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Abstract 

The fuzzy c-means clustering algorithm is a useful tool for‎‎clustering; but it is convenient only for crisp 

complete data‎. ‎In‎‎this article‎, ‎an enhancement of the algorithm is proposed, which is‎suitable for clustering 

trapezoidal fuzzy data‎. ‎A linear ranking‎‎function is used to define a distance for trapezoidal fuzzy 

data‎. ‎Then‎, ‎as an‎‎application‎, ‎a method based on the proposed algorithm is presented‎‎to cluster the incomplete 

fuzzy data‎. ‎This method substitutes the missing attribute by a trapezoidal fuzzy number to be determined 

using the corresponding attribute of the q nearest-neighbor‎. ‎Comparisons and analysis of the‎‎‎

experimental results demonstrate the capability of the proposed method‎. 
 

Keywords: Intrusion Detection System, Cloud Computing, Classification Algorithm, Anomaly Detection, 

Dataset Generation, IDS Assessment, Machine Learning. 

1. Introduction 

One of the most important tasks in data mining 

and pattern recognition is data clustering. Cluster 

analysis groups data objects based on the 

information found in data objects that describes 

the objects and their relationships. Clustering has 

been intensively studied in machine learning and 

data mining communities [5, 29, 34]. The goal is 

that the objects within a group be similar or 

related to one another and different from the 

objects in the other groups. The greater similarity 

within a group and the greater difference between 

the groups, the better or more distinct the 

clustering [26].There are various methods and 

algorithms for data clustering. The fuzzy c-means 

(FCM) algorithm proposed by Bezdek [2] is a 

popular method for data clustering, which 

partitions a real t-dimensional data set  
                into several clusters that are 

represented by prototypes and degrees of 

membership of each instance to each cluster [28]. 

In practical applications, many data sets suffer 

from incompleteness. Some objects of these data 

sets have attributes with missing values. It is not 

unusual for an object to be missing one or more 

attribute values. In some cases, the information is 

not collected. In other cases, some attributes are 

not applicable to all objects. Regardless, the 

missing values should be taken into account 

during the data analysis. 

In the past four decades, various approaches have 

been introduced to deal with incomplete data by 

using supervised tasks [19, 24, 25]. In the past 

four decades, various approaches have been 

introduced to deal with incomplete data by using 

supervised tasks [19, 24, 25]. The expectation-

maximization (EM) algorithm [3] was a useful 

approach for modelling and estimation of the 

missing attributes, and was used in probabilistic 

clustering [18]. Subsequently, several methods 

were proposed for handling the missing values in 

FCM [20]. One basic strategy, called imputation 

strategy, replaces the missing values with 

weighted average of the corresponding attributes 

[7]. Another approach, ignoring, discards the 

missing values and calculates the distances from 

the remaining coordinates [9]. 

In [9], Hathaway and Bezdek have proposed four 

strategies to cluster data set suffering from 
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incompleteness, in which the whole data strategy 

(WDS) and the partial distance strategy (PDS) are 

discarding/ignoring methods, and the optimal 

completion strategy (OCS) and the nearest 

prototype strategy (NPS) belong to the imputation 

methods. In WDS, instances that include the 

missing values must be removed from data set, 

but this strategy is not desirable because the 

elimination bring a loss of data. PDS uses the 

concept of partial distance to be defined for 

incomplete data by ignoring the missing attributes 

of incomplete data [4]. OCS views the missing 

values as an optimization problem and imputes 

missing values in each iteration to find better 

estimates. NPS replaces the missing values with 

the corresponding attributes of the nearest 

prototype.Li et. al. [14] have proposed a clustering 

method to cope with the incomplete data. Their 

method, first, estimates the missing values in the 

form of intervals using the nearest-neighbor 

method, which utilizes information about the 

distribution of data and transforms an incomplete 

data set into an interval-valued one. Then a kernel 

method is introduced to increase the separability 

between data by implicitly mapping them into a 

higher dimensional feature space. 

