
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 10, No. 1, 2022, 25-41.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

Optimizing CELF Algorithm for Influence Maximization Problem in

Social Networks
Mohsen Taherinia

1
, Mahdi Esmaeili

1*
and Behrouz Minaei-Bidgoli

2

1. Department of Computer Engineering, Kashan Branch, Islamic Azad University, Kashan, Iran.

2. School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.

Article Info Abstract

Article History:
Received 09 August 2021
Revised 22 September 2021

Accepted 02 November 2021

DOI:10.22044/JADM.2021.10964.2254

 The influence maximization problem in social networks aims to find a

minimal set of individuals in order to produce the highest influence on

the other individuals in the network. In the last two decades, a lot of

algorithms have been proposed to solve the time efficiency and

effectiveness challenges of this NP-Hard problem. Undoubtedly, the

CELF algorithm (besides the naive greedy algorithm) has the highest

effectiveness among them. Of course, the CELF algorithm is faster

than the naive greedy algorithm (about 700 times). This superiority

has led many researchers to make extensive use of the CELF

algorithm in their innovative approaches.

However, the main drawback of the CELF algorithm is the very long

running time of its first iteration since it has to estimate the influence

spread for all nodes by the expensive Monte-Carlo simulations,

similar to the naive greedy algorithm. In this paper, a heuristic

approach is proposed, namely optimized-CELF algorithm, in order to

improve this drawback of the CELF algorithm by avoiding the

unnecessary Monte-Carlo simulations. It is found that the proposed

algorithm reduces the CELF running time, and subsequently,

improves the time efficiency of the other algorithms that have

employed CELF as a base algorithm. The experimental results on the

wide spectral of real datasets show that the optimized-CELF

algorithm provides a better running time gain, about 88-99% and 56-

98% for k=1 and k=50, respectively, compared to the CELF

algorithm without missing effectiveness.

Keywords:
CELF Optimization, Influence

Maximization, Social Networks

Analysis, Greedy Algorithm,

Diffusion Model.

*Corresponding author:

m.esmaeili@iaukashan.ac.ir (M.

Esmaeili).

1. Introduction

In the last two decades, the world has witnessed

the explosion of online social networks. Today,

the social networks play a vital role in the

dissemination of information among the people

extensively and rapidly. The people within the

social networks are influenced by each other via

their relationships (friends, acquaintances, and

colleagues). This social influence can change the

people's thoughts, ideas, opinions, and behaviors

[1]. Many companies and organizations have

exploited this opportunity and have developed

various applications such as marketing,

advertising, and recommender systems. [2]. For

example, consider a company that intends to

promote a new product to the market with the

lowest budget. One solution is to find a small set

of influential individuals inside the social network

to freely trial the product. It is expected that these

influential individuals will recommend the new

product to their close individuals in a cascading

mechanism. Thus a new product will be promoted

in the market through the power of “word of

mouth” in viral marketing.

This problem, which is called the influence

maximization problem, is a classic and hot topic

in social network analysis that has been attracted

much attention from the researchers. The goal is

to find a set of nodes so that if the information

mailto:m.esmaeili@iaukashan.ac.ir%20(M

Esmaeili et al./ Journal of AI and Data Mining, Vol. 10, No. 1, 2022

26

propagation process starts from this initial set,

then more individuals receive the information

eventually, and the influence spread will be

maximized throughout the network. The influence

maximization problem has been introduced by

Domingos and Richardson in viral marketing [3].

Kemp et al. have formulated this problem and

proved that obtaining an optimal solution of the

influence maximization problem is #NP-hard

under the Linear Threshold (LT) and Independent

Cascade (IC) diffusion models [4]. They

presented a greedy hill-climbing algorithm with

O(knmR) time complexity that provided a solution

with 63% approximate of optimal solution (n and

m are the number of nodes and edges in the

network, k is the size of the target seed set, and R

is the number of Monte-Carlo simulations). Their

algorithm suffers from two major challenges.

First, computing the exact influence spread of

seed set S (δ(S)) is #P-hard under the LT and IC

models. This challenge is handled by estimating

the influence spread using the Monte-Carlo (MC)

simulations. Secondly, this algorithm is quadratic

in the number of nodes, which makes it inefficient

[1]. So far, many efforts have been made in order

to improve the time efficiency dilemma of this

greedy algorithm. One of the outstanding

proposed approaches is Cost-Effective Lazy

Forward (CELF) by Leskovec et al. [5], which has

been used in many subsequent works. They

exploited the submodularity property of the

objective function to reduce the time complexity

of the greedy algorithm. The CELF algorithm

became up to 700 times faster than the greedy

algorithm by avoiding the unnecessary evaluation

of the influence spread of nodes. However, it still

has to estimate the influence spread for all nodes

in the first round of the algorithm by the

expensive MC-simulation. This computational

overhead causes the CELF algorithm to be

inefficient.

Novelty:

This paper aims to tackle this time inefficiency of

the CELF algorithm by proposing a heuristic

approach. The main idea is to reduce the influence

spread calculations in the first round by a pruning

technique. Firstly, algorithm 2 constructs the

Minimal Spanning Node (MSN) set composed of

the core nodes of the network. Then we just

estimate the influence spread of the MSN nodes

instead of all network nodes using the MC-

simulations. In this way, most of the graph nodes

are eliminated from expensive MC simulations

(96% on average practically). The influence

spread of the remind nodes is easily calculated

based on the obtained influence spread of the

MSN set nodes according to (3). The practical

results indicate that the optimized-CELF

algorithm provides a better running time than the

CELF algorithm, while produces the target seed

set with the same quality. Since the CELF

algorithm is orthogonal to the algorithms that

optimize the estimating of the influence spread,

the proposed algorithm can be combined with

them in order to achieve a scalable algorithm.

The rest of this paper is organized as what

follows. The related works on the influence

maximization are reviewed in section 2. Section 3

describes the related definitions of the influence

maximization. The optimized-CELF algorithm is

introduced in section 4. Section 5 reports the

experimental results. The performance evaluation

of the optimized-CELF algorithm is discussed in

section 6. Finally, section 7 concludes this paper

with future works.

2. Literature Review
The influence maximization problem could be

traced back to Domingos and Richardson [3]. It

was formulated as a discrete optimization problem

by kemp et al. [4]. They proved that the

optimization of this problem was #NP-hard. Thus

they developed a greedy approximation

framework that provided a near-optimal solution

with a theoretical guarantee within  1 1/ e .

However, it suffers from the time inefficiency

issue due to the huge computational overhead of

MC-simulations. Leskovec et al. have proposed

the Cost-Effective Lazy Forward (CELF) in order

to improve the time inefficiency issue of the naïve

greedy algorithm [5]. It utilized the sub-

modularity property of the influence spread

function to reduce the number of unnecessary

MC-simulations. The practical results

demonstrated that the CELF optimization

provided the same performance as the naïve

greedy algorithm, 700 times faster. The CELF

optimization was further improved to the CELF++

algorithm [6] by Goyal et al. The CELF++

strategy estimated the influence spread for two

successive iterations of the naïve greedy

algorithm. It was about 35-55% faster than CELF

due to reducing the number of spread estimation

calls. Chen et al. have proposed the NewGreedy

algorithm [7], an improved version of the naïve

greedy algorithm. It reused the previous results of

the MC-simulations to compute the influence

spread for all candidate nodes in the same

iteration. The StaticGreedy approach, presented

by Cheng et al. [8], took a few MC snapshots at

first. Next, k nodes with the highest marginal gain

Optimizing CELF Algorithm for Influence Maximization Problem in Social Networks

27

on all sampled snapshots were picked as the seed

set nodes. Due to the inevitable time complexity

of the StaticGreedy algorithm in the worst case, a

pruning method was applied to decrease its

running time in the staticGreedyDU algorithm [8].

UBLF [9] has provided an upper bound of the

influence spread function using the matrices,

introduced by Zhou et al. UBLF reduced the MC-

simulations calls, more than 95%. Tang et al. [10]

have proposed a Two-Phase algorithm (TIM). In

its first phase, a lower bound was computed on the

influence function in order to estimate the

parameter φ. The second phase selected φ

numbers of reverse reachability from the graph.

