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Abstract

A structural health monitoring system contains two components: a
data collection approach comprising a network of sensors for
recording the structural responses and an extraction methodology in
order to achieve the beneficial information on the structural health
condition. In this regard, data mining, which is one of the emerging
computer-based technologies, can be employed for extraction of
valuable information from the sensor databases obtained. On the other
Monitoring, ~ Support  Vector hand, the data inverse analysis scheme, as a problem-based
Machine, ~Experimental ~Modal procedure, is developing rapidly. Therefore, the aforesaid scheme and
Analysis. data mining should be combined in order to satisfy the increasing

demand of data analysis, especially in complex systems such as
*Corresponding author: bridges. In this work, we develop a damage detection methodology
Coramaorden@gmaticom - (W based on these strategies. To this end, an inverse analysis approach
using data mining is applied for a composite bridge. In order to aid
the aim, the support vector machine algorithm is utilized to generate
the patterns by means of the vibration characteristic dataset. In order
to compare the robustness and accuracy of the predicted outputs, four
kernel functions including the linear, polynomial, sigmoid, and radial
basis functions are applied to build the patterns. The results obtained
point out the feasibility of the proposed method for detecting damage
in the composite slab-on-girder bridges.
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1. Introduction

Damage can occur in any in-service structural
components such as beams, pipes, and plates or
complex systems, e.g. the civil infrastructures,
aeronautics industry, oil and gas sector,
transportation assets, and mechanical productions
during the service life of the system. This is due to
the fact that the structural systems are damage-
prone under a number of vibrational motions
involving static and dynamic forces caused by
earthquakes, wind excitations, etc. [1]-[3]
Consequently, these unwanted seismic impacts are
one of the most significant sources in changing
the structural properties such as damping, stiffness
or mass and lading to shift the dynamic properties
(i.e. natural frequency, mode shape, and damping
ratio) [4], [5]. Besides, they can cause out-of-

service conditions and catastrophic structural
failure with high potential security risks for the
residents. In order to overcome such difficulties,
the structural health monitoring (SHM) systems
have been proposed and developed in order to
ensure structural safety, serviceability, and
integrity as well as minimal maintenance [6], [7].
Various damage assessment methods have been
applied to the structural systems. For example,
visual inspection is a typical as well as popular
non-destructive ~ SHM  evaluation  system.
However, it has many limitations including being
time-consuming, costly, and with limited
efficiency due to the inaccessibility of some
structural damage locations. Therefore, an
exceptional strategy with beneficial features is
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required to track the health condition and safety of
the monitored structures [8].

The data mining technology is a promising
innovative computational tool that is qualified for
the data extraction process. It is because data
mining is able to accurately find out the
informative features, i.e. knowledge from the
generated databases [9]. In the same line, this
technology can also extract the significant
relationship amongst raw sensor datasets in SHM.
For the purpose of the aforementioned
implementation, there is a vital requirement to
have an appropriate data mining algorithm along
with a well-organized model. In this regard, a
number of tools exist, e.g. Knowledge Discovery
in Databases (KDDs) and DMAIC that represents
the  Define-Measure-Analyze-Improve-Control,
Cross-Industry Standard Process for Data Mining
(CRISP-DM), and SEMMA that stands for
Sample-Explore-Modify-Model-Assess [10]. It
has been reported that CRISP-DM is the most
applicable methodology [11], [12].

Over the last decade, the kernel-based machine
learning algorithms, e.g. support vector machines
(SVMs) have been widely used in various
applications  including  hand-written  digit
recognition, image processing, object recognition,
text classification, cancer diagnosis,
bioinformatics,  structural  control  systems,
structural damage detection, etc. This is due to the
fact that SVMs have an acceptable performance
and a reliable distribution fitness. Hence, they can
successfully cover a wide range of applications in
terms of predictability [13].