In [21], Owhadi et al. introduced an Entropy-

based Consensus on Cluster Centers for clustering 

in distributed systems with a consideration for 

confidentiality of data; i.e.it is the negotiations 

among local cluster centers that are used in the 

consensus process, hence no private data are 

transferred. Yang et al. [33] have constructed a 

robust learning FCM algorithm, so that it becomes 

free of the fuzziness index m and initializations 

without parameter selection, and can also 

automatically find the best number of clusters. Wu 

et al. [31] have introduced an advanced FCM 

clustering algorithm to overcome the weakness of 

the traditional FCM algorithm, including the 

instability of random selecting of initial center and 

the limitation of the data separation or the size of 

clusters. Li et al. [12] have developed a fuzzy 

clustering algorithm based on the nearest-

neighbor interval (FCM-NNI). In this approach, 

each one of the attribute values is transformed into 

an interval based on q nearest-neighbors. If the 

value of an attribute is not missing, the lower and 

upper bounds of the interval are equal; otherwise, 

the lower and upper bounds of the interval will be 

equal to the minimum and maximum values of the 

corresponding attribute in the q nearest-neighbors, 

respectively. This approaches may not be robust 

when there are outliers in data, because the length 

of intervals increases and it yields an inaccurate 

analysis and increases the uncertainty. 

A new fluid identification method in carbonate 

reservoir based on the modified FCM clustering 

algorithm has been proposed by Liu et. al. [15]. 

They proposed a modified FCM Clustering 

algorithm named as CQPSO-FCM Clustering, 

which combines the Fuzzy C-Means (FCM) 

Clustering algorithm with Chaotic Quantum 

Particle Swarm Optimization (CQPSO) algorithm. 

The modified method can solve the problems of 

FCM‎ Clustering‎ algorithm’s sensitivity to initial 

values and falling into local convergence. In fact, 

in their method, clustering is performed on crisp 

data. 

In this article, a new fuzzy c-means algorithm for 

clustering trapezoidal fuzzy data is proposed. This 

algorithm employs a linear ranking function to 

define a distance between fuzzy vectors. Since 

any real or interval data is a special kind of 

trapezoidal fuzzy numbers (TFNs), it follows that 

the proposed algorithm can be applied for 

clustering the data sets consisting of real, interval 

or trapezoidal fuzzy data. 

Using the proposed algorithm, not only we can 

cluster fuzzy data, but also it has an application in 

clustering incomplete data. We also proposed an 

imputation method to cluster incomplete fuzzy 

data. The method performs a preprocessing on 

dataset to transform any non-missing attribute into 

trapezoidal fuzzy attribute and impute TFNs to the 

missing attributes of incomplete data. Then, it 

uses the proposed algorithm to cluster the 

transformed fuzzy dataset. 

This article is organized as follows. Section 2 

presents some preliminaries and reviews some 

notions and notations of fuzzy theory. The new 

algorithm for clustering fuzzy data is introduced 

in Section 3. In Section 4, a method for clustering 

incomplete data based on the introduced algorithm 

is proposed. Section 5 presents the clustering 

results. Finally, Section 6 gives the concluding 

remarks. 
 

2. Preliminaries 

2.1. Some Notions of the Fuzzy Set Theory 
In this section, we review the fundamental notions 
of fuzzy set theory, initiated by Bellman and 
Zadeh [1], to be used throughout this article. The 
following definitions and notations are taken from 
[30].  
Let X be the universal set. A mapping  ̃   
      is a fuzzy set. The value  ̃ (x) of  ̃ at      
stands for the degree of membership of x in  ̃. A 
fuzzy set  ̃ is normal if there exists       such 
that  ̃ (x0) = 1. An  -cut of fuzzy number  ̃, 
       , is a crisp set as 

 ̃          ̃            
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If a fuzzy set  ̃  satisfies that  ̃   is a closed 

interval for every        ,  then  ̃ is called a 

fuzzy number. A special type of fuzzy numbers is 

trapezoidal fuzzy number (TFN) to be defined as: 