Finally, k nodes were selected that covered the

maximum number of reverse reachability. Also

they proposed an improved version of TIM,

namely TIM+, in order to speed up the parameter

estimation procedure. IMM [11] was a two-phase

method similar to TIM, which was proposed by

Tang et al. The IMM approach utilized advanced

estimation techniques such as the martingales

method. High memory consumption was one of

the most critical challenges of TIM, TIM+, and

IMM.

Unfortunately, these improved versions of the

naïve greedy algorithm were still inefficient due

to huge MC-simulations, despite providing the

theoretical guarantee on the influence spread [12].

Hence, a wide spectral of heuristic algorithms had

been proposed to trade-off between the influence

spread and the running time. The most intuitive

idea was to select the nodes based on their degree.

Degree Centrality, Betweenness Centrality,

Closeness Centrality, Eigenvector Centrality [13],

PageRank [14], and Hits [15] were the most

commonly heuristic approaches based on the node

degree. Since these approaches did not consider

the overlap of the influence between the different

seeds, the overestimation challenge would occur.

The Degree-Discount algorithm was proposed by

Chen et al. [7] to take into account the overlap of

the nodes' influence. After selecting one node as

the seed node, the influence scores of its

neighbors are reduced by a factor. Goyal et al.

have proposed the SimPath algorithm [16], which

counts all simple paths starting from each node

within the seed set to estimate the influence

spread. The SimPath algorithm exploits the CELF

optimization [5] for more efficiency. The main

idea of SP1M [17], which was introduced by

Kimura et al., was the node activation by

considering the shortest path from node u to node

v. Chen et al. have developed the MIA and PMIA

models inspired by the SP1M idea [18]. The MIA

model limited the propagation area into a local

tree structure. The PMIA model modified the in-

arborescence influence after selecting a seed node

to prevent blocking the influence of the

subsequent seeds by the current seed. IPA was a

path-based algorithm by Kim et al., which

employed a parallelization method to estimate the

influence spread for a more efficiently [19]. Chen

et al. have developed the LDAG framework [20].

It built the local DAGs for each node to estimate

the influence spread accurately and efficiently.

Narayanam et al. have introduced the SPIN

algorithm [21], in which the information

propagation is conducted similar to what happens

in a coalition alliance. The SPIN algorithm ranked

the nodes according to their Shapley value, and

selected the top-k nodes as the target seed set.

IRIE, which was developed by Jung et al., was a

robust extension of the PageRank algorithm [22].

In order to avoid the influence overlaps

occurrence, an influence estimation method was

suggested to compute and subtract the extra

influence of a seed. Group-PR was a

generalization of PageRank based on a greedy

framework, proposed by Liu et al. [23]. This

model employed a collection of nodes instead of a

single node to estimate the influence spread. The

main idea of IMRank, which was presented by

Cheng et al., was to discover the self-consistent

ranking of any initial ranking [24]. Then IMRank

was selected top-k nodes as the seed set nodes.

Ohsaka et al. have proposed a snapshot-based

sampling approach, namely the Pruned-MC [25].

Its efficiency and effectiveness were improved by

exploiting an index structure on snapshots along

with the pruning technique. The main idea of

EaSyIM, which was developed by Galhotra et al.,

was to count the simple paths to compute the

influence spread of each node [26]. This model

employed the IRIE algorithm in order to compute

the global influence. Although these heuristic

approaches could improve the time efficiency of

the naïve greedy algorithm, they cannot provide

any worst-case bound, and are theoretically weak.

Increasing the size of the online social has bolded

the scalability issue of the IM problem more than

past [27]. In order to tackle this issue, many

researchers have exploited the community

structures as a successful strategy [28]. Wang et

al. have used the community structures to improve

the scalability of the influence maximization

problem, the first time [29]. They invented the

Community Greedy Algorithm (CGA), in which

the graph was partitioned into small communities.

CGA detected the appropriate community by

dynamic programming in order to select the seed

set nodes.

Esmaeili et al./ Journal of AI and Data Mining, Vol. 10, No. 1, 2022

28

CGA was not suitable for handling large social

networks. Li et al. have developed an algorithm

based on the community structure using the

concept of conformity, called CINEMA [30].

CINEMA selects the target seed nodes inside the

detected communities with the maximum

marginal gain. In INCIM, which has been

proposed by Bozorgi et al. [31], a new graph is

constructed so that its nodes are the communities

of the main graph. In the new graph, each node

(community) could be considered as a diffusion

module. INCIM employs the CELF strategy in

order to reduce the time complexity. HybridIM is

a combination framework of the path-based and

community detection techniques, which has been

developed by Ko et al. [32]. For each extracted

community, a separate queue is created based on

the nodes' marginal gain. Then the CELF

algorithm [5] is applied to each queue directly.

Shang et al. have presented a new model based on

multi-neighbor, namely IMPC [33]. IMPC spreads

the influence throughout the network in two

separate phases: 1) multi-neighbor potential-based

seeds expansion 2) intra-community influence

propagation. IMPC employs the CELF strategy

[5] in order to accelerate the proposed algorithm.

As mentioned earlier, many researchers have

employed the naïve greedy algorithm [4] or CELF

[5] (its optimized version). For example, the

following approaches use the CELF strategy

directly: CELF++ [6], SimPath [16], IPA [19],

[34], INCIM [31], HybridIM [32], IMPC [33],

and etc. As mentioned in the introduction section,

the CELF algorithm meets the time efficiency

dilemma in its first iteration. By improving this

dilemma in this paper, other approaches that have

exploited the CELF algorithm will be improved

subsequently. Therefore, a significant progress

will be achieved in the scalability of the influence

maximization problem. Table 1 illustrates the

outstanding influence maximization algorithms.

3. Preliminaries

This section formulates the influence

maximization problem, and presents an overview

of the naïve greedy and the CELF algorithms.

Table 1. Specification of outstanding influence maximization algorithms.

Algorithm Authors Year Diffusion model Time complexity
CELF-

based
Approximation

Greedy [4] Kempe et al. 2003 IC, LT  O krnm   1 1/ e ε r 

CELF [5] Leskovec et al. 2007 IC, LT  O krnm   1 1/ e ε r 

SP1M [17] Kimura et al. 2007 IC  O knm
α

1 1/e

NewGreedy [7] Chen et al. 2009 IC  O krm  1 1/ e ε r 

Deg-Dis [7] Chen et al. 2009 IC, WC  O klogn m Not guaranteed

CGA [29] Wang et al. 2010 IC   O E Z M NT MKT K C T   P P P P

MIA/PMIA [18] Chen et al. 2010 IC   iθ 0θ iθ iθO nt kn n n log n 
α

1 1/e

LDAG [20] Chen et al. 2010 LT   θ θ θ θO nt kn m m log n  Not guaranteed

CELF++ [6] Goyal et al. 2011 IC, LT  O krnm  Not guaranteed

SimPath [16] Goyal et al. 2011 LT  θO klnP  Not guaranteed

SPIN [21] Narayanam et al. 2011 LT   O tr n m n log n kn   Not guaranteed

IRIE [22] Jung et al. 2012 IC-N   oθO k n k m Not guaranteed

staticGreedy [8] Cheng et al. 2013 IC  2 2O ε kmn log(,)n k  1 1/ e ε r 

IPA [19] Kim et al. 2013 IC    1 1

v uv v uvO c nO n k2 c O n c 1     Not guaranteed

TIM/TIM+ [10] Tang et al. 2014 IC, LT     2O ε k m n log n   1 1/ e ε r 

Group-PR [23] Liu et al. 2014 IC      2O krm Linear ,O m k n Bound Not guaranteed

IMRank [24] Cheng et al. 2014 IC  max maxO nTd logd Not guaranteed

Pruned-MC [25] Ohsaka et al. 2014 IC  2 2O ε kmn log(,)n k  1 1/ e ε r 

UBLF [9] Zhou et al. 2015 IC, LT  O krnm  1 1/ e ε r 

CINEMA [30] Li et al. 2015 C2, C3  O k m n kTRm      

IMM [11] Tang et al. 2015 IC, LT     2O ε k m n log n   1 1/ e ε r 

INCIM [31] Bozorgi et al 2016 LT       

EaSyIM [26] Galhotra et al. 2016 IC, LT   O k n mD Not guaranteed

HybridIM [32] Ko et al. 2018 WC       

IMPC [33] Shang et al. 2018 WC   maxO n m k m k      

Optimizing CELF Algorithm for Influence Maximization Problem in Social Networks

29

Also its related concepts are defined such as sub-

modularity and monotonicity. Besides, two of the

most widely-used diffusion models in influence

maximization will be introduced. Table 2 lists the

frequently used notations in the rest of this paper.