In this work, the capability of data mining in SHM
is investigated in order to develop the robustness
of damage identification approaches. To do so, a
composite bridge structure is considered as the
test specimen of this work in order to generate a
dataset. Besides, the CRISP-DM methodology
and SVM are employed for implementation of the
data mining procedure as a systematic
methodology  and  applicable  algorithm,
respectively. In this direction, the experimental
modal analysis of test structure is performed to
generate the modal parameters as the input
database for the data mining process. A number of
damage cases are conducted in order to predict the
damage severity. Then SVM is implemented in
four patterns using different kernel functions, i.e.
Linear SVM, Sigmoid SVM, Polynomial SVM,
and RBF SVM. Furthermore, numerical
simulation is implemented in order to verify the
experimental findings. Then a comparison is
carried out to evaluate the patterns. It is shown
that among all the models, the SVM-Polynomial
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algorithm is able to identify the severity of
damage precisely.

2. Development of Data Mining-based Models
Data mining is an exploration process with the
aim of achieving an understandable and valuable
information from raw data [14]. In this direction, a
comparison between data mining and gold mining
in rivers was made. It is because finding a pattern
in datasets is quite similar to look for gold in
sands. Therefore, data mining has gained
increasing attention in different fields of research
due to its high computation abilities. It is worth
noting that according to the history of data
mining, its origin starts from  advances in
artificial intelligence in 1950s [15].

Data mining is a hybrid process that combines the
technologies of machine learning, signal
processing, and statistical computing. It is driven
by the demand of modern methods to analyze,
identify, and visualize the datasets [16]. Overall,
the data mining-based models can be divided into
several categories, i.e. the descriptive, predictive,
prescriptive, and hybrid paradigms. Every single
category has its particular functions such as
prediction, clustering, classification, association,
and exploration [17]. Besides, each function has a
number of algorithms to run. For example,
prediction, which is one of the most applicable
functions in data mining, has been frequently
applied by machine learning, artificial
intelligence, and statistical algorithms, i.e.
artificial neural network, support vector machine,
imperialist competitive algorithm, fuzzy logic,
Bayesian, principal component analysis, ant
colony optimization, genetic algorithm, decision
tree, particle swarm optimization, and regression
analysis for the structural damage identification
purpose. In this direction, a comprehensive review
of the latest advancements in structural damage
identification through data mining has been
presented by Gordan M. et al. [18].

3. Methodology

Data inverse analysis is eventually developing
quickly [19]. By taking advantage of this fact, the
SHM systems are required to be combined with
the data mining technology in order to fulfil the
increasing demand of data analysis, especially in
complex systems, e.g. bridges. Based on this
strategy, this work develops a damage detection
methodology inspired by the structure of the
CRISP-DM methodology. According to this
model, the first step starts with introducing the
laboratory work and collecting an initial data. In
this manner, the modal parameters, i.e. natural
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frequencies acquired by a series of experimental
tests are used in the function of inputs intended
for data mining modeling. The next level is pre-
processing the collected data through several
processes such as selecting, constructing,
formatting, and transforming the data in order to
prepare the final dataset as the input for the
modelling step. It should be noted that the dataset
is divided into two partitions, i.e. 70% for the
training and 30% for the testing sets. Linear SVM,
Sigmoid SVM, Polynomial SVM, and RBF SVM
are used in the modelling step in order to build the
patterns. Then the accuracy of the patterns is
evaluated to find the most precise model.

3.1. Support Vector Machine (SVM)

SVM is one of the most applicable data mining
algorithms. The main novelty of this method
comes from the point that SVM is able to create a
reliable performance along with a respectable
generalization capacity [20], [21]. Accordingly,
there is a high demand to apply this algorithm in
different fields, e.g. pattern recognition,
classification of data, and machine learning.[22].
The reason for this comes from the fact that SVM
is capable of generating valuable outputs to
answer a variety of problems occurring in
different applications. For example, a number of
SVM applications in SHM include damaged
identification-based SVM [23], wavelet-based
damage identification using SVM [24], non-linear
multiclass SVM-based SHM for smart structures
[25], and dams crack monitoring [26].

The main goal of the simplest SVM model is to
locate a linear hyperplane through the best
margin. The best margin is defined as the
maximum gap between two sets of data. To this
end, a dataset can be considered containing circles
and squares (x;,yi), i = 1,..., N including input data
Xi € R, and output (class label) y; € R. R,
represents the N-dimensional vector space, and R
indicates the 1D space that is {-1,+1}. The
separating hyperplane, which is a linear
discriminant function, is formulated as follows.
w.x)+b=0, weR", andb ER 1)
where w represents an orthogonal vector and 4
stands for a bias value.