 ̃   

{
 
 

 
 

    

     
                   

                                  

    

       
                     

                                  

 

For simplification, we denote the TFN  ̃ by 

              (see Figure 1(a)).  ̃ is called 

triangular fuzzy number when a
2
 = a

3
. For 

instance, (1:5, 2, 2, 2.5) and (1.7; 2, 3, 3.4) are 

trapezoidal fuzzy numbers, which may be used to 

describe the fuzzy notion of around number 2 and 

around interval [2,3], respectively. We denote the 

set of all trapezoidal fuzzy numbers by     . 

Since any real number c and any interval       
can be written as           and            
respectively, it is obvious that TFNs are an 

extension of the real numbers and intervals. A 

trapezoidal fuzzy vector  ̃ is a member of the 

Cartesian product                  
        . Figure 1(b) illustrates representation 

of the vector   ̃  ̃       . The black regions 

show full membership and the gray regions partial 

membership. 

We next define arithmetic on trapezoidal fuzzy 

numbers. Let  ̃ = (a
1
,a

2
,a

3
,a

4
) and  ̃ = (b

1
,b

,
b

3
,b

4
) 

be two trapezoidal fuzzy numbers and c be a real 

number. The scalar production and addition 

operators are defined as follows: 

     ̃                                 
     ̃                                 

    ̃   ̃                       

           
    ̃   ̃                       

          
We point out that the arithmetic on trapezoidal 

fuzzy numbers follows the Extension Principle 

(for a discussion, see [30]). 

 
 

Figure 1. (a)  Membership function of  TFN  ̃  

              , (b) Representation of  ( ̃  ̃)  

                                     . 

2.2. Ranking Function 

There are several methods comparing fuzzy 

numbers which can be seen in Fang and Hu [6], 

Lai and Hwang [11], Shoacheng [23] and Tanaka 

and Ichihashi [27]. One of the most convenient of 

these methods is based on the concept of 

comparison of fuzzy numbers using ranking 

functions [8, 17]. In fact, an efficient approach for 

ordering the elements of      is to define a 

ranking function           that maps each 

trapezoidal fuzzy number into the real line, where 

a natural order exists. The concept of ranking 

function is used to define a distance between 

trapezoidal fuzzy vectors in the next section. We 

only restrict our attention to linear ranking 

functions, i.e. a ranking function   such that 

 ( ̃    ̃)     ̃    ( ̃)                                    

for any  ̃  ̃       and any     . It is obvious 

that  ( ̃) = 0, where  ̃ = (0,0,0,0). 

 

Lemma 1. For fixed nonnegative numbers 

     , the function          is defined as: 

 
   ̃                                            

 

where  ̃     1  2  3  4       , is a linear 

ranking function. 

 

Proof. Let the ranking function   be defined by 

   ̃                   , where 

            and  ̃     1  2  3  4       . 

It is easy to verify linearity for any real number 

    , i.e.  ( ̃    ̃)     ̃      ̃  for each 

 ̃  ̃      . Since  (         )   , it follows 

that: 

    ̃      ̃   
or equivalently, 

 

                  

              

               
 

for each  ̃     1  2  3  4       . The relation 

(3) implies that      and     . 

For instance, if     
 

 
, then    ̃  

           

 
, that has been proposed by Yager 

[32]. 
 

3. Fuzzy C-means Clustering Algorithm for 

Fuzzy Data 

In this section, a novel FCM algorithm is resented 

for clustering trapezoidal fuzzy data. This 

algorithm is an extension of the regular FCM 
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algorithm presented in [2] since the regular FCM 

algorithm only clusters real data. 