Also the # symbol means the number of elements.

3.1. Diffusion Model

A diffusion model is a conceptual framework of

the information propagation, which refers to

spreading the ideas or information within a social

graph. It aims to simulate the spread of

information (social influence) across people

(nodes) through links in a social network.

In a diffusion model, each node v ∈ V can adopt

one state: active state or inactive state. The active

state of node v indicates that node v can propagate

the information toward its neighbors. The inactive

state of node v indicates that the information

cannot be propagated via node v. The node state

can be changed from inactive to active when it

receives the information but is not possible in vice

versa. Initially, all nodes v ∈ V are inactive. Then

the k nodes are added to the seed set S, and their

state will be switched to active. The information

propagation procedure is triggered from the seed

set S. Each node of S can activate its neighbors in

separated time steps. The newly activated nodes

can activate their neighbors as well. This

procedure will be terminated when no new node is

activated. Various diffusion models adopt

different mechanisms for switching the node state

from inactive to active. The Independent Cascade

(IC) and Linear Threshold (LT) models are the

most common diffusion models in social networks

that capture the information propagation

procedure [4].

3.1.1. Independent Cascade (IC) Model

The mechanism of the IC model is as follows.

Suppose that the set St-1 includes the activated

nodes in the time step t-1. Each node u ∈ St-1 has a

single chance to activate each inactive out-

neighbor v with activation probability Pu,v in the

time step t. If node u succeeds, node v will be

activated in step t+1; else, it will remain inactive.

Regardless of the activation result of u on its

neighbors, node u has no opportunity to activate

the nodes in the next time steps. The diffusion

process continues until no more activation is

possible [4].

3.1.2. Linear Threshold (LT) Model

In the LT model, the activation of node v depends

on its active in-neighbors. In this model, a random

number θv in the range [0,1] is assigned to each

node v as its activation threshold. Also weight wu,v

is assigned as the effect of u on v for each directed

edge from node u to node v, which satisfies

  , 1in u vu neighbor v
w


 . The node v will be activated

if the sum of the weight of active in-neighbors v is

at least θv; i.e.,
  ,in u v vu neighbor v u S

w 
  

 . This

spreading process will be finished when no new

node is activated [4].

3.2. Influence Maximization Problem

Definition 1. (Influence spread) Given the social

network G(V,E), initial seed set S⊆V, diffusion

model M, and an integer number k as budget, the

influence spread of seed set S with k nodes is

defined as the expected number of activated nodes

by seed set S under stochastic diffusion model M

in graph G, denoted by δG,M(S).

Kempe et al. have shown that the influence spread

function δG,M(S) satisfies three important

properties: non-negatively, monotonicity, and sub-

modularity [35], [36].

Definition 2. (Non-negatively) An influence

spread function δ(∙) is non-negative if δ(S) ≥ 0 for

any S⊆V.

Definition 3. (Monotonicity) An influence spread

function δ(∙) is monotone if δ(S) ≤ δ(T) for any

S⊆T⊆V.

Definition 4. (Sub-modularity) An influence

spread function δ(∙) is sub-modular if δ(S∪{v}) -

δ(S) ≥ δ(T∪{v}) - δ(T) for any S⊆T⊆V and v ∈
V\T.

The monotonicity property says that adding more

activated nodes to a seed set S does not decrease

Table 2. Frequently used notations.

Notation Description

G(V,E) Social network G with node set V and edge set E

m, n Number of nodes and edges in G, i.e. |V|,|E|

S Initial seed set for diffusion process

k Size of the seed set S, i.e., |S|

R Number of Monte-Carlo simulations

M Diffusion Model

Pu,v Activation probability of node u on node v in the IC

δG,M(S)
Expected influence spread of seed set S in a

diffusion propagation process under M in G

W Core node set of G. (MSN set)

∆(v│S)
Marginal influence spread (marginal gain) of node v

upon seed set S

∆max Maximum marginal gain value

bv,u
Influence weight of directed edge (v,u) from node v

to node u

nbrin (v) Set of in-neighbor of node v

nbrout (v) Set of out-neighbor of node v

deg (v) Degree of node v

degin (v) In-degree of node v

degout (v) Out-degree of node v

Esmaeili et al./ Journal of AI and Data Mining, Vol. 10, No. 1, 2022

30

its influence spread. The sub-modularity property

means that the marginal gain of a new node is

diminished as the seed set size grows.

Definition 5. (Influence maximization problem)

Given the social network G(V,E), diffusion model

Μ, and an integer number k as budget, the aim is

to select a set of graph nodes with k elements is

called S
*
 so that if the information propagation is

triggered from S
*
, then the influence spread of this

set on the graph G under stochastic diffusion

model Μ will be maximized, i.e. [4]:

(1)    *

, , , G M GS k S V
S argmax S   



3.2.1. Greedy Algorithm

Kempe et al. have proved that computation of

optimum solution for influence maximization

problem is #NP-hard under the LT and IC

diffusion models [4]. In order to overcome the

NP-hardness, they presented a greedy algorithm

according to three properties of the influence

spread function (non-negatively, monotonicity,

and sub-modularity).

Theorem 1. The influence spread function δ(∙)

under the IC model is non-negative, monotone,

and sub-modular [4].

Theorem 2. The influence spread function δ(∙)

under the LT model is non-negative, monotone,

and sub-modular [4].

Theorem 3. If S
*
 is an optimal solution of

influence maximization problem, and S is a set

obtained by the greedy algorithm, then S satisfies

δ(S) ≥ (1-1/e)×δ(S
*
) for the non-negative,

monotone, and sub-modular influence spread

function δ(∙)[36].

These theorems guarantee that the greedy

algorithm approximates the optimal solution with

the lower bound ratio (1-1/e) ≈ 0.63123 by

evaluating the influence spread function [4]. The

original greedy algorithm starts with an empty

seed set S, and then iteratively picks node u with

the maximum marginal gain (influence spread) as

seed node until the k nodes are added to the seed

set S.

Definition 6. (Marginal gain) The marginal

influence spread of node v upon seed set S is

defined as:

(2)       , ,| S vG M G Mv S S    

Since the activated nodes by node v may overlap

with the activated nodes by seed set S, the

influence spread function is not extensible, i.e.