It should be noted that Eg. (1) cannot be
considered as an adequate solution to define the
separating hyperplane individually. Therefore, the
optimal separating hyperplane is required to be
obtained by solving an optimization problem, as
defined in EQ. (2). In the same line, the linear
SVM model divides the given dataset into two
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parts without any data point between them. As
stated earlier, this maximal space between the
aforementioned parts is called margin, and can be
written as follows:

Minimize 1 5
to: > lwll
0: ) 2 (2)
Subject yilw.x; +b) = 1,1
to: =12..,N
and the margin can be formalized as follows:
2
Margin = Wi 3)

llw

However, as it can be observed in Figure 1, linear
SVM cannot be used when the data cannot be
separated linearly. Consequently, a non-linear
discriminant function ¢(x) is required to map the
input data x; to a higher-dimensional feature
space. The advantage of using the non-linear
function is that the mapped data may be linearly
separated using the following Equation instead of

Eq. (1):

w.¢(x))+b=0 4)
Nevertheless, the non-linear mapping function
does not generally allow a flexible recognition
because even when the input data x; contains a
reasonable dimension, the dimension of feature
space may raise extremely. Then the calculation
may become impossible, which is so-called “curse
of dimensionality”. In order to overcome this
limitation, an inner product of non-linear
transformation, which is called kernel function
k(x), can be wused in order to avoid the
computational problem. This part of the modelling
is well-known as the “kernel trick”, and the kernel
function is defined as follows:

k(xi,x;) = p(x)p(x;), Vij=12,..,N (%)
Figure 1 presents a two-feature input space, where
a kernel function is implemented to map the data
to a three-feature space (higher-dimensional
feature space).

Kernel Function i}
=

Input Space x
(non — separable)

Feature Space ¢(x)
(separable)

Figure 1. Mapping to higher-dimensional feature space.
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The commonly used kernel functions in SVM,
which are also employed in this work, are the
Gaussian radial basis function (RBF) kernel,
polynomial kernel, and sigmoid kernel, defined
as:

KPolynomail(xi’ xj) = ((xi-xj) + 1)d (6)
2
X; — Xj
KRBF(xiﬁxj) = exp (‘ ”0—2]”) (M
Ksigmoia (xl-, xj) = tanh(k(x,-.xj) + c) (8)

where ¢ is the width factor of the Gaussian radial
basis functione>0,d=1, 2,..., nand ¢ > 0.

3.2. Experimental Test

A model of steel-concrete composite bridge was
constructed and fabricated in the laboratory (see
Table 1 and Figure 2). The experimental modal
analysis of the composite bridge was conducted in
heavy dynamic laboratory, University of Malaya
(UM), in order to generate the frequency response
functions of the intact and damaged specimen by
means of dynamic excitation source, data
acquisition system, and measurement sensors. A
IMV VE-50 Electrodynamic shaker and VA-ST-
03 power amplifier were employed as the
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dynamic excitation source. Besides, the OROS38
signal analyzer with 32 channels, a PCB 208C02
force transducer, and S100CS Wilcoxon single
axis accelerometers were used as the data
acquisition system and the measurement sensors,
respectively. NVGate which is the OROS
software platform, was employed in order to
control all measurements. The setup of
instruments for the experimental modal analysis is
shown in Figure 3.

Table 1. Parameters of the specimen.

Element Parameter Value
Flange width: 75 mm
Section depth: 150 mm
Flange thickness: 7 mm

Steel Web thickness: 5mm

| beam 0 )
Young’s Modulus: 2.1*107 kg/m
Poisson’s ratio: 0.3
Density: 7,850 kg/m?®
Length: 3200mm
Width: 1200mm

Concrete Depth: 100mm

slab Density: 2400 kg/m?
Strength: 37.43 MPa
No. of beams: 3
Diameter of stud: 16 mm

Shear stud No. of studs: 16 (per beam)

connector Spacing: 200 mm cfc
Height: 75 mm

Mesh Diameter: 5mm

reinforcement Spacing: 100 mm

Figure 2. Experimental work: (a) layout plan of the composite bridge, (b) drawing of the experimental setup, and (c) physical
observation of the vibration test.
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Steel I-Beam

F

| — Controller
Accelerometers  S100CS Wilcoxon I Signal

Analyser NVGate

Power Amplifier
IMV VE-50 S VA-ST-03

&

OROS38

Figure 3. lllustration of the experimental modal analysis.

