy but quite less than the other two 

approaches. 
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Figure 4. Make-span in setting II. 

 

 

Figure 5. Residual energies of actors in setting I. 

 

 

Figure 6. Residual energies of actors in setting II. 

In the large scale case, that workload is heavier in 

compare with the small scale setting, TATA 

results in the maximum residual energy of actors, 

with the TA-QNIP being the next in row. STA has 

the worst consumption rate and the least energy 

conservation. However, as shown in Figure 5 and 

Figure 6, in terms of residual energies of actors, 

TATA shows a better operation about 7% (in 

average) in comparison with TA-QNIP. All in all, 

it is concluded that although in small case shorter 

performance difference between the mentioned 

approaches is observed, a significant performance 

difference can be obtained in the large scale case. 

Since the assignment of tasks in STA is 

stochastically and without explicit consideration 

of time and energy, it yielded the weakest results 

in terms of energy preservation and Make-span. 

Nevertheless, STA results in both scales are the 

worst, while TATA shows the best performance in 

terms of enhancing the residual energy and 

reducing make-span.  

 

6.  Conclusion 

Assignment of tasks to the actors to minimize the 

network make-span without taking to 

consideration the energies of nodes is not enough 

because an actor node may run out of energy, 

leading to the death of that actor. Since 

maximizing the residual energy and minimizing 

the make-span are inconsistent objectives, a 

balance model should be applied to determine a 

fitness function. Applying the fitness function 

helps to figure out the most near optimal task 

assignment solutions. In this work, an energy-

efficient timing task assignment approach called 

TATA was proposed to assign tasks to the actors 

in WSANs.  

Simultaneously, reducing the make-span and 

enlarging the energy consumption of actors are 

the two objectives of TATA. In order to achieve 

this goal, two protocols called MaSC and ECal 

were proposed to calculate the network make-span 

and energy consumption of the actor nodes, 

respectively. The outcomes of extensive 

simulations in small scale and large scale 

networks revealed that TATA yields shorter 

make-span and higher residual energy in 

comparison to when one of the TA-QNIP, OLB, 

and STA approaches was applied. 
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