      , , ,S v ,G M G M G MS v v S      . So,

both δG,M(S) and δG,M(S∪{v}) must be calculated

from scratch, resulting in a huge computation

overhead. However, evaluating the exact marginal

gain δG,M(S) is #P-hard under both the IC and LT

models [18], [20], which cannot be completed in a

polynomial time. Hence, it is estimated by

conducting a huge number of MC-simulations

(e.g. R ≈ 10,000) to achieve an accurate estimation

of δG,M(S). The time complexity of the MC-

simulation is O(mR) So the time complexity of the

naïve greedy algorithm is O(knmR), where R is

the number of MC-simulations. Algorithm 1

shows the naïve greedy algorithm in detail.
Algorithm 1: Naïve greedy algorithm

Input: Graph G(V,E), number of seed nodes k, diffusion model Μ
Output: seed set S

1: Initialize S=∅ , R=10,000
2: while |S|<k do

3: for each v ∈ V-S do
4: sum=0

5: for i=1 to R do

6: sum=sum + δ (S∪{v}) // δ(∙) is estimated by Μ
7: end of for

8: ∆(v│S)=sum / R

9: end of for

10: S=S ∪ {argmax v∈V-S ∆(v│S)}
11: end of while

12: output S

3.2.2. CELF Algorithm

Although the naïve greedy algorithm perverts the

NP-hardness of the influence maximization

problem [4], it must call the influence spread

evaluation procedure (MC-simulation) for O(kn)

times to pick the top-k nodes, where n is the

number of graph nodes. Leskovec et al. have

proposed the Cost-Effective Lazy Forward

(CELF) algorithm to overcome the naïve greedy

algorithm inefficiency [5]. The CLEF algorithm

significantly reduces the number of influence

spread estimations by exploiting the sub-

modularity property of influence spread function

δ(∙).The intuition behind CELF is that the

marginal gain of node v in the current iteration

cannot exceed its marginal gain in the previous

iterations. More formally, suppose that S is the

current seed set, and ∆(v│S) is the marginal gain

of v with respect to S. According to the sub-

modularity property of the influence function,

∆(v│S) is an upper bound for any ∆(v│T) for

S⊆T⊆V. Based on this property, the CELF

algorithm estimates ∆(v│∅) using MC-simulations

for all nodes in its first round. One node with the

highest marginal gain is added to seed set S. Then

∆(v│∅) can be used as an upper bound as follows.

In the rest of iteration, the CELF algorithm re-

estimates ∆(v│S) for nodes v ∈ V\S using MC-

simulations in the descending order of their upper

bounds. Instead of estimating ∆(v│S) for all

nodes, CELF terminates the current iteration

whenever the highest upper bound of the

unestimated nodes is already smaller than the

highest upper bound of the estimated nodes. In

Optimizing CELF Algorithm for Influence Maximization Problem in Social Networks

31

other words, ∆(v│S) is re-estimated only for the

front node of queue. Then the queue is resorted in

the descending order. If a node remains at the

front of queue, it is selected as the seed set node.

Although the CELF optimization could not

improve the worst-case time complexity of the

naïve greedy algorithm, the practical results

demonstrate that the CELF algorithm improves

the time efficiency of the naïve greedy algorithm

to 700 times faster [5].

Although the CELF algorithm could improve the

time efficiency of the naïve greedy algorithm by

avoiding recomputation of δ(S), its first iteration is

very time-consuming because it has to call the

influence spread estimation procedure (MC-

simulations) for all nodes of the graph, similar to

the naïve greedy algorithm. This issue arises a

huge computational overhead in the first iteration.

In the next section, this dilemma will be tackled

by proposing a new optimization strategy.

4. Optimized-CELF Algorithm

As mentioned in the previous sections, Leskovec

et al. have exploited the sub-modularity property

of the influence function, developing the CELF

optimization [5] in order to reduce the running

time of the naïve greedy algorithm. The main idea

is that the marginal gain ∆(v│S) of a node v in the

previous iterations is more than its marginal gain

in the current iteration. This optimization can

significantly reduce the number of estimation calls

on the influence spread of nodes. However, the

first iteration of the CELF algorithm is still very

time-consuming because it has to make |V| calls

of the influence spread estimation for all nodes by

expensive MC simulations. In other words, the

function δ(∙) must be called |V| times, exactly

similar to the naive greedy algorithm. Hence, in

this paper, a novel approach is proposed in order

to reduce the number of calling function δ(∙) in the

first iteration of CELF. The main idea is the

estimation of influence spread δ(∙) only for the

core nodes of the graph instead of all graph nodes.

The influence spread of the other nodes is

estimated based on the obtained influence spread

of the MSN nodes. Thus by avoiding huge MC-

simulations, the long-running time of the first

iteration will be reduced significantly. The core

nodes is defined in definition 7.

Algorithm overview:

1. Constructing a set of core nodes of graph

(MSN set).

2. Estimating the influence spread δ(∙) for MSN

set nodes using MC-simulations.

3. Estimating the influence spread of the other

nodes based on the obtained influence spread

of MSN nodes according to (3).

4. Generating a queue of nodes in the

descending order of their influence value.

5. Selecting the front node of the queue as the

first node of seed set S.

6. Repeating the following steps until |S| ≤ k.

7. Estimating the influence spread δ(∙) for the

front node of the queue.

8. Resorting queue in the descending order of

influence value.

9. If node remains at the front of the queue, it

is selected as seed set S nodes, and go to step

6; else, go to step 7.

Definition 7. (Core nodes) Given the directed

graph G(V,E), the core node set of graph G is

defined as a set of graph nodes so that all nodes of

graph G could be accessible via them at most in

one distance.

Algorithm 2 constructs a minimal set of core

nodes, which span all graph nodes. The input of

this algorithm is directed graph G, and its output

is the MSN set. At each iteration, one unvisited

node with the highest degree is selected as a core

node and added to the MSN set. Thereafter, the

selected node along with its neighbors are marked

to the visited node. This procedure is repeated

until all nodes are visited.

Algorithm 2: (MSN)

Input: Directed graph G(V,E)

Output: W

1: W=∅

2: for each ∈ do

3: visited[v] = False
4: end of for

5: Sort all nodes in list V in descending order of their degree

6: for each v ∈ V do // taken in descending order by degree

7: if visited[v] == False then

8: W = W ∪ {v}

9: visited[v] = True

10: for each u ∈ neighbor(v) do
11: visited[u] = True

12: end of for

13: end of if
14: end of for

15: return W

Algorithm 2 works as follows. Lines 2–4 set the

visited attribute of every node to a false value.

Line 5 sorts all nodes in the descending order of

their degree at the list V'. For loop of lines 6–14

iterates the following procedure is carried out for

unvisited nodes: firstly, it adds the unvisited node

 (with the highest degree) to set W. Then it

changes the visited attribute of node v and its

neighbors to a true value. Finally, algorithm 2

returns set W as the core node set.

Consider the following example in Figure 1.

Figure 1(a) shows the input graph G, which has 9

Esmaeili et al./ Journal of AI and Data Mining, Vol. 10, No. 1, 2022

32

nodes and 14 edges. The sorted nodes in the

descending order of degree are as follow {#8, #4,

#6, #0, #2, #7, #5, #3, and #1}. As shown in

Figure 1(b), node #8, which has the biggest

degree, is the first node chosen by algorithm 2 and

added to core node set W. Then this algorithm

changes the visited attribute of the following

nodes to true (node #8 along with its neighbors

#3, #4, #5, and #6, shown with red color). In the

next step in Figure 1(c), node #4 has the biggest

degree among the unvisited nodes #4, #0, #2, and

#1. Thus node #4 is added to core node set .

The visited attribute of node #4 and its neighbors

#2 and #3 are changed to visited = true. As shown

in Figure 1(d), node #0, which has the biggest

degree among the unvisited nodes {#0 and #1}, is

the last node chosen by algorithm 2 because after

changing the visited attribute of node #0 along

with its neighbors #1, and #2 to true, there will no

unvisited nodes. Finally, the set , which is the

core node set produced by algorithm 2, contains

the three nodes #8, #4, and #0. In other words, all

nodes will be accessible at most with one distance

via the core node set {#8, #4, and #0}.

Figure 1. Procedure of selecting core nodes by algorithm 2

Time Complexity of algorithm 2:

Given the directed graph G(V,E), let n and m be

the number of nodes and edges in the graph G,

respectively. The overhead for initialization is

O(n) in lines 2-5. The sort procedure in line 5

takes O(n log n) time. Lines 6-14 require O(∑v∈V

degree(v)) = O(m) time because it checks all

nodes (line 6) along with their neighbors (line 10).