Suppose that  ̃    ̃   ̃     ̃   is a data set 

where  ̃    ̃    ̃      ̃   
 ,‎k=1,‎2,‎…,‎n‎and‎

 ̃   (   
     

     
 )       for‎ all‎ k=1,‎2,‎…,‎n‎

and‎ l=‎ 1,‎ 2,‎ …,‎ t.‎ Thus,‎  ̃ is a member of  

       . We want to partition  ̃ 's into c 

clusters. Let  ̃    ̃   ̃     ̃             be a 

trapezoidal fuzzy matrix of the prototypes where 

 ̃    ̃    ̃      ̃   
 ,‎ i=1,‎ 2,‎ …,‎ c‎ and‎  ̃   

(   
     

     
 ) for‎all‎i=1,‎2,‎…,‎c‎and‎l=1,‎2,‎…,‎t.‎

Since the data are fuzzy, it is supposed that the 

prototypes are also TFNs. 

In the following, we use the concept of linear 

ranking function to define a distance between the 

fuzzy vectors  ̃ 's and  ̃ 's to be required to 

extend the regular FCM algorithm. 

Definition 1. Let    be a linear ranking function. 

The mapping                    with 

 

    ̃  ̃  √∑    ̃   ̃  

 

   

 √∑    ̃      ̃   
 

 

   

 

is called a fuzzy distance with respect to   where 

 ̃    ̃   ̃     ̃       ̃    ̃   ̃     ̃         . 

 

It is obvious that the definition of    is a direct 

extension of the formal Euclidean distance. Based 

on Lemma 1, the ranking mapping   to be 

defined by (2) is linear. Thus, for  this ranking 

function  , the fuzzy distance can rewritten as 

follows: 

 

  
    ̃   ̃     ̃     ̃   ̃     ̃       

  ∑  (  
    

    
    

 )  

 

   

       

              
    

    
    

                                     
 

Where  ̃     
    

    
    

   and  ̃  
   

    
    

    
    for‎l=1,‎2,‎…,‎t.‎The‎last‎relation‎

determines the value     ̃  ̃  explicitly; but we 

will use the compact form of Definition 1. 

The proposed FCM clustering algorithm solves 

 
   

        ̃        
     ̃ 

 ∑ ∑    
   

   ̃   ̃  

 

   

              

 

   

 

Subject to 

∑   

 

   

                                                      

where m > 1 is a nonnegative integer and called 

fuzzification parameter. Instead of solving (5) 

subject to (6), the constraints (6) is adjoined to 

     ̃  by means of Lagrange multipliers method 

[16] as follows: 

 (   ̃  )  ∑ ∑    
   

   ̃   ̃  

 

   

 

   

 ∑   (∑     

 

   

)         

 

   

 

 

Where                    is the Lagrange 

multipliers vector. By setting the gradients of 

 (   ̃  ) with respect to U, R( ̃) and   to zero, 

the stationary points of the objective function (7) 

can be found. Thus the following relations are 

obtained: 

 

   ̃   
∑    

     ̃  
 
   

∑    
   

   

                              

and 

    *∑(
  

   ̃   ̃  

  
   ̃   ̃  

)

 

   
 

   

+

  

    

                            

If the matrix   ̃ is given the relation (9) explicitly 

determines the partition matrix U. If we can also 

obtain  ̃ for a the given partition matrix U, then 

we can repeatedly calculate U and  ̃ with respect 

to another. 

Since the ranking function R is linear, the relation 

(8) can be re-written as 

   ̃    (
∑    

   ̃ 
 
   

∑    
   

   

)                           

For the prototype  ̃  to be defined as 

 ̃  
∑    

   ̃ 
 
   

∑    
   

   

                               

 

the relation (8) is satisfied. Due to the closeness of 

the set      with respect to fuzzy addition and 

scaler production, the imputation (11) is well-

defined. Thus, we can say that the obtained 

prototypes are linear combinations of fuzzy data. 

Now, we describe our proposed algorithm for 

clustering trapezoidal fuzzy data. 

