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 The influence maximization problem in social networks aims to find a 

minimal set of individuals in order to produce the highest influence on 

the other individuals in the network. In the last two decades, a lot of 

algorithms have been proposed to solve the time efficiency and 

effectiveness challenges of this NP-Hard problem. Undoubtedly, the 

CELF algorithm (besides the naive greedy algorithm) has the highest 

effectiveness among them. Of course, the CELF algorithm is faster 

than the naive greedy algorithm (about 700 times). This superiority 

has led many researchers to make extensive use of the CELF 

algorithm in their innovative approaches.  

However, the main drawback of the CELF algorithm is the very long 

running time of its first iteration since it has to estimate the influence 

spread for all nodes by the expensive Monte-Carlo simulations, 

similar to the naive greedy algorithm. In this paper, a heuristic 

approach is proposed, namely optimized-CELF algorithm, in order to 

improve this drawback of the CELF algorithm by avoiding the 

unnecessary Monte-Carlo simulations. It is found that the proposed 

algorithm reduces the CELF running time, and subsequently, 

improves the time efficiency of the other algorithms that have 

employed CELF as a base algorithm. The experimental results on the 

wide spectral of real datasets show that the optimized-CELF 

algorithm provides a better running time gain, about 88-99% and 56-

98% for k=1 and k=50, respectively, compared to the CELF 

algorithm without missing effectiveness. 
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1. Introduction 

In the last two decades, the world has witnessed 

the explosion of online social networks. Today, 

the social networks play a vital role in the 

dissemination of information among the people 

extensively and rapidly. The people within the 

social networks are influenced by each other via 

their relationships (friends, acquaintances, and 

colleagues). This social influence can change the 

people's thoughts, ideas, opinions, and behaviors 

[1]. Many companies and organizations have 

exploited this opportunity and have developed 

various applications such as marketing, 

advertising, and recommender systems. [2]. For 

example, consider a company that intends to 

promote a new product to the market with the 

lowest budget. One solution is to find a small set 

of influential individuals inside the social network 

to freely trial the product. It is expected that these 

influential individuals will recommend the new 

product to their close individuals in a cascading 

mechanism. Thus a new product will be promoted 

in the market through the power of “word of 

mouth” in viral marketing. 

This problem, which is called the influence 

maximization problem, is a classic and hot topic 

in social network analysis that has been attracted 

much attention from the researchers. The goal is 

to find a set of   nodes so that if the information 
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propagation process starts from this initial set, 

then more individuals receive the information 

eventually, and the influence spread will be 

maximized throughout the network. The influence 

maximization problem has been introduced by 

Domingos and Richardson in viral marketing [3]. 

Kemp et al. have formulated this problem and 

proved that obtaining an optimal solution of the 

influence maximization problem is #NP-hard 

under the Linear Threshold (LT) and Independent 

Cascade (IC) diffusion models [4]. They 

presented a greedy hill-climbing algorithm with 

O(knmR) time complexity that provided a solution 

with 63% approximate of optimal solution (n and 

m are the number of nodes and edges in the 

network, k is the size of the target seed set, and R 

is the number of Monte-Carlo simulations). Their 

algorithm suffers from two major challenges. 

First, computing the exact influence spread of 

seed set S (δ(S)) is #P-hard under the LT and IC 

models. This challenge is handled by estimating 

the influence spread using the Monte-Carlo (MC) 

simulations. Secondly, this algorithm is quadratic 

in the number of nodes, which makes it inefficient 

[1]. So far, many efforts have been made in order 

to improve the time efficiency dilemma of this 

greedy algorithm. One of the outstanding 

proposed approaches is Cost-Effective Lazy 

Forward (CELF) by Leskovec et al. [5], which has 

been used in many subsequent works. They 

exploited the submodularity property of the 

objective function to reduce the time complexity 

of the greedy algorithm. The CELF algorithm 

became up to 700 times faster than the greedy 

algorithm by avoiding the unnecessary evaluation 

of the influence spread of nodes. However, it still 

has to estimate the influence spread for all nodes 

in the first round of the algorithm by the 

expensive MC-simulation. This computational 

overhead causes the CELF algorithm to be 

inefficient. 

Novelty: 

This paper aims to tackle this time inefficiency of 

the CELF algorithm by proposing a heuristic 

approach. The main idea is to reduce the influence 

spread calculations in the first round by a pruning 

technique. Firstly, algorithm 2 constructs the 

Minimal Spanning Node (MSN) set composed of 

the core nodes of the network. Then we just 

estimate the influence spread of the MSN nodes 

instead of all network nodes using the MC-

simulations. In this way, most of the graph nodes 

are eliminated from expensive MC simulations 

(96% on average practically). The influence 

spread of the remind nodes is easily calculated 

based on the obtained influence spread of the 

MSN set nodes according to (3). The practical 

results indicate that the optimized-CELF 

algorithm provides a better running time than the 

CELF algorithm, while produces the target seed 

set with the same quality. Since the CELF 

algorithm is orthogonal to the algorithms that 

optimize the estimating of the influence spread, 

the proposed algorithm can be combined with 

them in order to achieve a scalable algorithm. 

The rest of this paper is organized as what 

follows. The related works on the influence 

maximization are reviewed in section 2. Section 3 

describes the related definitions of the influence 

maximization. The optimized-CELF algorithm is 

introduced in section 4. Section 5 reports the 

experimental results. The performance evaluation 

of the optimized-CELF algorithm is discussed in 

section 6. Finally, section 7 concludes this paper 

with future works. 

 

2. Literature Review 
The influence maximization problem could be 

traced back to Domingos and Richardson [3]. It 

was formulated as a discrete optimization problem 

by kemp et al. [4]. They proved that the 

optimization of this problem was #NP-hard. Thus 

they developed a greedy approximation 

framework that provided a near-optimal solution 

with a theoretical guarantee within  1 1/ e . 

However, it suffers from the time inefficiency 

issue due to the huge computational overhead of 

MC-simulations. Leskovec et al. have proposed 

the Cost-Effective Lazy Forward (CELF) in order 

to improve the time inefficiency issue of the naïve 

greedy algorithm [5]. It utilized the sub-

modularity property of the influence spread 

function to reduce the number of unnecessary 

MC-simulations. The practical results 

demonstrated that the CELF optimization 

provided the same performance as the naïve 

greedy algorithm, 700 times faster. The CELF 

optimization was further improved to the CELF++ 

algorithm [6] by Goyal et al. The CELF++ 

strategy estimated the influence spread for two 

successive iterations of the naïve greedy 

algorithm. It was about 35-55% faster than CELF 

due to reducing the number of spread estimation 

calls. Chen et al. have proposed the NewGreedy 

algorithm [7], an improved version of the naïve 

greedy algorithm. It reused the previous results of 

the MC-simulations to compute the influence 

spread for all candidate nodes in the same 

iteration. The StaticGreedy approach, presented 

by Cheng et al. [8], took a few MC snapshots at 

first. Next, k nodes with the highest marginal gain 
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on all sampled snapshots were picked as the seed 

set nodes. Due to the inevitable time complexity 

of the StaticGreedy algorithm in the worst case, a 

pruning method was applied to decrease its 

running time in the staticGreedyDU algorithm [8]. 