Thus the total time complexity of algorithm 2 is

O(n + n log n + m) ≈ O(n log n + m) in the worst

case. Since this algorithm selects the nodes

according to the highest degree in each round and

ignores the neighbors of the selected nodes, its

time complexity is better than the worst-case

complexity. As mentioned earlier, algorithm 2

repeatedly selects the unvisited node v with the

maximum degree to push on the set W, and then

eliminates node v along with its neighbor nodes

from the graph G. This selection strategy based on

the maximum degree cause that most nodes are

removed in each iteration. As a result, the size of

output set W will be minimal. Intuitively, since

algorithm 2 pick up the nodes based on the

maximum degree, the core nodes of the graph will

be obtained efficiently and effectively. The

practical results demonstrate that the size of the

set is very small rather than the size of the

graph. So far, we estimated the influence spread

δ(∙) only for the nodes of the set W in the first

round of our proposed algorithm. However, the

influence spread of all nodes must be provided for

the next rounds. Hence, the influence spread of

the other nodes is estimated based on the

following principle. The expected influence

spread of node v ∈ V is linearly dependent on the

influence of its neighbors under the IC model, i.e.:

(3)    
 

,1
out

v u

u nbr v

E v b E u 


        

where δ(u) is the influence spread of node u; bv,u is

the weight of the directed edge from node v to

node u,  , 1/ in

v ub degree u . The term “1” in (3)

is the influence of node v on itself. For example,

consider the graph shown in Figure 2. Suppose

that the expected influence spread value of the

node v4 is equal to 1. According to (3), the

expected influence spread value of the node v1 can

be calculated as:

      

      
    

1 2 1 3

1 2 2 4 1 3 3 4

1 , 2 , 3

4 4

1 . .

1 . 1 . . 1 .

1 0.2 1 0.3 1 0.4 1 0.5 1 1.86

v v v v

v v v v v v v v

E v b v b v

b b v b b v

  

 

     

    

         

Figure 2. Influence calculation.

Optimizing CELF Algorithm for Influence Maximization Problem in Social Networks

33

Note that the expected influence spread value of

nodes b and c was computed to be equal to 1.3

and 1.5, respectively, according to (3). In this

example, node v1 with the highest influence

spread is selected as seed set node.

In other words, for each node v ∈ V, if the

influence spread of out-neighbors of node v is

provided, then the influence spread of node v will

be obtained directly, without calling the expensive

function δ(∙).
In fact, (3) calculates the influence spread value as

a linear combination of the influences of nodes.

However, there is no concern about the

overestimation of nodes' influence on each other

δG,M(S∪{v}) = δG,M(S) + δG,M(v) because (3) is

used only in the first iteration of the algorithm,

and there is no overlap among seeds when S=∅.

The practical results indicates that the proposed

optimized-CELF algorithm significantly increases

the speed of the first iteration of basic CELF with

maintenance accuracy. The optimized-CELF

implementation is elaborated in algorithm 3. It

seems that the first iteration of the algorithm has

the extra overhead but it is relatively insignificant

compared to the achieved running time gain.

The optimized-CELF algorithm is divided into

two general parts. In lines 1-33, the first round of

the algorithm is performed to select the first node

of seed set S. The remaining nodes of seed set S

are selected in lines 34-51. ∆(v│S) and visited[v]

vectors are initialized for all v ∈ V by 0 and false

values, respectively (line 1). ∆(v│S) indicates the

influence spread (marginal gain) of node v with

respect to S. Algorithm 2 detects the minimal

spanning nodes (core nodes) and puts them in the

set W (line 2). Lines 4 -16 estimates the influence

spread (δ(∙)) for nodes v ∈ W using MC-

simulation under the IC model. Also in the

synchronous procedure, any node u ∈ neighbor
in

(v) that had not been visited so far will be added

to the queue Qin-nbr to calculate its influence

spread in the future steps. In the while loop (lines

17-26), until queue Qin-nbr is not empty, the front

node of Qin-nbr is removed, and its influence spread

is calculated according to (3). Also in the

synchronous procedure, any node u ∈
neighbor

in
(v) that had not been visited so far, will

be added to queue Qin-nbr. In the next step, all

nodes along with their influence spread value are

added to queue QCELF (lines 27 - 29). Line 30 sorts

QCELF according to the nodes' influence spread

value in the descending order. The front node of

QCELF (that has the highest marginal gain) is

removed and added to the seed set S as the first

influential node (lines 31-33). Lines 34-51

demonstrate the iterative procedure of the basic

CELF algorithm to find the other seed set nodes

as follows. The influence spread of the front node

v of QCELF is re-estimated by MC simulation.

After resorting queue QCELF, if node v remains at

the front of queue QCELF, it is added to seed S as

the node with the highest marginal gain in the

current round. This procedure will be terminated

when the number of seed nodes is satisfied.
Algorithm 3: Optimized-CELF

Input: Directed graph G(V,E), Number of seed nodes k, Diffusion
Model M

Output: seed set S

1: Initialize S = ∅, R = 10,000

 Initialize ∆(v│S) = 0, visited[v] = False for each v ∈ V

2: W = Construct the MSN set of graph G by Algorithm 2

3: for each v ∈ W do
4: sum = 0
5: for i = 1 to R do

6: sum = sum + δ(v) // δ(∙) is estimated by diffusion
model M

7: end of for

8: ∆(v│S) = sum / R

9: visited[v] = True

10: for each u ∈ neighborin(v) do
11: if visited[u] == False then

12: Qin-nbr.Push(u)
13: visited[u] = True

14: end of if

15: end of for
16: end of for

17: while Qin-nbr.IsEmpty() == False do

18: v = Qin-nbr.pop()
19: sum = 0

20: for each u ∈ neighborout (v) do

21: sum = sum + ∆(u│S) × (1/degreein (v)) //by (3)
22: end of for

23: ∆(v│S) = 1 + sum

24: for each u ∈ neighborin (v) do

21: if visited[u] == False then

22: Qin-nbr.Push(u)

23: visited[u] = True

24: end of if
25: end of for

26: end of while

27: for each v ∈ V do
28: QCELF.Push(v)
29: end of for

30: sort QCELF in descending order based on ∆(v│S)

31: v = QCELF.POP()

32: S = S ∪ {v}

33: ∆max = ∆(v│S)

34: while |S | ≤ k do
35: satisfied = False

36: while satisfied == False do

37: v = QCELF.Front()
38: sum = 0

39: for i = 1 to R do

40: sum = sum + δ(S∪{v}) // δ(∙) is estimated by
diffusion model M

41: end for
42: ∆(v│S) = (sum / R) - ∆max

43: resort QCELF in descending order based on ∆(v│S)

44: if v == QCELF.Front() then
45: satisfied = True

46: end of if

47: end of while

48: v = QCELF.POP()

49: S = S ∪ {v}

50: ∆max = ∆max + ∆(v│S)

51: end of while

52: return S

Esmaeili et al./ Journal of AI and Data Mining, Vol. 10, No. 1, 2022

34

Optimized-CELF Algorithm Time Complexity:

Let n and m be the number of nodes and edges in

the graph, respectively, n' and m' be the number

of nodes and edges in the graph restricted to core

node set W, respectively, and R be the number of

MC simulations. The original CELF algorithm

takes O(nmR) in its first iteration. This is

equivalent to lines 2-26 of the optimized-CELF

algorithm. The optimized-CELF algorithm first

calls algorithm 2 with time complexity O(n log n

+ m) in line 2. The loop in lines 3-16 requires

O(n'(R+∑v∈W deg(v))) = O(n'R + m') time.

Suppose that n'' is the size of V-W. Thus lines 17-

26 require O(n'' ∑v∈V-W deg(v)) ≈ O(m). Thus the

total time complexity of the optimized-CELF

algorithm is O((n log n + m)+(n'R + m') + (m)).

Since m'≪ m, therefore, it takes O(n log n + 2m +

n'R) ≈ O(n log n + m + n'R), which is the near-

linear time complexity versus the original CELF

algorithm with time complexity O(nmR).

5. Experiments and Results

In this section, several experiments were

conducted on six real datasets in order to verify

the performance of the optimized-CELF

algorithm. The optimized-CELF algorithm was

compared with the CELF algorithm on two

aspects: influence spread (effectiveness) and

running time (time efficiency). In this work, the

naïve greedy algorithm was not considered since

it had the same influence spread results with more

running time compared to the CELF algorithm.