Because real numbers and intervals are the special 

kinds of TFNs, Algorithm 1 can also be applied 
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for clustering real (or interval) data. Since any real 

number c can be written as          , Algorithm 

1 is converted to the regular FCM algorithm for 

real data. It is a privilege for our algorithm that if 

the data is a special kind (such as real numbers, 

intervals or TFNs), then the prototypes are the 

same type; because prototypes are linear 

combinations of data (see (11)). 
 

Algorithm 1 Clustering complete fuzzy data. 

 

Input: The trapezoidal fuzzy matrix  ̃    ̃   ̃    ̃    
Initialization: Choose the numbers c, m and  > 0. 

Initialize the partition matrix U
(0)

 and set itn := 1; 

Step 1: Calculate the matrix of cluster  prototypes 

 ̃     using (11) and U
(itn

 
-1)

. 

Step 2: Compute the partition matrix U
(itn)

 using (9) 

and   ̃     . 

Step 3: if       |    
     

     
       

|    , then stop; 

otherwise set itn:=itn +1 and return to step 1. 

Output: The partition matrix  U
(itn)

 and the matrix 

  ̃      

 
 

Despite the efficiency of Algorithm 1 for fuzzy 

data, it is not suitable for incomplete data. In the 

next section, we introduce a modification of the 

algorithm to be used for clustering fuzzy 

incomplete data. 

 

4. A New Method for Clustering Incomplete 

Data 

In this section, the main strategy for dealing with 

incomplete data is proposed. This strategy, which 

is called Fuzzy Nearest Neighborhood Mean 

(FCM-FNNM), consists of some preprocessing 

that should be done before applying Algorithm 1. 

Suppose that we have an incomplete data set 

where some (but not all) of its attribute values are 

missing. In the preprocessing, we replace the 

missing values with TFNs to be determined using 

the corresponding attributes of the q nearest-

neighbors, where q is a fixed nonnegative integer. 

Since we deal with fuzzy incomplete 

data, we cannot apply the fuzzy distance defined 

in Definition 3 directly and it is required to 

introduce the concept of partial distance [4]. For 

two fuzzy incomplete data 

 ̃  [ ̃    ̃      ̃  ]  ̃    ̃    ̃      ̃    

     , the partial distance is defined as: 
 

    ( ̃   ̃ )  
 

∑   
 
   

∑  ( ̃  

 

   

  ̃  )  
                                       

 

where   is a linear ranking function and 

 

   {
                                         

                                                                 
 

 

The introduced partial distance can be applied for 

fuzzy incomplete data. 

By calculating the partial distance, we can find the 

q nearest-neighbors to an incomplete data. In  [12] 

(FCM-NNI), the authors have used the concept of 

partial distance to search for the maximum and 

minimum values of a missing attribute in the q 

nearest-neighbors. They recommended an 

appropriate technique and formed these two 

values as an interval of the missing attribute. In 

their approach the lower and upper bounds of the 

interval are equal with the minimum and 

maximum values of the corresponding attribute in 

the q nearest-neighbors, respectively [12]. This 

approach is not suitable any more when there are 

outliers in data, because the length of intervals 

increases and it yields an inaccurate analysis and 

also the uncertainty increases. 

Similar to FCM-NNI, our proposed method uses 

the partial distance to find the q nearest-neighbors 

to an incomplete object, but it can also be used for 

fuzzy data sets. The method replaces any missing 

value with a TFN. Suppose that the value of jth 

attribute in object  ̃        is missing and Q 

denotes the index set of its q nearest neighbors 

whose jth attribute is not missing. The missing 

attribute can be rewritten into the fuzzy form as 

 ̃       
     

     
     

   where 

 

   
     {   

       }  

 

   
     {   

       }                                        
(13)   

 

   
     {   

       }  

 

   
     {   

       }  

 

and avg denotes the mean of a set. 

The proposed approach makes full use of attribute 

information of both complete and incomplete 

data, although, determination of q (number of 

nearest neighbors) is important. It is obvious that 

determination strategy of q is related to the 

number of missing attributes. If the number of 

nearest neighbors is too large, the performance 

and accuracy of the analysis will be affected. The 

determination strategy is to randomly consider 

one non-missing attribute     as missing and find 

its TFN  ̃   by assuming q = 1,2,‎…‎ ,‎ ‎ and‎ then‎
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compute the degree of membership  ̃   at    . 