UBLF [9] has provided an upper bound of the 

influence spread function using the matrices, 

introduced by Zhou et al. UBLF reduced the MC-

simulations calls, more than 95%. Tang et al. [10] 

have proposed a Two-Phase algorithm (TIM). In 

its first phase, a lower bound was computed on the 

influence function in order to estimate the 

parameter φ. The second phase selected φ 

numbers of reverse reachability from the graph. 

Finally, k nodes were selected that covered the 

maximum number of reverse reachability. Also 

they proposed an improved version of TIM, 

namely TIM+, in order to speed up the parameter 

estimation procedure. IMM [11] was a two-phase 

method similar to TIM, which was proposed by 

Tang et al. The IMM approach utilized advanced 

estimation techniques such as the martingales 

method. High memory consumption was one of 

the most critical challenges of TIM, TIM+, and 

IMM. 

Unfortunately, these improved versions of the 

naïve greedy algorithm were still inefficient due 

to huge MC-simulations, despite providing the 

theoretical guarantee on the influence spread [12]. 

Hence, a wide spectral of heuristic algorithms had 

been proposed to trade-off between the influence 

spread and the running time. The most intuitive 

idea was to select the nodes based on their degree. 

Degree Centrality, Betweenness Centrality,  

Closeness Centrality, Eigenvector Centrality [13], 

PageRank [14], and Hits [15] were the most 

commonly heuristic approaches based on the node 

degree. Since these approaches did not consider 

the overlap of the influence between the different 

seeds, the overestimation challenge would occur. 

The Degree-Discount algorithm was proposed by 

Chen et al. [7] to take into account the overlap of 

the nodes' influence. After selecting one node as 

the seed node, the influence scores of its 

neighbors are reduced by a factor. Goyal et al. 

have proposed the SimPath algorithm [16], which 

counts all simple paths starting from each node 

within the seed set to estimate the influence 

spread. The SimPath algorithm exploits the CELF 

optimization [5] for more efficiency. The main 

idea of SP1M [17], which was introduced by 

Kimura et al., was the node activation by 

considering the shortest path from node u to node 

v. Chen et al. have developed the MIA and PMIA 

models inspired by the SP1M idea [18]. The MIA 

model limited the propagation area into a local 

tree structure. The PMIA model modified the in-

arborescence influence after selecting a seed node 

to prevent blocking the influence of the 

subsequent seeds by the current seed. IPA was a 

path-based algorithm by Kim et al., which 

employed a parallelization method to estimate the 

influence spread for a more efficiently [19]. Chen 

et al. have developed the LDAG framework [20]. 

It built the local DAGs for each node to estimate 

the influence spread accurately and efficiently. 

Narayanam et al. have introduced the SPIN 

algorithm [21], in which the information 

propagation is conducted similar to what happens 

in a coalition alliance. The SPIN algorithm ranked 

the nodes according to their Shapley value, and 

selected the top-k nodes as the target seed set. 

IRIE, which was developed by Jung et al., was a 

robust extension of the PageRank algorithm [22]. 

In order to avoid the influence overlaps 

occurrence, an influence estimation method was 

suggested to compute and subtract the extra 

influence of a seed. Group-PR was a 

generalization of PageRank based on a greedy 

framework, proposed by Liu et al. [23]. This 

model employed a collection of nodes instead of a 

single node to estimate the influence spread. The 

main idea of IMRank, which was presented by 

Cheng et al., was to discover the self-consistent 

ranking of any initial ranking [24]. Then IMRank 

was selected top-k nodes as the seed set nodes. 

Ohsaka et al. have proposed a snapshot-based 

sampling approach, namely the Pruned-MC [25]. 

Its efficiency and effectiveness were improved by 

exploiting an index structure on snapshots along 

with the pruning technique. The main idea of 

EaSyIM, which was developed by Galhotra et al., 

was to count the simple paths to compute the 

influence spread of each node [26]. This model 

employed the IRIE algorithm in order to compute 

the global influence. Although these heuristic 

approaches could improve the time efficiency of 

the naïve greedy algorithm, they cannot provide 

any worst-case bound, and are theoretically weak. 

Increasing the size of the online social has bolded 

the scalability issue of the IM problem more than 

past [27]. In order to tackle this issue, many 

researchers have exploited the community 

structures as a successful strategy [28]. Wang et 

al. have used the community structures to improve 

the scalability of the influence maximization 

problem, the first time [29]. They invented the 

Community Greedy Algorithm (CGA), in which 

the graph was partitioned into small communities. 

CGA detected the appropriate community by 

dynamic programming in order to select the seed 

set nodes.  
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CGA was not suitable for handling large social 

networks. Li et al. have developed an algorithm 

based on the community structure using the 

concept of conformity, called CINEMA [30]. 

CINEMA selects the target seed nodes inside the 

detected communities with the maximum 

marginal gain. In INCIM, which has been 

proposed by Bozorgi et al. [31], a new graph is 

constructed so that its nodes are the communities 

of the main graph. In the new graph, each node 

(community) could be considered as a diffusion 

module. INCIM employs the CELF strategy in 

order to reduce the time complexity. HybridIM is 

a combination framework of the path-based and 

community detection techniques, which has been 

developed by Ko et al. [32]. For each extracted 

community, a separate queue is created based on 

the nodes' marginal gain. Then the CELF 

algorithm [5] is applied to each queue directly. 

Shang et al. have presented a new model based on 

multi-neighbor, namely IMPC [33]. IMPC spreads 

the influence throughout the network in two 

separate phases: 1) multi-neighbor potential-based 

seeds expansion 2) intra-community influence 

propagation. IMPC employs the CELF strategy 

[5] in order to accelerate the proposed algorithm. 

As mentioned earlier, many researchers have 

employed the naïve greedy algorithm [4] or CELF 

[5] (its optimized version). For example, the 

following approaches use the CELF strategy 

directly: CELF++ [6], SimPath [16], IPA [19], 

[34], INCIM [31], HybridIM [32], IMPC [33], 

and etc. As mentioned in the introduction section, 

the CELF algorithm meets the time efficiency 

dilemma in its first iteration. By improving this 

dilemma in this paper, other approaches that have 

exploited the CELF algorithm will be improved 

subsequently. Therefore, a significant progress 

will be achieved in the scalability of the influence 

maximization problem. Table 1 illustrates the 

outstanding influence maximization algorithms. 

 

3. Preliminaries 

This section formulates the influence 

maximization problem, and presents an overview 

of the naïve greedy and the CELF algorithms. 

Table 1. Specification of outstanding influence maximization algorithms. 