Figure 4(a) shows the arrangement of the
accelerometers as well as the shaker location. As
it can be seen in this figure, 48 nodes at the
centerline of | section beams were selected in the

Excitation location

Centerline of the beam

role of sensor locations. Likewise, as it can also
be observed in this figure, the shaker was located
at point Number 19 due to the node points for the
particular modes.

75 mm

'S
J, -
iy,

Figure 4. (a) Positions of accelerometers and shaker, and (b) conducted damage cases.

The experimental modal analysis of the intact
specimen was conducted as a benchmark. Then
various damage cases were imposed at two
locations of the structure, i.e. mid-span and
guarter-span of the middle steel I-beam (see
Figure 4(b)). In this line, a total of 25 damage
depths were conducted from a 3.00 mm severity
up to a 75.00 mm depth. In detailed, the increment
of damage depth was 3.00 mm, as shown in this
figure. The outputs of the aforesaid process were
employed in the function of input for modelling
phase of data mining.

4. Results and Discussions

Modal parameters, i.e. natural frequencies of the
intact and damaged cases of the composite bridge
were collected from the experimental modal
analysis. Table 2 and Figure 5 present the natural
frequencies of the first mode to the fourth one in
the undamaged and damaged test structure,
respectively. The experimental results obtained
indicate that in all modes, the natural frequencies
decrease with increase in the damage severity. In
this manner, the maximum drops of natural
frequencies were 3.54% and 2.97% in the third
and first modes, respectively. However, as it can
clearly be seen in Figures 5(b) and 5(d), the
changes of frequencies in modes 2 and 4 are less

than the other modes. This behavior was plausible
because both damage locations (mid-span and
quarter-span) were the node points for the second
and fourth flexural modes.

Table 2. Frequencies of the undamaged test structure.

1%t Mode 2" Mode 3" Mode 4™ Mode
(f1) (f2) (f3) (f4)
31.60 Hz 255.19 Hz 389.75 Hz 558.59 Hz
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A numerical simulation using the finite element
package, ABAQUS, was implemented in order to
verify the experimental findings deliberating the
first four modes. The finite element simulation
was precisely modelled as per the test specimen. |
section beams have been modeled operating
general-purpose 4-node shell elements, known as
S4R utilizing the 432 and 371 nodes and
elements, respectively. In addition, 8-node linear
brick elements, i.e. C3D8R with 7533 nodes and
4800 elements were also used to build the girder
deck model. For a better understanding, Figure 6
shows the experimental and numerical results in
the 75.00 mm damaged state. Accordingly, the
comparison of the numerical simulation and the
experimental work is presented in Figure 7. It can
be seen that the difference between the numerical
and experimental results is less than 5%, which
indicates the validity of this research work.
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Figure 5. Natural frequencies of intact and damaged structure in the 1 four modes: (a) f1, (b) 2, (c) 3, and (d) f4.
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Figure 7. Evaluation of the experimental and finite element simulation findings in the (a) 1% mode, (b) 2" mode, (c) 3™ mode,
and (d) 4" mode .
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As explained earlier, the SVM models were
conducted by means of various kernel functions
consisting of Linear, Sigmoid, Polynomial, and
RBF. The first four experimental natural
frequencies of the intact structure along with the
damaged states (e.g. fi, i = 1, 2, 3, 4) and the
damage severities obtained from the laboratory
works were considered as the inputs and the target
variable of SVMs, respectively. Figure 8
demonstrates the results of four patterns, i.e.
SVM-Linear, SVM-RBF, SVM-Polynomial, and
SVM-Sigmoid. As shown in this figure, amongst
all patterns, SVM-Polynomial achieved the most
accurate predicted outputs in the first four flexural
modes. In order to offer an explanation, the kernel
functions were used in order to bring the data
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from a lower dimension to a higher dimension. To
this end, the SVM classifier divided the data with
a new plane, i.e. hyperplane. Therefore, despite
the better learning power in the RBF Kkernel
amongst others, this local function could not
efficiency provide a satisfying dissemination.
Instead, the polynomial kernel, which is a global
function, performed a superior data dissemination
strategy. Nonetheless, the learning process of the
polynomial function experienced a lower level of
learning capacity. For more clarity, Figure 9
indicates a comparison of the training and testing
sets for all patterns. As it could be observed,
among all the kernel functions, polynomial
performed the best outputs.
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Figure 9. Comparison between different kernel functions.