This process should be done repeatedly to 

estimate the mean of the degrees of membership, 

denoted by mq, for each q. Let q0 be the least value 

of the set {              }, where    

      is the expectation degree of membership for 

missing data (e.g.,       ). When q < q0, the 

expectation degree of membership is not 

achieved; and when q > q0, the computational 

time is large. Thus, q = q0 can be selected as the 

number of nearest-neighbors for the incomplete 

data set. 
Now, we are ready to explain our proposed 

method for clustering incomplete data. The 

method (FCM-FNNM) overcomes the problem of 

clustering incomplete data in two phases. The first 

phase transforms the original data set to a fuzzy 

complete one to be done as follows. Suppose that 

 ̃   is the jth attribute of  ̃  

 

– If  ̃   is a real number c, then we reset  ̃   

           
– If  ̃   is an interval        then we reset 

 ̃              

– If  ̃   is missing, then we reset  ̃   

(   
     

     
     

 ), where    
 ,    

 ,    
  and    

  are 

defined in (13). 

 

Then, the second phase applies Algorithm 1 for 

clustering the transformed data set. 

 

Remark 1. When the method is applied to cluster 

incomplete real data set, the missing attributes are 

estimated by triangular fuzzy numbers because 

   
     

  in this case. 

 

5. Experiments 

In this section, the capabilities of the proposed 

method are evaluated using numerical 

experiments. The proposed method is evaluated 

using several data sets. As will be discussed, the 

proposed method is evaluated with different 

portions of the missing attributes. 

 

5.1. Data Sets 

In order to evaluate the proposed method, it is 

applied to several sets including an artificial data 

sets and two UCI data sets. 

The artificial data set consists of two Gaussian 

multivariate distributions representing two 

clusters. The mean vector and covariance matrices 

of the Gaussians are chosen    (
 
 
),    

(
      
      

) and    (
  
  

),    (
    
    

). 

The two clusters are shown in figure 2. These two 

clusters are separable in only one dimension and 

the missing of value may occur in that dimension. 

In this case the object may belong to any of the 

two clusters depending on the value of the missing 

attribute. The proposed can provide a good degree 

of uncertainty, which is a solution to this problem, 

and as the experiments show the proposed method 

is robust to this issue. 

The real world data sets used in this work are 

available at the UCI machine learning repository 

[10]. The characteristics of these data sets are 

summarized in table 1. 

None of these data sets include the missing 

objects. In order to evaluate the clustering 

performance and its robustness, we artificially 

made the data sets missing with different missing 

percentages. 

 

 
Figure 2. Two Gaussian distributions representing two 

clusters. 

 

Table 1. Characteristics of UCI data sets.  

Data sets Number of 

instances 

Number of 

features 

Iris 

BUPA 

345 

5 

150 

4 

 

5.2. FCM Parameters 

Determination of q is the next step. As mentioned 

in Section 4, the determination strategy is based 

on distribution of incomplete data. The selected 

values for q, based on different missing 

percentages are shown in table 2. 

In this experiment, we set the fuzzification 

parameter m = 2, the convergence threshold 

      , and as discussed in Section 2, we set 

    
 

 
.   

In order to compare the performance of different 

approaches, we need to apply them to the data sets 

with different missing percentages and then repeat 

our experiment several times in order to reduce 

the variation from trail to trial. The results of this 

experiment are presented in the next section. 
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Table 2. Selected values for q. 