Algorithm Authors Year Diffusion model Time complexity 
CELF- 

based 
Approximation 

Greedy [4] Kempe et al. 2003 IC, LT  O krnm    1 1/ e ε r   

CELF [5] Leskovec et al. 2007 IC, LT  O krnm    1 1/ e ε r   

SP1M [17] Kimura et al. 2007 IC  O knm   
α

1 1/e  

NewGreedy [7] Chen et al. 2009 IC  O krm    1 1/ e ε r   

Deg-Dis [7] Chen et al. 2009 IC, WC  O klogn m   Not guaranteed 

CGA [29] Wang et al. 2010 IC   O E Z M NT MKT K C T   P P P P
  --- 

MIA/PMIA [18] Chen et al. 2010 IC   iθ 0θ iθ iθO nt   kn  n   n log n    
α

1 1/e  

LDAG [20] Chen et al. 2010 LT   θ θ θ θO nt   kn  m   m log n    Not guaranteed 

CELF++ [6] Goyal et al. 2011 IC, LT  O krnm   Not guaranteed 

SimPath [16] Goyal et al. 2011 LT  θO klnP   Not guaranteed 

SPIN [21] Narayanam et al. 2011 LT   O tr n m n log n kn     Not guaranteed 

IRIE [22] Jung et al. 2012 IC-N   oθO k n  k   m   Not guaranteed 

staticGreedy [8] Cheng et al. 2013 IC  2 2O ε kmn log( , )n k    1 1/ e ε r   

IPA [19] Kim et al. 2013 IC    1 1

v uv v uvO c nO  n k2 c O  n c 1      Not guaranteed 

TIM/TIM+ [10] Tang et al. 2014 IC, LT     2O ε k m n log n     1 1/ e ε r   

Group-PR [23] Liu et al. 2014 IC      2O krm Linear ,O m k n Bound   Not guaranteed 

IMRank [24] Cheng et al. 2014 IC  max maxO nTd logd   Not guaranteed 

Pruned-MC [25] Ohsaka et al. 2014 IC  2 2O ε kmn log( , )n k    1 1/ e ε r   

UBLF [9] Zhou et al. 2015 IC, LT  O krnm    1 1/ e ε r   

CINEMA [30] Li et al. 2015 C2, C3  O k m n    kTRm          

IMM [11] Tang et al. 2015 IC, LT     2O ε k m n log n     1 1/ e ε r   

INCIM [31] Bozorgi et al 2016 LT          

EaSyIM [26] Galhotra et al. 2016 IC, LT   O k n mD   Not guaranteed 

HybridIM [32] Ko et al. 2018 WC          

IMPC [33] Shang et al. 2018 WC   maxO n m k m k         
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Also its related concepts are defined such as sub-

modularity and monotonicity. Besides, two of the 

most widely-used diffusion models in influence 

maximization will be introduced. Table 2 lists the 

frequently used notations in the rest of this paper. 

Also the # symbol means the number of elements. 

 

3.1. Diffusion Model 

A diffusion model is a conceptual framework of 

the information propagation, which refers to 

spreading the ideas or information within a social 

graph. It aims to simulate the spread of 

information (social influence) across people 

(nodes) through links in a social network. 

In a diffusion model, each node v ∈ V can adopt 

one state: active state or inactive state. The active 

state of node v indicates that node v can propagate 

the information toward its neighbors. The inactive 

state of node v indicates that the information 

cannot be propagated via node v. The node state 

can be changed from inactive to active when it 

receives the information but is not possible in vice 

versa. Initially, all nodes v ∈ V are inactive. Then 

the k nodes are added to the seed set S, and their 

state will be switched to active. The information 

propagation procedure is triggered from the seed 

set S. Each node of S can activate its neighbors in 

separated time steps. The newly activated nodes 

can activate their neighbors as well. This 

procedure will be terminated when no new node is 

activated. Various diffusion models adopt 

different mechanisms for switching the node state 

from inactive to active. The Independent Cascade 

(IC) and Linear Threshold (LT) models are the 

most common diffusion models in social networks 

that capture the information propagation 

procedure [4]. 

 

3.1.1. Independent Cascade (IC) Model 

The mechanism of the IC model is as follows. 

Suppose that the set St-1 includes the activated 

nodes in the time step t-1. Each node u ∈  St-1 has a 

single chance to activate each inactive out-

neighbor v with activation probability Pu,v in the 

time step t. If node u succeeds, node v will be 

activated in step t+1; else, it will remain inactive. 

Regardless of the activation result of u on its 

neighbors, node u has no opportunity to activate 

the nodes in the next time steps. The diffusion 

process continues until no more activation is 

possible [4]. 

 

3.1.2. Linear Threshold (LT) Model 

In the LT model, the activation of node v depends 

on its active in-neighbors. In this model, a random 

number θv in the range [0,1] is assigned to each 

node v as its activation threshold. Also weight wu,v 

is assigned as the effect of u on v for each directed 

edge from node u to node v, which satisfies 

  , 1in u vu neighbor v
w


 . The node v will be activated 

if the sum of the weight of active in-neighbors v is 

at least θv; i.e., 
  ,in u v vu neighbor v u S

w 
  

 . This 

spreading process will be finished when no new 

node is activated [4]. 

 

3.2. Influence Maximization Problem 

Definition 1. (Influence spread) Given the social 

network G(V,E), initial seed set S⊆V, diffusion 

model M, and an integer number k as budget, the 

influence spread of seed set S with k nodes is 

defined as the expected number of activated nodes 

by seed set S under stochastic diffusion model M 

in graph G, denoted by δG,M(S). 

Kempe et al. have shown that the influence spread 

function δG,M(S) satisfies three important 

properties: non-negatively, monotonicity, and sub-

modularity [35], [36]. 

Definition 2. (Non-negatively) An influence 

spread function δ(∙) is non-negative if δ(S) ≥ 0 for 

any S⊆V. 

Definition 3. (Monotonicity) An influence spread 

function δ(∙) is monotone if δ(S) ≤ δ(T) for any 

S⊆T⊆V. 

Definition 4. (Sub-modularity) An influence 

spread function δ(∙) is sub-modular if δ(S∪{v}) - 

δ(S) ≥ δ(T∪{v}) - δ(T) for any S⊆T⊆V and v ∈ 
V\T. 

The monotonicity property says that adding more 

activated nodes to a seed set S does not decrease 

Table 2. Frequently used notations. 

Notation Description 

G(V,E) Social network G with node set V and edge set E 

m, n Number of nodes and edges in G, i.e. |V|,|E| 

S Initial seed set for diffusion process 

k Size of the seed set S, i.e., |S| 

R Number of Monte-Carlo simulations 

M Diffusion Model 

Pu,v Activation probability of node u on node v in the IC  

δG,M(S) 
Expected influence spread of seed set S in a 

diffusion propagation process under M in G 

W Core node set of G. (MSN set) 

∆(v│S) 
Marginal influence spread (marginal gain) of node v 

upon seed set S 

∆max Maximum marginal gain value 

bv,u 
Influence weight of directed edge (v,u) from node v 

to node u 

nbrin (v) Set of in-neighbor of node v 

nbrout (v) Set of out-neighbor of node v 

deg (v) Degree of node v 

degin (v) In-degree of node v 

degout (v) Out-degree of node v 
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its influence spread. The sub-modularity property 

means that the marginal gain of a new node is 

diminished as the seed set size grows.  

