[1] Etzioni, O. (1996). The world wide web: Quagmire or gold mine? Communications of the ACM, vol. 39, no. 11.
[2] Cooley, R., Mobasher, B., and Srivastava, J. (1997). Web Mining: Information and Pattern Discovery on the World Wide Web. In: ictai, pp. 558-567.
[3] Kosala, R., & Blockeel, H. (2000). Web mining research: A survey. ACM Sigkdd Explorations Newsletter, vol. 2, pp. 1-15.
[4] Mobasher, B., Dai, H., Luo, T., Sun, Y., & Zhu, J. (2000). Integrating web usage and content mining for more effective personalization. In: International Conference on Electronic Commerce and Web Technologies: Springer, pp. 165-176.
[5] Cho, Y. H., Kim, J. K., and Kim, S.H. (2002). A personalized recommender system based on web usage mining and decision tree induction. Expert systems with Applications, vol. 23, pp. 329-342.
[6] Eirinaki, M., and Vazirgiannis, M. (2003). Web mining for web personalization. ACM Transactions on Internet Technology (TOIT), vol. 3, pp. 1-27.
[7] Pei, J., Han, J., Mortazavi-Asl, B., & Zhu, H. (2000). Mining access patterns efficiently from web logs. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining: Springer, pp. 396-407.
[8] Castellano, G., Fanelli, A., and Torsello, M. (2007). LODAP: a log data preprocessor for mining web browsing patterns. In: Proceedings of the 6th Conference on 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases: Citeseer, pp. 12-17.
[9] Sisodia, D. S., Khandal, V., & Singhal, R. (2018). Fast prediction of web user browsing behaviours using most interesting patterns. Journal of Information Science, vol. 44, pp. 74-90.
[10] Malarvizhi, S., & Sathiyabhama, B. (2016). Frequent pagesets from web log by enhanced weighted association rule mining. Cluster Computing, vol. 19, pp. 269-277.
[11] Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on Management of data, pp. 207-216.
[12] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo, A.I. (1996). Fast discovery of association rules. Advances in knowledge discovery and data mining, vol. 12, pp. 307-328.
[13] Zadeh, L. A. (1965). Fuzzy sets. Information and control, vol. 8, pp. 338-353.
[14] Lopez, F. J., Blanco, A., Garcia, F., & Marin, A. (2007). Extracting biological knowledge by fuzzy association rule mining. In: 2007 IEEE International Fuzzy Systems Conference: IEEE, pp. 1-6.
[15] Mamdani, E. H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. In: Proceedings of the institution of electrical engineers: IET, pp. 1585-1588.
[16] Tajbakhsh, A., Rahmati, M., & Mirzaei, A. (2009). Intrusion detection using fuzzy association rules. Applied Soft Computing, vol. 9, pp. 462-469.
[17] Wang, M., Su, X., Liu, F., & Cai, R. (2012). A cancer classification method based on association rules. In: 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery: IEEE, pp. 1094-1098.
[18] Watanabe, T., & Fujioka, R. (2012). Fuzzy association rules mining algorithm based on equivalence redundancy of items. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC): IEEE, pp. 1960-1965.
[19] Weber, R. (1992). A class of methods for automatic knowledge acquisition. In: Proc. Of the 2nd International Conference on Fuzzy Logic and Neural Networks, 1992.
[20] Kudłacik, P., Porwik, P., & Wesołowski, T. (2016). Fuzzy approach for intrusion detection based on user’s commands. Soft Computing, vol. 20, pp. 2705-2719.
[21] Wu, R., Tang, W., & Zhao, R. (2005). Web mining of preferred traversal patterns in fuzzy environments. In: International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing: Springer, pp. 456-465.
[22] Lin, C. W., & Hong, T. P. (2013). A survey of fuzzy web mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 3, pp. 190-199.
[23] Ansari, Z. A., & Syed, A. S. (2016). Discovery of web usage patterns using fuzzy mountain clustering. International Journal of Business Intelligence and Data Mining, vol. 11, pp. 1-18.
[24] Ansari, Z. A., Sattar, S. A., & Babu, A. V. (2017). A fuzzy neural network based framework to discover user access patterns from web log data. Advances in Data Analysis and Classification, vol. 11, pp. 519-546.
[25] Hong, T.-P., Huang, C.-M., & Horng, S.-J. (2008). Linguistic object-oriented web-usage mining. International journal of approximate reasoning, vol. 48, pp. 47-61.