Data  sets   %Missing   

5% 10% 15% 20% 

Artificial 
Iris 

BUPA 

3 
    5     

    5 

3 
 6 

5 

5 
     7 

5 

7 
     7 

5 

 

5.3. Evaluation Criterions 

In our experiments, numbers of misclassification 

and mean prototype error are considered as 

evaluation criterions. The cluster prototype for the 

artificial data set is obtained using ordinary FCM 

on the complete data set, which is as follows: 

           
  (

             
             

) 

In practical clustering problems, optimal cluster 

prototypes are unavailable but Hathaway and 

Bezdek have presented the actual cluster 

prototypes for the Iris data set [9] 

     
  (

    
    

    
    

    
    

    
    

    
    

    
    

) 

Let  ̃be the obtained prototype matrix using the 

proposedmethod. The prototype error can be 

defined as follows: 

‖ ̃    ‖
 

 
 ∑∑( ( ̃  )     

 )
 

 

   

 

   

 

where     is a linear ranking function. 

 

5.4. Numerical Results 

In this section, the proposed method is evaluated 

based on the aforementioned criteria. Firstly, the 

mean prototype error on artificial data set, for 

different portions of the missing values is 

presented. These results are summarized in table 

3, which are the averaged results of 30 trials. 

After the artificial data set, in order to have a more 

realistic evaluation, the proposed method is 

applied to the aforementioned UCI data sets. 

Since the optimal cluster prototypes are only 

available for Iris data set, the means prototype 

error is calculated only for this data set. As 

another evaluation criterion, the number of 

misclassification is calculated for both data sets. 

The results are obtained by repeating the 

experiments 30 times. 

In the rest of this section, the proposed method is 

compared with the competing methods. For 0% 

missing, all of the approaches are reduced to the 

regular FCM. In this case, the numbers of 

misclassification for all of the approaches are 

equal. There is no doubt that the information of all 

objects is important for clustering; despite this, the 

WDS approach, ignores the incomplete objects 

and this loss of information can have undesirable 

effects on the clustering results. 

Table 3. Mean prototype error on the artificial data set. 
%Missing 5 10 15 20 

Mean number of misclassification 

WDS 1.2586 1.5382 1.7420 1.9476 

PDS 0.8701 1.0360 1.2017 1.4360 

OCS 0.0492 0.6390 0.2396 0.9450 

NPS 0.0109 0.0704 0.1074 0.7341 

NNI 0.0128 0.0620 0.1038 0.5702 

FNNM 0.0094 0.0371 0.0755 0.1420 

Table 4. Mean number of misclassification on Iris. 
%Missing 0 5 10 15 20 

Mean number of misclassification  

WDS 16 16.58 16.85 16.50 16.65 

PDS 16 16.96 16.93 17.93 16.59 

OCS 16 17.05 16.68 17.11 16.58 

NPS 16 16.81 16.75 16.70 16.41 

NNI 16 16.57 16.40 16.23 16.30 

FNNM 16 16.03 15.86 15.73 15.80 

‎Table 5. Mean prototype error on Iris. 

%Missing 0 5 10 15 20 

Mean prototype error  

WDS 0.068 0.069 0.078 0.131 0.150 

PDS 0.068 0.053 0.057 0.064 0.067 

OCS 0.068 0.051 0.056 0.063 0.064 

NPS 0.068 0.052 0.058 0.063 0.065 

NNI 0.068 0.046 0.043 0.042 0.044 

FNNM 0.068 0.040 0.039 0.038 0.041 

‎Table 6. Mean number of misclassification on BUPA. 

%Missing 0 5 10 15 20 

    Mean number of misclassification  

WDS 181 181.50 182.46 182.65 183.43 

PDS 181 181.60 181.36 182.96 183.56 

OCS 181 181.63 181.30 182.46 183.30 

NPS 181 181.60 181.36 182.26 183.60 

NNI 181 181.20 181.40 178.73 180.36 

FNNM 181 181.16 181.26 179.26 179.66 

 

The performance of WDS is correlated with the 

size of data set and the number of incomplete 

samples. In general, for the data sets with small 

size and small number of missing objects, WDS 

has a good performance [9]. The PDS method is 

also based on an ignorance scheme. On the other 

hand, the imputation approaches could suffer from 

the outlier's issues. The outliers may cause a 

biased imputation. Since the proposed method 

employs TFNs for imputation rather than 

intervals, it is more robust to outriders and at the 

same time provide a reasonable degree of 

uncertainty.  