Definition 5. (Influence maximization problem) 

Given the social network G(V,E), diffusion model 

Μ, and an integer number k as budget, the aim is 

to select a set of graph nodes with k elements is 

called S
*
 so that if the information propagation is 

triggered from S
*
, then the influence spread of this 

set on the graph G under stochastic diffusion 

model Μ will be maximized, i.e. [4]: 

(1)    *

,  , , G M GS k S V
S argmax S   

  

3.2.1. Greedy Algorithm 

Kempe et al. have proved that computation of 

optimum solution for influence maximization 

problem is #NP-hard under the LT and IC 

diffusion models [4]. In order to overcome the 

NP-hardness, they presented a greedy algorithm 

according to three properties of the influence 

spread function (non-negatively, monotonicity, 

and sub-modularity).  

Theorem 1. The influence spread function δ(∙) 

under the IC model is non-negative, monotone, 

and sub-modular [4]. 

Theorem 2. The influence spread function δ(∙) 

under the LT model is non-negative, monotone, 

and sub-modular [4]. 

Theorem 3. If S
*
 is an optimal solution of 

influence maximization problem, and S is a set 

obtained by the greedy algorithm, then S satisfies 

δ(S) ≥ (1-1/e)×δ(S
*
) for the non-negative, 

monotone, and sub-modular influence spread 

function δ(∙)[36]. 

These theorems guarantee that the greedy 

algorithm approximates the optimal solution with 

the lower bound ratio (1-1/e) ≈ 0.63123 by 

evaluating the influence spread function [4]. The 

original greedy algorithm starts with an empty 

seed set S, and then iteratively picks node u with 

the maximum marginal gain (influence spread) as 

seed node until the k nodes are added to the seed 

set S. 

Definition 6. (Marginal gain) The marginal 

influence spread of node v upon seed set S is 

defined as: 

(2)       , ,| S vG M G Mv S S      

Since the activated nodes by node v may overlap 

with the activated nodes by seed set S, the 

influence spread function is not extensible, i.e. 

      , , ,S v ,G M G M G MS v v S      . So, 

both δG,M(S) and δG,M(S∪{v}) must be calculated 

from scratch, resulting in a huge computation 

overhead. However, evaluating the exact marginal 

gain δG,M(S) is #P-hard under both the IC and LT 

models [18], [20], which cannot be completed in a 

polynomial time. Hence, it is estimated by 

conducting a huge number of MC-simulations 

(e.g. R ≈ 10,000) to achieve an accurate estimation 

of δG,M(S). The time complexity of the MC-

simulation is O(mR) So the time complexity of the 

naïve greedy algorithm is O(knmR), where R is 

the number of MC-simulations. Algorithm 1 

shows the naïve greedy algorithm in detail. 
Algorithm 1: Naïve greedy algorithm 

Input: Graph G(V,E), number of seed nodes k, diffusion model Μ 
Output: seed set S 

1:     Initialize S=∅ , R=10,000 
2:     while |S|<k do 

3:      for each v ∈ V-S do 
4:      sum=0 

5:      for i=1 to R do 

6:             sum=sum + δ (S∪{v}) // δ(∙) is estimated by Μ 
7:      end of for 

8:     ∆(v│S)=sum / R 

9: end of for 

10: S=S ∪ {argmax v∈V-S ∆(v│S)} 
11:     end of while 

12:    output S 
 

3.2.2. CELF Algorithm 

Although the naïve greedy algorithm perverts the 

NP-hardness of the influence maximization 

problem [4], it must call the influence spread 

evaluation procedure (MC-simulation) for O(kn) 

times to pick the top-k nodes, where n is the 

number of graph nodes.  Leskovec et al. have 

proposed the Cost-Effective Lazy Forward 

(CELF) algorithm to overcome the naïve greedy 

algorithm inefficiency [5]. The CLEF algorithm 

significantly reduces the number of influence 

spread estimations by exploiting the sub-

modularity property of influence spread function 

δ(∙).The intuition behind CELF is that the 

marginal gain of node v in the current iteration 

cannot exceed its marginal gain in the previous 

iterations. More formally, suppose that S is the 

current seed set, and ∆(v│S) is the marginal gain 

of v with respect to S. According to the sub-

modularity property of the influence function, 

∆(v│S) is an upper bound for any ∆(v│T) for 

S⊆T⊆V. Based on this property, the CELF 

algorithm estimates ∆(v│∅) using MC-simulations 

for all nodes in its first round. One node with the 

highest marginal gain is added to seed set S. Then 

∆(v│∅) can be used as an upper bound as follows. 

In the rest of iteration, the CELF algorithm re-

estimates ∆(v│S) for nodes v ∈ V\S using MC-

simulations in the descending order of their upper 

bounds. Instead of estimating ∆(v│S) for all 

nodes, CELF terminates the current iteration 

whenever the highest upper bound of the 

unestimated nodes is already smaller than the 

highest upper bound of the estimated nodes. In 
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other words, ∆(v│S) is re-estimated only for the 

front node of queue. Then the queue is resorted in 

the descending order. If a node remains at the 

front of queue, it is selected as the seed set node. 

Although the CELF optimization could not 

improve the worst-case time complexity of the 

naïve greedy algorithm, the practical results 

demonstrate that the CELF algorithm improves 

the time efficiency of the naïve greedy algorithm 

to 700 times faster [5]. 

Although the CELF algorithm could improve the 

time efficiency of the naïve greedy algorithm by 

avoiding recomputation of δ(S), its first iteration is 

very time-consuming because it has to call the 

influence spread estimation procedure (MC-

simulations) for all nodes of the graph, similar to 

the naïve greedy algorithm. This issue arises a 

huge computational overhead in the first iteration. 

In the next section, this dilemma will be tackled 

by proposing a new optimization strategy. 

 

4. Optimized-CELF Algorithm 

As mentioned in the previous sections, Leskovec 

et al. have exploited the sub-modularity property 

of the influence function, developing the CELF 

optimization [5] in order to reduce the running 

time of the naïve greedy algorithm. The main idea 

is that the marginal gain ∆(v│S) of a node v in the 

previous iterations is more than its marginal gain 

in the current iteration. This optimization can 

significantly reduce the number of estimation calls 

on the influence spread of nodes. However, the 

first iteration of the CELF algorithm is still very 

time-consuming because it has to make |V| calls 

of the influence spread estimation for all nodes by 

expensive MC simulations. In other words, the 

function δ(∙) must be called |V| times, exactly 

similar to the naive greedy algorithm. Hence, in 

this paper, a novel approach is proposed in order 

to reduce the number of calling function δ(∙) in the 

first iteration of CELF. The main idea is the 

estimation of influence spread δ(∙) only for the 

core nodes of the graph instead of all graph nodes. 

The influence spread of the other nodes is 

estimated based on the obtained influence spread 

of the MSN nodes. Thus by avoiding huge MC-

simulations, the long-running time of the first 

iteration will be reduced significantly. The core 

nodes is defined in definition 7. 