The main goal of the experiments was to prove

that the optimized-CELF algorithm could improve

the time efficiency of the CELF algorithm, while

maintaining effectiveness. All simulations (our

proposed algorithm and original algorithm) were

implemented by the C++ language using the

SNAP libraries and Standard Template Library

(STL) and executed on a windows machine with a

single processor Intel Core-i5-6400 (2.70 GHz)

and 16GB memory. These codes are available at

https://github.com/mohsentaherinia/OptimizedCE

LF website.

5.1. Experimental Setup

5.1.1. Datasets

In order to achieve the comparable results, six real

datasets with various sizes were employed.

Hamsterster friendships [37]: This is an online

social network from hamsterster.com, which

contains the user–user friendships.

Facebook (NIPS) [38]: This online social

network contains Facebook friendships between

the individuals.

Erdős [37]: This is a co-authorship network

around Paul Erdős, which was assembled by the

Pajek project. This network contains the

individuals who have written the papers with Paul

Erdős.

Wikipedia talk [38]: This is a directed

communication network of Esperanto Wikipedia.

Each node in the network is a user, and an edge

from user u to user v indicates that the user u

wrote a message to the user v.

DBLP [38]: This citation network contains a

database of scientific publications. Each node in

this directed network is a publication, and each

edge represents a citation of a publication by

another publication.

Google+ (NIPS) [37]: Google+ is a directed

social network, which contains the circles of the

relationship between the individuals. A directed

edge in this network shows that one user has the

other user in his circles.

Table 3 summarizes the statistical properties of

these datasets. All datasets are available at the

SNAP library website maintained by Jure

Leskovec https://snap.stanford.edu/data/ or the

http://networkrepository.com/ website.

5.1.2. Diffusion Model

This paper uses the independent cascade model as

a diffusion model since it is extensively studied in

a similar work. The propagation probability from

node u to node v is Pu,v = 0.01.

Table 3. Statistical properties of six real datasets.

Networks statistics
Hamsterster

friendships

Facebook

(NIPS)
Erdős Wikipedia talk DBLP Google+ (NIPS)

Nodes 1,858 2,888 6,927 7,586 12,590 23,628

Edges 12,534 2,981 11,850 47,070 49,759 39,242

Maximum degree 272 769 507 5,157 714 2,771

Average degree 13.5 2.1 3.4 12.4 7.9 3.321 65

Diameter 14 9 4 8 10 8

Gini coefficient 0.61 0.51 0.65 0.87 0.66 0.659 896

Network format Undirected Undirected Undirected Directed Directed Directed

Category
Online social

network

Online social

network

Co-authorship

network

Communication

network

Citation

network

Online social

network

https://github.com/mohsentaherinia/OptimizedCELF
https://github.com/mohsentaherinia/OptimizedCELF
http://networkrepository.com/

Optimizing CELF Algorithm for Influence Maximization Problem in Social Networks

35

5.1.3. Evaluation Metrics

Efficiency and effectiveness are the most common

evaluation criteria in the influence maximization

problem. The elapsed time for the complete

performing of the optimized-CELF is

accumulated in order to evaluate the algorithm

time efficiency. Also to evaluate its effectiveness,

the influence spread values were estimated for

various seed sizes from 1 to 50. The influence

spread value was equal to the number of

eventually activated nodes under the IC diffusion

model. In addition to the two mentioned criteria,

this paper analyzes the size of the MSN set as

well.

5.2. Experimental Result

In order to estimate the influence spread more

accurately, we set R = 10,000 as the number of

MC-simulations. Also the following algorithms

were executed for k=1 to 50.

5.2.1. Minimal Spanning Node Analysis

As mentioned in the previous sections, one of the

most outstanding innovations of this paper is the

detection of core nodes of the network by

algorithm 2 effectively and efficiently. These

nodes construct one set called minimal spanning

nodes (MSN set), which is used to estimate the

influence spread using the MC-simulation in the

next step. Table 4 shows the size of the generated

MSN set for each dataset.

Figure 3 compares the number of nodes in the

MSN set with the number of graph nodes in order

to show the performance of algorithm 2 better. As

it could be seen, the ratios of the MSN nodes to

the graph nodes were 9.47%, 0.35%, 3.96%,

1.15%, 9.91%, and 0.44% for Hamsterster,

Facebook, Erdős, Wikipedia talk, DBLP, and

Google+, respectively. The Facebook, Wikipedia

talk, and Google+ datasets have the lowest

percentage of nodes. It could be intuitively stated

that the denser graphs with lower diameters could

produce the small MSN set. In general, the MSN

size to graph size ratio fell into the range of 0.35%

to a maximum of 9.91%. As one can see in the

next section, performing the MC- simulation on

0.35% to 9.91% of network nodes instead of all

network nodes will produce wonderful effects on

the running time gain.

5.2.2. Influence Spread Analysis

Figure 4 shows the influence spread of the

optimized-CELF and CELF for six real datasets.

The x-axis indicates the number of seed set nodes

from 1 to 50. The y-axis represents the number of

nodes that are eventually activated. As expected,

both algorithms have the same performance in all

datasets. In other words, the optimized-CELF

produces high-quality seed sets similar to CELF

with more speed. This equal performance goes

back to the same strategy of the two algorithms in

selecting the seed nodes, which is the node

selection based on the maximum marginal gain.

Table 4. Size of the MSN set for six real datasets.

Dataset # Nodes # MSN nodes

Hamsterster friendships 1,858 176

Facebook (NIPS) 2,888 10

Erdős 6,927 274

Wikipedia talk 7,586 87

DBLP 12,590 1248

Google+ (NIPS) 23,628 105

Figure 3. Comparison of size of MSN set vs. size of the graph for all datasets.

Esmaeili et al./ Journal of AI and Data Mining, Vol. 10, No. 1, 2022

36

There is a slight increase or decrease in the

influence spread value in some datasets. For

example, in the Hamsterster dataset, the

optimized-CELF increases the influence spread

maximum +0.11% (when k=17), and it decreases

the influence spread maximum -0.27% (when

k=45). In other words, the influence spread

fluctuates between +0.11% and -0.27% by

optimized-CELF.

Figure 4. Comparison of influence spread of optimized-CELF and CELF algorithms on six real datasets for k = 1 to 50.

Optimizing CELF Algorithm for Influence Maximization Problem in Social Networks

37

These slight changes are due to the stochastic

nature of the diffusion model and the MC-

simulation, which can be ignored.

Other DSs did not change significantly in terms of

effectiveness.

5.2.3. Running Time Analysis

Figure 5 demonstrates the running time of the

optimized-CELF and CELF algorithms for all

datasets. The x-axis represents the number of seed

set nodes from 1 to 50. The y-axis indicates the

running time in seconds.

Figure 5. Comparison of running time of optimized-CELF and CELF algorithms on six real datasets for k = 1 to 50.

Esmaeili et al./ Journal of AI and Data Mining, Vol. 10, No. 1, 2022

38

It is clear that the optimized-CELF algorithm is

faster than the CELF algorithm in all datasets. The

main goal of the proposed algorithm is to reduce

the running time of the first iteration of the CELF

algorithm. However, since the subsequent

iterations are directly dependent on the first

iteration, the running time of the following

iterations is also improved significantly.

In more detail, Tables 5 and 6 focus on the

running time gain in all datasets for k=1 and

k=50, respectively.

The third column of Tables 5 and 6 demonstrates

the achieved running time gain by optimized-

CELF compared to CELF.

Table 5 verifies that the achieved time gain falls

into the range between 88.05% to 99.61% in all

datasets (for k=1).

In other words, in the first iteration of the

optimized-CELF algorithm, the achieved time

gain is equal to 95% on average in all datasets. In

Table 6 (for k=50), the lowest time gain is

55.84% in the Hamsterster dataset, and the highest

time gain is 98.07% for the Facebook dataset.

It is visible that the optimized-CELF achieves

83% improvement in time gain on average in all

datasets (for k=50). Figures 6 and 7 were also

plotted for a better visual differentiation of the

time gain of optimized-CELF in all datasets for

k=1 and k=50, respectively.

