[1] R. C. Gonzalez, R. Woods, Digital image processing, 3rd Edition ed., Prentice Hall, 2007.
[2] J. Varghese, “Adaptive threshold based frequency domain filter for periodic noise reduction”. AEU - international journal of electronics and communications, vol. 70(12), pp. 1692-1701, 2016.
[3] A. Carvalho, T. Esteves, P. Quelhas, F. J. Monteiro, “Mobilityanalyser: A novel approach for automatic quantification of cell mobility on periodic patterned substrates using brightfield microscopy images”, Computer methods and programs in biomedicine, vol. 162(1), pp. 61-67, 2018.
[4] M. M. Ata, M. El-Darieby, M. Abdelnabi, S Napoleon. “Proposed enhancement for vehicle tracking in traffic videos based computer vision techniques”, International journal of advanced intelligence paradigms, vol. 2019, 2018.
[5] Y. Chen, T. Z. Huang, X. L. Zhao, L. J. Deng, J. Huang, “Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint”, Remote sensing, vol. 9(6), pp. 559. 2017.
[6] F. Sur, An a-contrario approach to quasi-periodic noise removal. International conference on IEEE image processing, Quebec City, Canada, 2015, pp. 3841-3845.
[7] R. D. Smith, Digital transmission systems (3rd Edition). Heidelberg Springer science and business media, 2012.
[8] D. Chakraborty, M. K. Tarafder, A. Chakraborty, A. Banerjee, “A proficient method for periodic and quasi-periodic noise fading using spectral histogram thresholding with Sinc restoration filter”, AEU - international journal of electronics and communications, vol. 70(12), pp. 1580-1592, 2016.
[9] R. Schowengerdt, Remote sensing: models and methods for image processing (3rd Edition), Academic Press, Waltham, 2007.
[10] P. Rakwatin, W. Takeuchi, Y. Yasuoka, Restoration of Aqua MODIS band 6 using histogram matching and local least squares fitting. IEEE transactions Geoscience and remote sensing, vol. 47(2), pp. 613-627, 2009.
[11] F. L. Gadallah, G. Csillag, E. J. M. Smith, Destriping multisensory imagery with moment matching. Remote Sensing, vol. 21(12), pp. 2505–2511, 2000.
[12] M. Wegener, “Destriping multiple sensor imagery by improved histogram matching”. Remote Sensing, vol. 11(5), pp. 859—875, 1990.
[13] W. He, H. Zhang, L. Zhang, H. Shen, “Total-variation regularized low-rank matrix factorization for hyper-spectral image restoration”, IEEE transactions Geoscience and remote sensing, vol. 54(1), pp. 178-188, 2016.
[14] H. Shen, L. Zhang, A map-based algorithm for de-striping and inpainting of remotely sensed images, IEEE transactions Geoscience and remote sensing, vol. 47(5), pp. 1492-1502, 2009.
[15] Y. Chang, L. Yan, T. Wu, S. Zhong, “Remote sensing image stripe noise removal: from image decomposition perspective”, IEEE transactions on Geoscience and remote sensing, vol. 54(12), pp. 7018-7031, 2016.
[16] Y. Chang, L. Yan, H. Fang, H. Liu, “Simultaneous de-striping and de-noising for remote sensing images with unidirectional total variation and sparse representation”, IEEE Geoscience and remote sensing letters, vol. 11(6), pp. 1051-1055, 2014.
[17] Z. Ji, H. Liao, X. Zhang, Q. Wu, 2006. “Simple and efficient soft morphological filter in periodic noise reduction. In IEEE region 10 conference TENCON, pp. 1–4.
[18] P. Moallem, M. Behnampour, “Adaptive optimum notch filter for periodic noise reduction in digital images”, Amirkabir international journal of electrical and electronics engineering, vol. 42(1), pp. 1-7, 2010.
[19] P. Moallem, M. Masoumzadeh, M. Habibi, “A novel adaptive Gaussian restoration filter for reducing periodic noises in digital image”, Signal, image and video processing, vol. 9(5), pp. 1179-1191, 2013.
[20] S. Dutta, A. Mallick, S. Roy, U. Kumar, “Periodic noise recognition and elimination using RFPCM clustering”, International conference on electronics and communication systems, Coimbatore, 2014, pp. 1-5.
[21] J. Varghese, S. Subash, N. Tairan, Fourier transform based windowed adaptive switching minimum filter for reducing periodic noise from digital images. IET image processing, 10(9), 646- 656. 2016.
[22] J. Varghese, S. Subash, N. Tairan, B. Babu, “Laplacian based frequency domain filter for the restoration of digital images corrupted by periodic noise”, Canadian journal of electrical and computer engineering, vol. 39(2), pp. 82-91, 2016.
[23] I. Aizenberg, C. Butakoff, “Frequency domain median like filter for periodic and quasi-periodic noise removal”, SPIE proceeding, San Jose, California, United States, 2002, pp. 181-191.
[24] I. Aizenberg, C. Butakoff, “A windowed gaussian notch filter for quasi-periodic noise removal”, Image and vision computing, vol. 26(10), pp. 1347-1353. 2008.
[25] I. Aizenberg, C. Butakoff, J. Astola, K. Egiazarian, “Nonlinear frequency domain filter for quasi periodic noise removal”. International TICSP workshop on spectral methods and multi-rate signal processing, Toulouse, France, 2002, pp. 147-153.
[26] F. Sur, “A non-local dual-domain approach to cartoon and texture decomposition”, IEEE transactions on image processing, vol. 28(4), pp. 1882–1894, 2019.
[27] F. Sur, M. Grédiac, “Automated removal of quasi-periodic noise using frequency domain statistics”, Journal of electronic imaging, vol. 24(1), pp. 1-19, 2015.
[28] S. Ketenci, A. Gangal, Design of Gaussian star filter for reduction of periodic noise and quasi-periodic noise in gray level images. International symposium on innovations in intelligent systems and applications, Trabzon, 2012, pp. 1-5.
[29] D. Chakraborty, A. Chakraborty, A. Banerjee, S. R. B. Chaudhuri, “Automated spectral domain approach of quasiperiodic denoising in natural images using notch filtration with exact noise profile”, IET image processing, vol. 12(7), pp. 1150–1163, 2018.
[30] D. Chakraborty, M. K. Tarafder, A. Banerjee, S. R. B. Chaudhuri, “Gabor-based spectral domain automated notchreject filter for quasi-periodic noise reduction from digital images”, Multimedia tools and applications, vol. 78(2), pp. 1757—1783, 2019.
[31] N. Alibabaie, M. Ghasemzadeh, C. Meinel, A variant of genetic algorithm for non-homogeneous population, ITM web of conferences, Rome, Italy, 2017, pp. 1—8.
[32] M. Simeunovic, I. Djurovic, A. Pelinkovic, “Parametric estimation of 2-D cubic phase signals using high-order Wigner distribution with genetic algorithm”, Multidimensional systems and signal processing, vol. 30(1), pp. 451–464, 2019.
[33] C. J. Willmott, K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance”, Climate Research, vol. 30, pp. 79—82, (2005).
[34] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, “Image quality assessment: from error visibility to structural similarity”, IEEE transactions on image processing, 13(4), 600—612, 2004.
[35] J. Cooley, P. Lewis, P. Welch, “Historical notes on the fast Fourier transform”. IEEE transactions on audio and electroacoustics, vol. 15(2), pp. 76–79. 1967.