 

Algorithm overview: 

1. Constructing a set of core nodes of graph 

(MSN set). 

2. Estimating the influence spread δ(∙) for MSN 

set nodes using MC-simulations. 

3. Estimating the influence spread of the other 

nodes based on the obtained influence spread 

of MSN nodes according to (3). 

4. Generating a queue of nodes in the 

descending order of their influence value. 

5. Selecting the front node of the queue as the 

first node of seed set S. 

6. Repeating the following steps until |S| ≤ k. 

7. Estimating the influence spread δ(∙) for the 

front node   of the queue. 

8. Resorting queue in the descending order of 

influence value. 

9. If node   remains at the front of the queue, it 

is selected as seed set S nodes, and go to step 

6; else, go to step 7.  

 

Definition 7. (Core nodes) Given the directed 

graph G(V,E), the core node set of graph G is 

defined as a set of graph nodes so that all nodes of 

graph G could be accessible via them at most in 

one distance. 

Algorithm 2 constructs a minimal set of core 

nodes, which span all graph nodes. The input of 

this algorithm is directed graph G, and its output 

is the MSN set. At each iteration, one unvisited 

node with the highest degree is selected as a core 

node and added to the MSN set. Thereafter, the 

selected node along with its neighbors are marked 

to the visited node. This procedure is repeated 

until all nodes are visited. 
 

Algorithm 2:            (MSN) 

Input: Directed graph G(V,E) 

Output: W 

1:     W=∅ 

2:     for each  ∈   do 

3: visited[v] = False 
4:     end of for 

5:     Sort all nodes in list V in descending order of their degree 

6:     for each v ∈ V  do // taken in descending order by degree 

7:    if visited[v] == False then 

8:      W = W ∪ {v} 

9:      visited[v] = True 

10:      for each u ∈ neighbor(v) do 
11:          visited[u] = True 

12:       end of for 

13:    end of if 
14:   end of for 

15:   return W 

Algorithm 2 works as follows. Lines 2–4 set the 

visited attribute of every node to a false value. 

Line 5 sorts all nodes in the descending order of 

their degree at the list V'. For loop of lines 6–14 

iterates the following procedure is carried out for 

unvisited nodes: firstly, it adds the unvisited node 

  (with the highest degree) to set W. Then it 

changes the visited attribute of node v and its 

neighbors to a true value. Finally, algorithm 2 

returns set W as the core node set. 

Consider the following example in Figure 1. 

Figure 1(a) shows the input graph G, which has 9 
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nodes and 14 edges. The sorted nodes in the 

descending order of degree are as follow {#8, #4, 

#6, #0, #2, #7, #5, #3, and #1}. As shown in 

Figure 1(b), node #8, which has the biggest 

degree, is the first node chosen by algorithm 2 and 

added to core node set W. Then this algorithm 

changes the visited attribute of the following 

nodes to true (node #8 along with its neighbors 

#3, #4, #5, and #6, shown with red color). In the 

next step in Figure 1(c), node #4 has the biggest 

degree among the unvisited nodes #4, #0, #2, and 

#1. Thus node #4 is added to core node set  . 

The visited attribute of node #4 and its neighbors 

#2 and #3 are changed to visited = true. As shown 

in Figure 1(d), node #0, which has the biggest 

degree among the unvisited nodes {#0 and #1}, is 

the last node chosen by algorithm 2 because after 

changing the visited attribute of node #0 along 

with its neighbors #1, and #2 to true, there will no 

unvisited nodes. Finally, the set  , which is the 

core node set produced by algorithm 2, contains 

the three nodes #8, #4, and #0. In other words, all 

nodes will be accessible at most with one distance 

via the core node set {#8, #4, and #0}. 

 
Figure 1. Procedure of selecting core nodes by algorithm 2  

Time Complexity of algorithm 2:  

Given the directed graph G(V,E), let n and m be 

the number of nodes and edges in the graph G, 

respectively. The overhead for initialization is 

O(n) in lines 2-5. The sort procedure in line 5 

takes O(n log n) time. Lines 6-14 require O(∑v∈V 

degree(v))     = O(m) time because it checks all 

nodes (line 6) along with their neighbors (line 10). 

Thus the total time complexity of algorithm 2 is 

O(n + n log n + m) ≈ O(n log n + m) in the worst 

case. Since this algorithm selects the nodes 

according to the highest degree in each round and 

ignores the neighbors of the selected nodes, its 

time complexity is better than the worst-case 

complexity. As mentioned earlier, algorithm 2 

repeatedly selects the unvisited node v with the 

maximum degree to push on the set W, and then 

eliminates node v along with its neighbor nodes 

from the graph G. This selection strategy based on 

the maximum degree cause that most nodes are 

removed in each iteration. As a result, the size of 

output set W will be minimal. Intuitively, since 

algorithm 2 pick up the nodes based on the 

maximum degree, the core nodes of the graph will 

be obtained efficiently and effectively. The 

practical results demonstrate that the size of the 

set   is very small rather than the size of the 

graph. So far, we estimated the influence spread 

δ(∙) only for the nodes of the set W in the first 

round of our proposed algorithm. However, the 

influence spread of all nodes must be provided for 

the next rounds. Hence, the influence spread of 

the other nodes is estimated based on the 

following principle. The expected influence 

spread of node v ∈ V is linearly dependent on the 

influence of its neighbors under the IC model, i.e.: 

(3)    
 

,1
out

v u

u nbr v

E v b E u 

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where δ(u) is the influence spread of node u; bv,u is 

the weight of the directed edge from node v to 

node u,  , 1/ in

v ub degree u . The term “1” in (3) 

is the influence of node v on itself. For example, 

consider the graph shown in Figure 2. Suppose 

that the expected influence spread value of the 

node v4 is equal to 1. According to (3), the 

expected influence spread value of the node v1 can 

be calculated as:  
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Figure 2. Influence calculation. 
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Note that the expected influence spread value of 

nodes b and c was computed to be equal to 1.3 

and 1.5, respectively, according to (3). In this 

example, node v1 with the highest influence 

spread is selected as seed set node. 

In other words, for each node v ∈ V, if the 

influence spread of out-neighbors of node v is 

provided, then the influence spread of node v will 

be obtained directly, without calling the expensive 

function δ(∙). 
In fact, (3) calculates the influence spread value as 

a linear combination of the influences of nodes. 

However, there is no concern about the 

overestimation of nodes' influence on each other 

δG,M(S∪{v}) = δG,M(S) + δG,M(v) because (3) is 

used only in the first iteration of the algorithm, 

and there is no overlap among seeds when S=∅. 

The practical results indicates that the proposed 

optimized-CELF algorithm significantly increases 

the speed of the first iteration of basic CELF with 

maintenance accuracy. The optimized-CELF 

implementation is elaborated in algorithm 3. It 

seems that the first iteration of the algorithm has 

the extra overhead but it is relatively insignificant 

compared to the achieved running time gain. 