6. Discussion

As it could be seen from the results obtained in

the previous section, the optimized-CELF

algorithm could improve the time efficiency of the

basic CELF algorithm (95% when k=1 and 82%

when k=50, in the average of all datasets). This

running time gain occurs while the effectiveness

of the basic CELF algorithm is not diminished.

The main reason for this runtime improvement is

that in the first round of the optimized-CELF

algorithm, the influence spreads were estimated

only for the MSN set instead of all nodes. Of

course, the size of the MSN set plays a vital role

in the time efficiency of the optimized-CELF

Figure 6. Comparison of running time of optimized-CELF and CELF algorithms on six real datasets when k = 1.

Figure 7. Comparison of running time of optimized-CELF and CELF algorithms on six real datasets when k = 50.

Table 5. Running time gain of optimized-CELF for k = 1.

Dataset CELF
Optimized-

CELF
Gain

Hamsterster
friendships

5,347 639 88.05%

Facebook (NIPS) 11,942 46 99.61%

Erdős 74,505 2,969 96.02%

Wikipedia talk 88,749 1,871 97.89%

DBLP 252,968 26,287 89.61%

Google+ (NIPS) 793,081 3,663 99.54%

Table 6. Running time gain of optimized-CELF for k = 50.

Dataset CELF
Optimized-

CELF
Gain

Hamsterster

friendships
15,370 6,788 55.84%

Facebook (NIPS) 35,625 687 98.07%

Erdős 79,315 7,490 90.56%

Wikipedia talk 162,272 42,246 73.97%

DBLP 292,235 58,568 79.96%

Google+ (NIPS) 807,599 16,887 97.91%

Optimizing CELF Algorithm for Influence Maximization Problem in Social Networks

39

algorithm. Intuitively, a denser network with a

lower diameter produces a small MSN set, and

subsequently, achieves a better running time gain.

Fortunately, it was seen that in some cases such as

the Facebook and Google+ datasets, despite the

very small MSN set, the efficiency of optimized-

CELF did not decrease compared to CELF. On

the other hand, since one node with the highest

marginal gain was selected as the seed set node in

each iteration, the quality of generated seed set by

the proposed algorithm would not be changed

compared to the basic CELF algorithm.

7. Conclusions and future directions

Undoubtedly, the Greedy CELF algorithm, as the

best algorithm in the influence maximization

problem in terms of effectiveness, can generate a

high-quality seed set among all the presented

algorithms. Hence, the researchers have employed

it extensively in order to invent new models to

solve the various aspects of the influence

maximization problem. One of the main

drawbacks of CELF is the time inefficiency of its

first iteration because it has to run the expensive

MC-simulation to estimate the influence spread of

all nodes in its first round.

In this paper, a new algorithm was proposed in

order to tackle this challenge of CELF. The main

idea was to construct a set of the core nodes of the

network, namely minimal spanning nodes (MSN).

Then the influence spreads were estimated only

for the MSN set instead of all nodes of the

network. The influence spreads of the other nodes

were calculated according to (3). Therefore, many

expensive MC-simulations would be avoided, and

the running time would be reduced. In order to

verify the time efficiency and accuracy of the

optimized-CELF algorithm, various experiments

were conducted. The experimental results

demonstrated that the optimized-CELF algorithm

and the CELF algorithm performed similarly in

terms of accuracy (the equal influence spread);

however, the optimized-CELF algorithm

outperformed the CELF algorithm in terms of

efficiency (running time).

There are several promising directions for future

research works:

 Extending to other diffusion models such as

the LT, WC, SIR, and TR models.

 Embedding the proposed algorithm to the

CELF++ algorithm, which uses the CELF

approach directly.

 Applying the optimized-CELF algorithm to

other approaches that exploit the CELF

algorithm such as SimPath, IPA, INCIM,

HybridIM, and IMPC.

Acknowledgments

This research work did not receive any specific

grant from the funding agencies in the public,

commercial or not-for-profit sectors. The authors

would like to thank the anonymous reviewers for

their valuable comments that helped improve the

quality of this paper.

References
[1] Y. Li, J. Fan, Y. Wang, and K.-L. L. Tan,

“Influence Maximization on Social Graphs: A Survey,”

IEEE Trans. Knowl. Data Eng., vol. 30, no. 10, pp.

1852–1872, Oct. 2018.

[2] K. Li, L. Zhang, and H. Huang, “Social Influence

Analysis: Models, Methods, and Evaluation,”

Engineering, vol. 4, no. 1, pp. 40–46, Feb. 2018.

[3] P. Domingos and M. Richardson, “Mining the

network value of customers,” in Proceedings of the

Seventh ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2001, pp. 57–

66.

[4] D. Kempe, J. Kleinberg, and É. Tardos,

“Maximizing the spread of influence through a social

network,” in Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, 2003, pp. 137–146.

[5] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,

J. Vanbriesen, and N. Glance, “Cost-effective outbreak

detection in networks,” in Proceedings of the ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2007, pp. 420–429.

[6] A. Goyal, W. Lu, and L. V. S. Lakshmanan,

“CELF++: Optimizing the greedy algorithm for

influence maximization in social networks,” in

Proceedings of the 20th International Conference

Companion on World Wide Web, WWW 2011, 2011,

pp. 47–48.

[7] W. Chen, Y. Wang, and S. Yang, “Efficient

influence maximization in social networks,” in

Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

2009, pp. 199–207.

[8] S. Cheng, H. Shen, J. Huang, G. Zhang, and X.

Cheng, “StaticGreedy: Solving the scalability-accuracy

dilemma in influence maximization,” in International

Conference on Information and Knowledge

Management, Proceedings, 2013, pp. 509–518.

[9] C. Zhou, P. Zhang, W. Zang, and L. Guo, “On the

Upper Bounds of Spread for Greedy Algorithms in

Social Network Influence Maximization,” IEEE Trans.

Knowl. Data Eng., vol. 27, no. 10, pp. 2770–2783, Oct.

2015.

[10] Y. Tang, X. Xiao, and Y. Shi, “Influence

maximization: Near-optimal time complexity meets

practical efficiency,” in Proceedings of the ACM

SIGMOD International Conference on Management of

Esmaeili et al./ Journal of AI and Data Mining, Vol. 10, No. 1, 2022

40

Data, 2014, pp. 75–86.

[11] Y. Tang, Y. Shi, and X. Xiao, “Influence

maximization in near-linear time: A martingale

approach,” in Proceedings of the ACM SIGMOD

International Conference on Management of Data,

2015, vol. 2015-May, pp. 1539–1554.

[12] S. Banerjee, M. Jenamani, and D. K. Pratihar, “A

survey on influence maximization in a social network,”

Knowl. Inf. Syst., vol. 62, no. 9, pp. 3417–3455, Sep.

2020.

[13] S. Peng, Y. Zhou, L. Cao, S. Yu, J. Niu, and W.

Jia, “Influence analysis in social networks: A survey,”

J. Netw. Comput. Appl., vol. 106, pp. 17–32, Mar.

2018.

[14] L. Page, L. Page, S. Brin, R. Motwani, and T.

Winograd, “The PageRank Citation Ranking: Bringing

Order to the Web,” -, 1998.

[15] J. M. Kleinberg, “Authoritative sources in a

hyperlinked environment,” J. ACM, vol. 46, no. 5, pp.

604–632, 1999.

[16] A. Goyal, W. Lu, and L. V. S. Lakshmanan,

“SIMPATH: An Efficient Algorithm for Influence

Maximization under the Linear Threshold Model,” in

2011 IEEE 11th International Conference on Data

Mining, 2011, pp. 211–220.

[17] M. Kimura, K. Saito, R. Nakano, and H. Motoda,

“Extracting influential nodes on a social network for

information diffusion,” Data Min. Knowl. Discov., vol.

20, no. 1, pp. 70–97, Jan. 2010.

[18] W. Chen, C. Wang, and Y. Wang, “Scalable

influence maximization for prevalent viral marketing in

large-scale social networks,” in Proceedings of the

ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2010, pp.

1029–1038.