The incomplete data of elements is converted into 

a fuzzy complete data based on the information of 

their neighbours. Therefore, it is clear that they 
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will inherit the corresponding attributes of the 

dominant cluster among their neighbours. 

Sometimes completing the incomplete data 

improves the clustering data, because deleting 

outlier of some attributes and imputing them with 

the corresponding attributes of nearest-neighbours 

cause those elements to be clustered correctly. 

The obtained results for FNNM in comparison 

with the other competing methods show the 

robustness and capabilities of the proposed 

method. FNNM makes full use of attribute 

information, even the information of missing 

objects. Using the proposed scheme, all of the 

instances are taken into account in order to find 

prototypes. As the results shows, as the number of 

samples with missing attributes increases, FNNM 

has the best performance and robustness for all 

data sets. 
 

6. Conclusions 

‎‎In this article‎, ‎we have presented an algorithm for 

clustering fuzzy data‎based on the fuzzy c-means 

algorithm‎, ‎and we used it for presenting a method 

for‎‎clustering incomplete data sets‎. ‎It is notable 

that, ‎the proposed method can be‎‎applied for 

clustering incomplete data sets with 

fuzzy‎, ‎interval or real data‎.‎The proposed method 

makes full use of attribute information‎, ‎and in 

comparison‎with the competing approaches‎, ‎it is 

simpler and less susceptible to both outliers‎and 

increase in the number of missing 

data‎. ‎Experiments using two famous UCI‎‎data sets 

show the performance and capabilities of the 

proposed method‎. ‎The ‎results‎obtained show that 

the proposed algorithm is superior to the 

competing‎‎method‎, ‎and it is an effective solution 

to the problem of clustering incomplete‎data‎. 
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 نشریه هوش مصنوعی و داده کاوی
 

 

 

 واقص َایدادٌ بىدیخًشٍ در آن کاربرد ي فازی َایدادٌ بىدیخًشٍ برای فازی C-meansالگًریتن  
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 چکیدٌ:

ایهي   اص پیشهشفتی  هقالهِ،  ایي دس شَد. دقیق استفادُ هی کاهل ّایدادُ بشای، کِ هعوَلا است بٌذیخَشِ بشای هفیذ ابضاس یک فاصی بٌذیخَشِ لگَسیتنا

ِ  تعشیه   بشای خطی بٌذیستبِ تابع یکدس ایٌجا اص . است هٌاسب ایرٍصًقِ فاصی ّایدادُ بٌذیخَشِ بشای کِ است شذُ اسائِ الگَسیتن دادُ یيبه  فاصهل

ِ  فهاصی  ًاقص ّایدادُ بٌذیخَشِ بشای پیشٌْادی الگَسیتن بش هبتٌی سٍشی ،کاسبشد یک عٌَاى بِ سپس، .شَد هی استفادُ رٍصًقِ فاصی ّای  شهذُ  اسائه

 .شهَد  یهیي اش تع گیّوسهای  ًضدیکتهشیي بها   هتٌاظش ٍیژگی اص ستفادُبا ا تا کٌذهی جایگضیي ای رٍصًقِ فاصی عذد یک اب سا گوشذُ ٍیژگی سٍش ایي .است

 .دّذهی ًشاى سا پیشٌْادی سٍش تَاًایی ،تجشبی ًتایج تحلیل ٍ تجضیِ ٍ اتقایسه

ِ  :لمات کلیدیک تَلیهذ هجوَعهِ دادُ، اسصیهابی تشهخیص ًفهَر،       تشهخیص ًاٌّجهاسی،   بٌهذی،  سیستن تشخیص ًفَر، هحاسبات ابشی، الگَسیتن دسهت

 یادگیشی هاشیي.