The optimized-CELF algorithm is divided into 

two general parts. In lines 1-33, the first round of 

the algorithm is performed to select the first node 

of seed set S. The remaining nodes of seed set S 

are selected in lines 34-51. ∆(v│S) and visited[v] 

vectors are initialized for all v ∈ V by 0 and false 

values, respectively (line 1). ∆(v│S) indicates the 

influence spread (marginal gain) of node v with 

respect to S. Algorithm 2 detects the minimal 

spanning nodes (core nodes) and puts them in the 

set W (line 2). Lines 4 -16 estimates the influence 

spread (δ(∙)) for nodes v ∈ W using MC-

simulation under the IC model. Also in the 

synchronous procedure, any node u ∈ neighbor
in
 

(v) that had not been visited so far will be added 

to the queue Qin-nbr to calculate its influence 

spread in the future steps. In the while loop (lines 

17-26), until queue Qin-nbr is not empty, the front 

node of Qin-nbr is removed, and its influence spread 

is calculated according to (3). Also in the 

synchronous procedure, any node u ∈ 
neighbor

in
(v) that had not been visited so far, will 

be added to queue Qin-nbr. In the next step, all 

nodes along with their influence spread value are 

added to queue QCELF (lines 27 - 29). Line 30 sorts 

QCELF according to the nodes' influence spread 

value in the descending order. The front node of 

QCELF (that has the highest marginal gain) is 

removed and added to the seed set S as the first 

influential node (lines 31-33). Lines 34-51 

demonstrate the iterative procedure of the basic 

CELF algorithm to find the other seed set nodes 

as follows. The influence spread of the front node 

v of QCELF is re-estimated by MC simulation. 

After resorting queue QCELF, if node v remains at 

the front of queue QCELF, it is added to seed S as 

the node with the highest marginal gain in the 

current round. This procedure will be terminated 

when the number of seed nodes is satisfied. 
Algorithm 3: Optimized-CELF 

Input: Directed graph G(V,E), Number of seed nodes k, Diffusion 
Model M 

Output: seed set S 

1:     Initialize S = ∅, R = 10,000 

        Initialize ∆(v│S) = 0, visited[v] = False for each v ∈ V 

2:     W = Construct the MSN set of graph G by Algorithm 2  

3:     for each v ∈ W do 
4: sum = 0 
5: for i = 1 to R do 

6:         sum = sum + δ(v) // δ(∙) is estimated by diffusion 
model M 

7: end of for 

8: ∆(v│S) = sum / R 

9: visited[v] = True 

10: for each u ∈ neighborin(v) do 
11:          if visited[u] == False then 

12:  Qin-nbr.Push(u) 
13:  visited[u] = True 

14:           end of if 

15: end of for 
16:   end of for 

17:   while Qin-nbr.IsEmpty() == False do 

18: v = Qin-nbr.pop() 
19: sum = 0 

20: for each u ∈ neighborout (v) do 

21:        sum = sum + ∆(u│S) × (1/degreein (v))           //by (3) 
22: end of for 

23: ∆(v│S) = 1 + sum 

24: for each u ∈ neighborin (v) do 

21:          if visited[u] == False then 

22:  Qin-nbr.Push(u) 

23:  visited[u] = True 

24:           end of if 
25: end of for 

26:   end of while 

27:   for each v ∈ V do 
28: QCELF.Push(v) 
29:   end of for 

30:   sort QCELF in descending order based on ∆(v│S) 

31:   v = QCELF.POP() 

32:   S = S ∪ {v} 

33:   ∆max = ∆(v│S) 

34:   while |S | ≤ k do 
35: satisfied = False 

36: while satisfied == False do 

37:         v = QCELF.Front() 
38:         sum = 0 

39:         for i = 1 to R do 

40:  sum = sum + δ(S∪{v}) // δ(∙) is estimated by 
diffusion model M 

41:         end for 
42:          ∆(v│S) = (sum / R) - ∆max 

43:          resort QCELF in descending order based on ∆(v│S)  

44:          if v == QCELF.Front() then 
45:  satisfied = True 

46:          end of if 

47: end of while 

48: v = QCELF.POP() 

49: S = S ∪ {v} 

50: ∆max = ∆max + ∆(v│S) 

51:   end of while  

52:   return S 
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Optimized-CELF Algorithm Time Complexity: 

Let n and m be the number of nodes and edges in 

the graph, respectively, n'  and m' be the number 

of nodes and edges in the graph restricted to core 

node set W, respectively, and R be the number of 

MC simulations. The original CELF algorithm 

takes O(nmR) in its first iteration. This is 

equivalent to lines 2-26 of the optimized-CELF 

algorithm. The optimized-CELF algorithm first 

calls algorithm 2 with time complexity O(n log n 

+ m) in line 2. The loop in lines 3-16 requires 

O(n'(R+∑v∈W deg(v))) = O(n'R + m') time. 

Suppose that n'' is the size of V-W. Thus lines 17-

26 require O(n'' ∑v∈V-W deg(v)) ≈ O(m). Thus the 

total time complexity of the optimized-CELF 

algorithm is O((n log n + m)+(n'R + m' ) + (m)). 

Since m'≪ m, therefore, it takes O(n log n + 2m + 

n'R) ≈ O(n log n + m + n'R), which is the near-

linear time complexity versus the original CELF 

algorithm with time complexity O(nmR). 

 

5. Experiments and Results 

In this section, several experiments were 

conducted on six real datasets in order to verify 

the performance of the optimized-CELF 

algorithm. The optimized-CELF algorithm was 

compared with the CELF algorithm on two 

aspects: influence spread (effectiveness) and 

running time (time efficiency). In this work, the 

naïve greedy algorithm was not considered since 

it had the same influence spread results with more 

running time compared to the CELF algorithm. 

The main goal of the experiments was to prove 

that the optimized-CELF algorithm could improve 

the time efficiency of the CELF algorithm, while 

maintaining effectiveness. All simulations (our 

proposed algorithm and original algorithm) were 

implemented by the C++ language using the 

SNAP libraries and Standard Template Library 

(STL) and executed on a windows machine with a 

single processor Intel Core-i5-6400 (2.70 GHz) 

and 16GB memory. These codes are available at 

https://github.com/mohsentaherinia/OptimizedCE

LF website. 

 

5.1. Experimental Setup 

5.1.1. Datasets 

In order to achieve the comparable results, six real 

datasets with various sizes were employed. 

Hamsterster friendships [37]: This is an online 

social network from hamsterster.com, which 

contains the user–user friendships. 

Facebook (NIPS) [38]: This online social 

network contains Facebook friendships between 

the individuals. 

Erdős [37]: This is a co-authorship network 

around Paul Erdős, which was assembled by the 

Pajek project. This network contains the 

individuals who have written the papers with Paul 

Erdős. 

Wikipedia talk [38]: This is a directed 

communication network of Esperanto Wikipedia. 

Each node in the network is a user, and an edge 

from user u to user v indicates that the user u 

wrote a message to the user v. 