Table 3 presents the predictor importance between
the first four modes. According to this table, mode
1 had the most significant role in predicting
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process among all inputs with 28%, 33%, 30%,
and 25% importance for Linear SVM, RBF SVM,
Polynomial SVM, and Sigmoid SVM,
respectively. Then in the second stage, the third
mode showed a higher rate of importance in
comparison to the fourth mode. On the other hand,
mode 2 had the lowest importance in creating the
patterns with importance of 23%, 19%, 18%, and
25% for Linear SVM, RBF SVM, Polynomial
SVM, and Sigmoid SVM, respectively. This is
due to the fact that mid-span, which was one of
damage locations, was the node point for the
second mode.
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The performance of the patterns is required to
evaluate the validity of the outcomes. To this end,
the Mean Absolute Error (MAE), which is defined
as bellow, was employed to determine the
forecasting accuracy of all patterns.

shows the modelling performance of each pattern
in the training and testing sets. As it could be
observed, the best MAE rates belonged to SVM-
Polynomial, which were 1.265 and 2.601 for the
training and testing, respectively. In addition, the
outcomes of correlation values confirmed that the

i=1lactual; — predicted,| Polynomial kernel function gave the best
MAE = 9) "
n prediction performance to SVM model.
As explained earlier, the input data was separated
into the training and testing segments. Table 4
Table 3. Predictor importance.
SVM-Linear SVM-RBF SVM-Polynomial SVM-Sigmoid
Mode 1 0.28 0.33 0.30 0.25
Mode 2 0.23 0.19 0.18 0.25
Mode 3 0.26 0.27 0.31 0.25
Mode 4 0.23 0.21 0.21 0.25
Table 4. Performance of patterns.
Model _ Mean absolute_error _ Correlatio_n
Training Segment Testing Segment Training Segment Testing Segment
SVM-RBF 15.590 12.186 0.978 0.983
SVM-Polynomial 1.265 2.601 0.997 0.995
SVM-Sigmoid 20.714 15.600 0.764 0.811
SVM-Linear 4.981 3.994 0.977 0.982

5. Conclusions

In this work, we focused on the development of an
advanced data mining-based damage detection
approach suitable for continuous monitoring of
the in-service structures. Different support vector
machine models including linear-SVM through
linear function and non-linear-SVM using kernel
functions, i.e. polynomial, radial basis function,
and sigmoid were conducted in this work. Based
on the results obtained, it is confirmed that the
proposed methodology is capable of forecasting
the severity of damage in the composite bridge
structures for the multiple-type damage scenarios.
The effectiveness of the kernel-based patterns was
examined by the vibration characteristics of the
test structure obtained from the laboratory tests. It
should be highlighted that the experimental work
was verified by the numerical simulation. The
results obtained showed that the SVM-Polynomial
and SVM-Linear patterns with the 1.265 and
4.981 MAE values in the training phase could
provide the best solution, respectively. Likewise,
the testing segment of the patterns proved the
same result. It should also be emphasized that
SVM-Polynomial delivered the most precise
outcomes. It could also provide a good result for
the minor damaged data. In contrast, SVM-
Sigmoid and SVM-RBF performed the less
accurate outputs with the 20.714 and 15.590 MAE
values in the training process, respectively. It is
because the local kernel-based functions are
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capable of a lower dissemination ability in
comparison with the global-based kernel
functions.
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