[19] J. Kim, S. K. Kim, and H. Yu, “Scalable and

parallelizable processing of influence maximization for

large-scale social networks?,” in Proceedings -

International Conference on Data Engineering, 2013,

pp. 266–277.

[20] W. Chen, Y. Yuan, and L. Zhang, “Scalable

influence maximization in social networks under the

linear threshold model,” in Proceedings - IEEE

International Conference on Data Mining, ICDM,

2010, pp. 88–97.

[21] R. Narayanam and Y. Narahari, “A shapley value-

based approach to discover influential nodes in social

networks,” IEEE Trans. Autom. Sci. Eng., vol. 8, no. 1,

pp. 130–147, Jan. 2011.

[22] K. Jung, W. Heo, and W. Chen, “IRIE: Scalable

and robust influence maximization in social networks,”

in Proceedings - IEEE International Conference on

Data Mining, ICDM, 2012, pp. 918–923.

[23] Q. Liu, B. Xiang, E. Chen, H. Xiong, F. Tang, and

J. X. Yu, “Influence maximization over large-scale

social networks: A bounded linear approach,” in CIKM

2014 - Proceedings of the 2014 ACM International

Conference on Information and Knowledge

Management, 2014, pp. 171–180.

[24] S. Cheng, H.-W. Shen, J. Huang, W. Chen, and

X.-Q. Cheng, “IMRank: Influence Maximization via

Finding Self-Consistent Ranking,” SIGIR 2014 - Proc.

37th Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., pp.

475–484, Feb. 2014.

[25] N. Ohsaka, T. Akiba, Y. Yoshida, and K.

Kawarabayashi, “Fast and accurate influence

maximization on large networks with pruned Monte-

Carlo simulations,” in Proceedings of the Twenty-

Eighth AAAI Conference on Artificial Intelligence,

2014, pp. 138–144.

[26] S. Galhotra, A. Arora, and S. Roy, “Holistic

Influence Maximization: Combining Scalability and

Efficiency with Opinion-Aware Models,” Proc. ACM

SIGMOD Int. Conf. Manag. Data, vol. 26-June-20, pp.

743–758, Feb. 2016.

[27] N. Sumith, B. Annappa, and S. Bhattacharya,

“Influence maximization in large social networks:

Heuristics, models and parameters,” Futur. Gener.

Comput. Syst., vol. 89, pp. 777–790, Dec. 2018.

[28] M. Zarezade, E. Nourani, and A. Bouyer,

“Community Detection using a New Node Scoring and

Synchronous Label Updating of Boundary Nodes in

Social Networks,” J. AI Data Min., vol. 8, no. 2, pp.

201–212, 2020.

[29] Y. Wang, G. Cong, G. Song, and K. Xie,

“Community-based Greedy Algorithm for Mining top-

K Influential Nodes in Mobile Social Networks,” in

Proceedings of the 16th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

2010, pp. 1039–1048.

[30] H. Li, S. S. Bhowmick, A. Sun, and J. Cui,

“Conformity-aware influence maximization in online

social networks,” VLDB J., vol. 24, no. 1, pp. 117–141,

Jan. 2015.

[31] A. Bozorgi, H. Haghighi, M. Sadegh Zahedi, and

M. Rezvani, “INCIM: A community-based algorithm

for influence maximization problem under the linear

threshold model,” Inf. Process. Manag., vol. 52, no. 6,

pp. 1188–1199, Nov. 2016.

[32] Y. Y. Ko, K. J. Cho, and S. W. Kim, “Efficient

and effective influence maximization in social

networks: A hybrid-approach,” Inf. Sci. (Ny)., vol. 465,

pp. 144–161, Oct. 2018.

[33] J. Shang, H. Wu, S. Zhou, J. Zhong, Y. Feng, and

B. Qiang, “IMPC: Influence maximization based on

multi-neighbor potential in community networks,”

Phys. A Stat. Mech. its Appl., vol. 512, pp. 1085–1103,

Dec. 2018.

[34] S. Jendoubi, A. Martin, L. Liétard, H. Ben Hadji,

and B. Ben Yaghlane, “Two evidential data based

models for influence maximization in Twitter,”

Optimizing CELF Algorithm for Influence Maximization Problem in Social Networks

41

Knowledge-Based Syst., vol. 121, pp. 58–70, Apr.

2017.

[35] G. Corneuejols, M. L. Fisher, and G. L.

Nemhauser, “Location of Bank Accounts to Optimize

Float: An Analytic Study of Exact and Approximate

Algorithms.,” Manage. Sci., vol. 23, no. 8, pp. 789–

810, Apr. 1977.

[36] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher,

“An analysis of approximations for maximizing

submodular set functions-I,” Math. Program., vol. 14,

no. 1, pp. 265–294, Dec. 1978.

[37] R. A. Rossi and N. K. Ahmed, “The Network Data

Repository with Interactive Graph Analytics and

Visualization,” in AAAI, 2015. [Online]. Available:

https://networkrepository.com/. [Accessed: 25-Oct-

2020].

[38] J. Leskovec and A. Krevl, “SNAP Datasets,”

Stanford, Jun-2014. [Online]. Available:

http://snap.stanford.edu/data. [Accessed: 25-Oct-2020].

 .1041 سال ،اول شماره هم،دوره د ،کاویمجله هوش مصنوعی و داده و همکاران اسماعیلی

 های اجتماعیدر شبکه تأثیرسازی له بیشینهئبرای مس CELFسازی الگوریتم بهینه

 2بیدگلیبهروز مینایی و ،*1اسماعیلیمهدی، 1نیاطاهریمحسن

 .ایران، کاشان، دانشگاه آزاد اسلامی واحد کاشان، کامپیوتر گروه 1

 .ایران، تهران، دانشگاه علم و صنعت ایران، دانشکده مهندسی کامپیوتر 2

 40/11/0401 پذیرش؛ 00/40/0401 بازنگری؛ 40/40/0401 ارسال

 :چکیده

 بر را تأثیر بیشترین است بطوریکه افراد یک شبکه اجتماعی از ایکمینه یمجموعه یافتن اجتماعی هایشبکه در تأثیر سازیبیشینه یلهمسئ هدف

 NP-Hard یمسئله این اثربخشی و یزمانکارایی هایچالش حل برای زیادی هایالگوریتم گذشته، دهه دو در. باشند داشته شبکه در افراد سایر

 الگوریتم البته،. استبوده اثربخشی میزان بالاترین حریصانه دارای الگوریتم در کنار CELF الگوریتم شک در میان آنها، بدون. استشده پیشنهاد

CELF از محققان از بسیاری که است شده باعث برتری این. از خود نشان داده است حریصانه الگوریتم از سریعترمرتبه 044 در حدودکارایی زمانی

 زیرا. است آن تکرار اولین طولانی بسیار زمان ،CELF الگوریتم اصلی معضل حال این با .کنند استفاده خود نوآورانه رویکردهای در CELF الگوریتم

 رویکرد یک مقاله، این در. است هاگره همه تأثیربه منظور تخمین میزان کارلو مونت سنگین هایسازیشبیه حریصانه، مجبور به اجرای الگوریتم مانند

. استشده پیشنهاد (کارلو مونت غیرضروری های سازیشبیه از اجتناب با) CELF الگوریتم معضل این بهبود برای ،optimized-CELFبه نام ابتکاری

 الگوریتم عنوان به CELF از که را دیگر هایالگوریتم زمانی بازده متعاقباً و داده کاهش به شدت را CELF الگوریتم اجرای زمان پیشنهادی الگوریتم

 در optimized-CELF الگوریتم که دادند نشان واقعی هایدادهمجموعه از وسیعی طیف روی بر تجربی نتایج. بخشدمی بهبود کنند،می استفاده پایه

 رایب درصد 00تا 90 و k=1 برای درصد 00تا 00 حدوددر بهتری یزمان بهرهبه میزان اثربخشی، دادندست از بدون CELF الگوریتم با مقایسه

k=50 د.یابدست می

 .ل انتشاردهای اجتماعی، الگوریتم حریصانه، م، تحلیل شبکهتأثیرسازی ، بیشینهCELFسازی بهینه :کلمات کلیدی