DBLP [38]: This citation network contains a 

database of scientific publications. Each node in 

this directed network is a publication, and each 

edge represents a citation of a publication by 

another publication. 

Google+ (NIPS) [37]: Google+ is a directed 

social network, which contains the circles of the 

relationship between the individuals. A directed 

edge in this network shows that one user has the 

other user in his circles. 

Table 3 summarizes the statistical properties of 

these datasets. All datasets are available at the 

SNAP library website maintained by Jure 

Leskovec https://snap.stanford.edu/data/ or the 

http://networkrepository.com/ website. 

5.1.2. Diffusion Model 

This paper uses the independent cascade model as 

a diffusion model since it is extensively studied in 

a similar work. The propagation probability from 

node u to node v is Pu,v = 0.01. 

Table 3. Statistical properties of six real datasets. 

Networks statistics 
Hamsterster 

friendships 

Facebook 

(NIPS) 
Erdős Wikipedia talk DBLP Google+ (NIPS) 

# Nodes 1,858 2,888 6,927 7,586 12,590 23,628 

# Edges 12,534 2,981 11,850 47,070 49,759 39,242 

Maximum degree 272 769 507 5,157 714 2,771 

Average degree 13.5 2.1 3.4 12.4 7.9 3.321 65 

Diameter 14 9 4 8 10 8 

Gini coefficient 0.61 0.51 0.65 0.87 0.66 0.659 896 

Network format Undirected Undirected Undirected Directed Directed Directed 

Category 
Online social 

network 

Online social 

network 

Co-authorship 

network 

Communication 

network 

Citation 

network 

Online social 

network 

 

https://github.com/mohsentaherinia/OptimizedCELF
https://github.com/mohsentaherinia/OptimizedCELF
http://networkrepository.com/
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5.1.3. Evaluation Metrics 

Efficiency and effectiveness are the most common 

evaluation criteria in the influence maximization 

problem. The elapsed time for the complete 

performing of the optimized-CELF is 

accumulated in order to evaluate the algorithm 

time efficiency. Also to evaluate its effectiveness, 

the influence spread values were estimated for 

various seed sizes from 1 to 50. The influence 

spread value was equal to the number of 

eventually activated nodes under the IC diffusion 

model. In addition to the two mentioned criteria, 

this paper analyzes the size of the MSN set as 

well. 

 

5.2. Experimental Result 

In order to estimate the influence spread more 

accurately, we set R = 10,000 as the number of 

MC-simulations. Also the following algorithms 

were executed for k=1 to 50.  

 

5.2.1. Minimal Spanning Node Analysis 

As mentioned in the previous sections, one of the 

most outstanding innovations of this paper is the 

detection of core nodes of the network by 

algorithm 2 effectively and efficiently. These 

nodes construct one set called minimal spanning 

nodes (MSN set), which is used to estimate the 

influence spread using the MC-simulation in the 

next step. Table 4 shows the size of the generated 

MSN set for each dataset. 

Figure 3 compares the number of nodes in the 

MSN set with the number of graph nodes in order 

to show the performance of algorithm 2 better. As 

it could be seen, the ratios of the MSN nodes to 

the graph nodes were 9.47%, 0.35%, 3.96%, 

1.15%, 9.91%, and 0.44% for Hamsterster, 

Facebook, Erdős, Wikipedia talk, DBLP, and 

Google+, respectively. The Facebook, Wikipedia 

talk, and Google+ datasets have the lowest 

percentage of nodes. It could be intuitively stated 

that the denser graphs with lower diameters could 

produce the small MSN set. In general, the MSN 

size to graph size ratio fell into the range of 0.35% 

to a maximum of 9.91%.  As one can see in the 

next section, performing the MC- simulation on 

0.35% to 9.91% of network nodes instead of all 

network nodes will produce wonderful effects on 

the running time gain. 

 

5.2.2. Influence Spread Analysis 

Figure 4 shows the influence spread of the 

optimized-CELF and CELF for six real datasets. 

The x-axis indicates the number of seed set nodes 

from 1 to 50. The y-axis represents the number of 

nodes that are eventually activated. As expected, 

both algorithms have the same performance in all 

datasets. In other words, the optimized-CELF 

produces high-quality seed sets similar to CELF 

with more speed. This equal performance goes 

back to the same strategy of the two algorithms in 

selecting the seed nodes, which is the node 

selection based on the maximum marginal gain. 

 

Table 4. Size of the MSN set for six real datasets. 

Dataset # Nodes # MSN nodes 

Hamsterster friendships 1,858 176 

Facebook (NIPS) 2,888 10 

Erdős 6,927 274 

Wikipedia talk 7,586 87 

DBLP 12,590 1248 

Google+ (NIPS) 23,628 105 

 

 

Figure 3. Comparison of size of MSN set vs. size of the graph for all datasets. 
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There is a slight increase or decrease in the 

influence spread value in some datasets. For 

example, in the Hamsterster dataset, the 

optimized-CELF increases the influence spread 

maximum +0.11% (when k=17), and it decreases 

the influence spread maximum -0.27% (when 

k=45). In other words, the influence spread 

fluctuates between +0.11% and -0.27% by 

optimized-CELF.  

 

 

Figure 4. Comparison of influence spread of optimized-CELF and CELF algorithms on six real datasets for k = 1 to 50. 
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These slight changes are due to the stochastic 

nature of the diffusion model and the MC-

simulation, which can be ignored.  

Other DSs did not change significantly in terms of 

effectiveness. 

 

5.2.3. Running Time Analysis 

Figure 5 demonstrates the running time of the 

optimized-CELF and CELF algorithms for all 

datasets. The x-axis represents the number of seed 

set nodes from 1 to 50. The y-axis indicates the 

running time in seconds.  

 

Figure 5. Comparison of running time of optimized-CELF and CELF algorithms on six real datasets for k = 1 to 50. 
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It is clear that the optimized-CELF algorithm is 

faster than the CELF algorithm in all datasets. The 

main goal of the proposed algorithm is to reduce 

the running time of the first iteration of the CELF 

algorithm. However, since the subsequent 

iterations are directly dependent on the first 

iteration, the running time of the following 

iterations is also improved significantly. 

In more detail, Tables 5 and 6 focus on the 

running time gain in all datasets for k=1 and 

k=50, respectively. 

The third column of Tables 5 and 6 demonstrates 

the achieved running time gain by optimized-

CELF compared to CELF. 

Table 5 verifies that the achieved time gain falls 

into the range between 88.05% to 99.61% in all 

datasets (for k=1).  

In other words, in the first iteration of the 

optimized-CELF algorithm, the achieved time 

gain is equal to 95% on average in all datasets. In 

Table 6 (for k=50), the lowest time gain is 

55.84% in the Hamsterster dataset, and the highest 

time gain is 98.07% for the Facebook dataset. 

It is visible that the optimized-CELF achieves 

83% improvement in time gain on average in all 

datasets (for k=50). Figures 6 and 7 were also 

plotted for a better visual differentiation of the 

time gain of optimized-CELF in all datasets for 

k=1 and k=50, respectively. 

