[1] M. Lupión, J. L. Redondo, J. F. Sanjuan, and P. M. Ortigosa, “Deployment of an IoT Platform for Activity Recognition at the UAL’s Smart Home,” in International Symposium on Ambient Intelligence, 2020, pp. 82–92.
[2] M.-D. González-Zamar, E. Abad-Segura, E. Vázquez-Cano, and E. López-Meneses, “IoT technology applications-based smart cities: Research analysis,” Electronics, vol. 9, no. 8, p. 1246, 2020.
[3] P. Agarwal and M. Alam, “Investigating IoT middleware platforms for smart application development,” Smart Cities—Opportunities and Challenges; Springer: Singapore, pp. 231–244, 2020.
[4] N. Hossein Motlagh, M. Mohammadrezaei, J. Hunt, and B. Zakeri, “Internet of Things (IoT) and the energy sector,” Energies, vol. 13, no. 2, p. 494, 2020.
[5] A. Mousavi, A. Sheikh Mohammad Zadeh, M. Akbari, and A. Hunter, “A New Ontology-Based Approach for Human Activity Recognition from GPS Data,” J. AI Data Min., vol. 5, no. 2, pp. 197–210, 2017.
[6] K. S. Gayathri, K. S. Easwarakumar, and S. Elias, “Fuzzy ontology based activity recognition for assistive health care using smart home,” Int. J. Intell. Inf. Technol., vol. 16, no. 1, pp. 17–31, 2020.
[7] B. Reeder, J. Chung, K. Lyden, J. Winters, and C. M. Jankowski, “Older women’s perceptions of wearable and smart home activity sensors,” Informatics Heal. Soc. Care, vol. 45, no. 1, pp. 96–109, 2020.
[8] H. M. Do, M. Pham, W. Sheng, D. Yang, and M. Liu, “RiSH: A robot-integrated smart home for elderly care,” Rob. Auton. Syst., vol. 101, pp. 74–92, 2018.
[9] N. E. Kogan et al., “An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time,” Sci. Adv., vol. 7, no. 10, p. eabd6989, 2021.
[10] D. Agrawal et al., “Enhancing smart home security using co-monitoring of iot devices,” in Companion of the 2020 ACM International Conference on Supporting Group Work, 2020, pp. 99–102.
[11] J. Kang, M. Kim, and J. H. Park, “A reliable TTP-based infrastructure with low sensor resource consumption for the smart home multi-platform,” Sensors, vol. 16, no. 7, p. 1036, 2016.
[12] A. A. Alani, G. Cosma, and A. Taherkhani, “Classifying imbalanced multi-modal sensor data for human activity recognition in a smart home using deep learning,” in 2020 International Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–8.
[13] P. N. Huu, Q. T. Minh, and others, “An ANN-based gesture recognition algorithm for smart-home applications,” KSII Trans. Internet Inf. Syst., vol. 14, no. 5, pp. 1967–1983, 2020.
[14] S. B. ud din Tahir, A. Jalal, and M. Batool, “Wearable sensors for activity analysis using SMO-based random forest over smart home and sports datasets,” in 2020 3rd International Conference on Advancements in Computational Sciences (ICACS), 2020, pp. 1–6.
[15] X. Guo, Z. Shen, Y. Zhang, and T. Wu, “Review on the application of artificial intelligence in smart homes,” Smart Cities, vol. 2, no. 3, pp. 402–420, 2019.
[16] V. Ghasemi, A. Pouyan, and M. Sharifi, “A sensor-based scheme for activity recognition in smart homes using dempster-shafer theory of evidence,” J. AI Data Min., vol. 5, no. 2, pp. 245–258, 2017.
[17] M. Kaur, G. Kaur, P. K. Sharma, A. Jolfaei, and D. Singh, “Binary cuckoo search metaheuristic-based supercomputing framework for human behavior analysis in smart home,” J. Supercomput., vol. 76, no. 4, pp. 2479–2502, 2020.
[18] A. Kaveh and A. D. Eslamlou, “Water strider algorithm: A new metaheuristic and applications,” in Structures, 2020, vol. 25, pp. 520–541.
[19] L. G. Fahad and S. F. Tahir, “Activity recognition and anomaly detection in smart homes,” Neurocomputing, vol. 423, pp. 362–372, 2021.
[20] Y. Zhang, G. Tian, S. Zhang, and C. Li, “A knowledge-based approach for multiagent collaboration in smart home: From activity recognition to guidance service,” IEEE Trans. Instrum. Meas., vol. 69, no. 2, pp. 317–329, 2019.
[21] R. A. Hamad, A. S. Hidalgo, M.-R. Bouguelia, M. E. Estevez, and J. M. Quero, “Efficient activity recognition in smart homes using delayed fuzzy temporal windows on binary sensors,” IEEE J. Biomed. Heal. informatics, vol. 24, no. 2, pp. 387–395, 2019.
[22] S. Yan, K.-J. Lin, X. Zheng, and W. Zhang, “Using latent knowledge to improve real-time activity recognition for smart IoT,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 3, pp. 574–587, 2019.
[23] M. Jethanandani, A. Sharma, T. Perumal, and J.-R. Chang, “Multi-label classification based ensemble learning for human activity recognition in smart home,” Internet of Things, vol. 12, p. 100324, 2020.
[24] Y. Hu, B. Wang, Y. Sun, J. An, and Z. Wang, “Graph-Based Semi-Supervised Learning for Activity Labeling in Health Smart Home,” IEEE Access, vol. 8, pp. 193655–193664, 2020.
[25] J. Guo, Y. Li, M. Hou, S. Han, and J. Ren, “Recognition of daily activities of two residents in a smart home based on time clustering,” Sensors, vol. 20, no. 5, p. 1457, 2020.
[26] H. Yang, S. Gong, Y. Liu, Z. Lin, and Y. Qu, “A multi-task learning model for daily activity forecast in smart home,” Sensors, vol. 20, no. 7, p. 1933, 2020.
[27] Y. Du, Y. Lim, and Y. Tan, “A Novel Human Activity Recognition and Prediction in Smart Home Based on Interaction,” Sensors, vol. 19, no. 20, 2019.
[28] Z. Fu, X. He, E. Wang, J. Huo, J. Huang, and D. Wu, “Personalized Human Activity Recognition Based on Integrated Wearable Sensor and Transfer Learning,” Sensors, vol. 21, no. 3, p. 885, 2021.
[29] A. R. Javed, R. Faheem, M. Asim, T. Baker, and M. O. Beg, “A smartphone sensors-based personalized human activity recognition system for sustainable smart cities,” Sustain. Cities Soc., vol. 71, p. 102970, 2021.
[30] L. G. Fahad and S. F. Tahir, “Activity recognition in a smart home using local feature weighting and variants of nearest-neighbors classifiers,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 2, pp. 2355–2364, 2021.
[31] D. Das et al., “Explainable Activity Recognition for Smart Home Systems,” arXiv Prepr. arXiv2105.09787, 2021.