 

6. Discussion 

As it could be seen from the results obtained in 

the previous section, the optimized-CELF 

algorithm could improve the time efficiency of the 

basic CELF algorithm (95% when k=1 and 82% 

when k=50, in the average of all datasets). This 

running time gain occurs while the effectiveness 

of the basic CELF algorithm is not diminished. 

The main reason for this runtime improvement is 

that in the first round of the optimized-CELF 

algorithm, the influence spreads were estimated 

only for the MSN set instead of all nodes. Of 

course, the size of the MSN set plays a vital role 

in the time efficiency of the optimized-CELF 

 

Figure 6. Comparison of running time of optimized-CELF and CELF algorithms on six real datasets when k = 1. 

 

Figure 7. Comparison of running time of optimized-CELF and CELF algorithms on six real datasets when k = 50. 

 

 

 

 

 

 

 

Table 5. Running time gain of optimized-CELF for k = 1. 

Dataset CELF 
Optimized-

CELF 
Gain 

Hamsterster 
friendships 

5,347 639 88.05% 

Facebook (NIPS) 11,942 46 99.61% 

Erdős 74,505 2,969 96.02% 

Wikipedia talk 88,749 1,871 97.89% 

DBLP 252,968 26,287 89.61% 

Google+ (NIPS) 793,081 3,663 99.54% 

 

Table 6. Running time gain of optimized-CELF for k = 50. 

Dataset CELF 
Optimized-

CELF 
Gain 

Hamsterster 

friendships 
15,370 6,788 55.84% 

Facebook (NIPS) 35,625 687 98.07% 

Erdős 79,315 7,490 90.56% 

Wikipedia talk 162,272 42,246 73.97% 

DBLP 292,235 58,568 79.96% 

Google+ (NIPS) 807,599 16,887 97.91% 
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algorithm. Intuitively, a denser network with a 

lower diameter produces a small MSN set, and 

subsequently, achieves a better running time gain. 

Fortunately, it was seen that in some cases such as 

the Facebook and Google+ datasets, despite the 

very small MSN set, the efficiency of optimized-

CELF did not decrease compared to CELF. On 

the other hand, since one node with the highest 

marginal gain was selected as the seed set node in 

each iteration, the quality of generated seed set by 

the proposed algorithm would not be changed 

compared to the basic CELF algorithm. 

 

7. Conclusions and future directions 

Undoubtedly, the Greedy CELF algorithm, as the 

best algorithm in the influence maximization 

problem in terms of effectiveness, can generate a 

high-quality seed set among all the presented 

algorithms. Hence, the researchers have employed 

it extensively in order to invent new models to 

solve the various aspects of the influence 

maximization problem. One of the main 

drawbacks of CELF is the time inefficiency of its 

first iteration because it has to run the expensive 

MC-simulation to estimate the influence spread of 

all nodes in its first round.  

In this paper, a new algorithm was proposed in 

order to tackle this challenge of CELF. The main 

idea was to construct a set of the core nodes of the 

network, namely minimal spanning nodes (MSN). 

Then the influence spreads were estimated only 

for the MSN set instead of all nodes of the 

network. The influence spreads of the other nodes 

were calculated according to (3). Therefore, many 

expensive MC-simulations would be avoided, and 

the running time would be reduced. In order to 

verify the time efficiency and accuracy of the 

optimized-CELF algorithm, various experiments 

were conducted. The experimental results 

demonstrated that the optimized-CELF algorithm 

and the CELF algorithm performed similarly in 

terms of accuracy (the equal influence spread); 

however, the optimized-CELF algorithm 

outperformed the CELF algorithm in terms of 

efficiency (running time). 

There are several promising directions for future 

research works: 

 Extending to other diffusion models such as 

the LT, WC, SIR, and TR models. 

 Embedding the proposed algorithm to the 

CELF++ algorithm, which uses the CELF 

approach directly. 

 Applying the optimized-CELF algorithm to 

other approaches that exploit the CELF 

algorithm such as SimPath, IPA, INCIM, 

HybridIM, and IMPC. 
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 .1041 سال ،اول شماره هم،دوره د ،کاویمجله هوش مصنوعی و داده                                   و همکاران                                                            اسماعیلی

 

 های اجتماعیدر شبکه تأثیرسازی له بیشینهئبرای مس CELFسازی الگوریتم بهینه

 

 2بیدگلیبهروز مینایی و ،*1اسماعیلیمهدی، 1نیاطاهریمحسن

 .ایران، کاشان، دانشگاه آزاد اسلامی واحد کاشان، کامپیوتر گروه 1

 .ایران، تهران، دانشگاه علم و صنعت ایران،  دانشکده مهندسی کامپیوتر 2

 40/11/0401 پذیرش؛ 00/40/0401 بازنگری؛ 40/40/0401 ارسال

 :چکیده

 بر را تأثیر بیشترین است بطوریکه افراد یک شبکه اجتماعی از ایکمینه یمجموعه یافتن اجتماعی هایشبکه در تأثیر سازیبیشینه یلهمسئ هدف

 NP-Hard یمسئله این اثربخشی و یزمانکارایی  هایچالش حل برای زیادی هایالگوریتم گذشته، دهه دو در. باشند داشته شبکه در افراد سایر

 الگوریتم البته،. استبوده  اثربخشی میزان بالاترین حریصانه دارای الگوریتم در کنار CELF الگوریتم شک در میان آنها، بدون. استشده پیشنهاد

CELF  از محققان از بسیاری که است شده باعث برتری این. از خود نشان داده است حریصانه الگوریتم از سریعترمرتبه  044 در حدودکارایی زمانی 

 زیرا. است آن تکرار اولین طولانی بسیار زمان ،CELF الگوریتم اصلی معضل حال این با .کنند استفاده خود نوآورانه رویکردهای در CELF الگوریتم

 رویکرد یک مقاله، این در. است هاگره همه تأثیربه منظور تخمین میزان  کارلو مونت سنگین هایسازیشبیه حریصانه، مجبور به اجرای الگوریتم مانند

. استشده پیشنهاد (کارلو مونت غیرضروری های سازیشبیه از اجتناب با) CELF الگوریتم معضل این بهبود برای ،optimized-CELFبه نام  ابتکاری

 الگوریتم عنوان به CELF از که را دیگر هایالگوریتم زمانی بازده متعاقباً و داده کاهش به شدت را CELF الگوریتم اجرای زمان پیشنهادی الگوریتم

 در optimized-CELF الگوریتم که دادند نشان واقعی هایدادهمجموعه از وسیعی طیف روی بر تجربی نتایج. بخشدمی بهبود کنند،می استفاده پایه

 رایب درصد 00تا  90 و k=1 برای درصد 00تا  00 حدوددر بهتری یزمان بهرهبه میزان اثربخشی،  دادندست از بدون CELF الگوریتم با مقایسه

k=50 د.یابدست می 

 .ل انتشاردهای اجتماعی، الگوریتم حریصانه، م، تحلیل شبکهتأثیرسازی ، بیشینهCELFسازی بهینه :کلمات کلیدی

 