[26] Hong, T.-P., Chiang, M.-J., & Wang, S.-L. (2002). Mining weighted browsing patterns with linguistic minimum supports. In: IEEE International Conference on Systems, Man and Cybernetics: IEEE, vol. 4, pp. 5-pp. IEEE.
[27] Hong, T.-P., Chiang, M.-J., & Wang, S.-L. (2008). Mining fuzzy weighted browsing patterns from time duration and with linguistic thresholds.
[28] Wang, S.-L., Lo, W.-S., & Hong, T.-P. (2005) Discovery of fuzzy multiple-level Web browsing patterns. In: Classification and Clustering for Knowledge Discovery: Springer, pp. 251-266.
[29] Wu, R. (2010). Mining generalized fuzzy association rules from Web logs. In: 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery: IEEE, pp. 2474-2477.
[30] Narendra, K. S., & Thathachar, M. A. (2012). Learning automata: an introduction. Courier Corporation.
[31] Thathachar, M. A., & Sastry, P. S. (2011). Networks of learning automata: Techniques for online stochastic optimization. Springer Science & Business Media.
[32] Thathachar, M. A., & Sastry, P. S. (2002). Varieties of learning automata: an overview. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 32, pp. 711-722.
[33] Hong, T.-P., Chen, C.-H., Wu, Y.-L., & Lee, Y.-C. (2006). A GA-based fuzzy mining approach to achieve a trade-off between number of rules and suitability of membership functions. Soft Computing, vol. 10, pp. 1091-1101.
[34] Chen, C.-H., Tseng, V. S., &Hong, T.-P. (2008) Cluster-based evaluation in fuzzy-genetic data mining. IEEE transactions on fuzzy systems, vol. 16, pp. 249-262.
[35] Alcalá-Fdez, J., Alcalá, R., Gacto, M. J., & Herrera, F. (2009). Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms. Fuzzy Sets and Systems, vol. 160, pp. 905-921.
[36] Chen, C.-H., Li, Y., Hong, T.-P., Li, Y.-K., & Lu, E.H.-C. (2015). A GA-based approach for mining membership functions and concept-drift patterns. In: 2015 IEEE Congress on Evolutionary Computation (CEC): IEEE, pp. 2961-2965.
[37] Chen, C.-H., Hong, T.-P., Lee, Y.-C., & Tseng, V.S. (2015). Finding active membership functions for genetic-fuzzy data mining. International Journal of Information Technology & Decision Making, vol. 295, pp. 358-378.
[39] Hong, T.-P., Tung, Y.-F., Wang, S.-L., Wu, M.-T., and Wu, Y.-L. (2009). An ACS-based framework for fuzzy data mining. Expert Systems with Applications, vol. 36, pp. 11844-11852.
[40] Wu, M.-T., Hong, T.-P., & Lee, C.-N. (2012). A continuous ant colony system framework for fuzzy data mining. Soft Computing, vol. 16, pp. 2071-2082.
[41] Ting, C.-K., Liaw, R.-T., Wang, T.-C., & Hong, T.-P. (2018). Mining fuzzy association rules using a memetic algorithm based on structure representation. Memetic Computing, vol. 10, pp. 15-28.
[42] Ting, C.-K., Wang, T.-C., Liaw, R.-T., & Hong, T.-P. (2017). Genetic algorithm with a structure-based representation for genetic-fuzzy data mining. Soft Computing, vol. 21, pp. 2871-2882.
[43] Rudziński, F. (2016). A multi-objective genetic optimization of interpretability-oriented fuzzy rule-based classifiers. Applied Soft Computing, vol. 38, pp. 118-133.
[44] Antonelli, M., Ducange, P., & Marcelloni, F. (2014). A fast and efficient multi-objective evolutionary learning scheme for fuzzy rule-based classifiers. Information Sciences, vol. 283, pp. 36-54.
[45] Minaei-Bidgoli, B., Barmaki, R., & Nasiri, M. (2013). Mining numerical association rules via multi-objective genetic algorithms. Information Sciences, vol. 233, pp. 15-24.
[46] Song, A., Song, J., Ding, X., Xu, G., & Chen, J. (2017). Utilizing bat algorithm to optimize membership functions for fuzzy association rules mining. In: International Conference on Database and Expert Systems Applications: Springer, pp. 496-504.
[47] Chamazi, M.A., & Motameni, H. (2019) Finding suitable membership functions for fuzzy temporal mining problems using fuzzy temporal bees method. Soft Computing, vol. 23, pp. 3501-3518.
[48] Alikhademi, F., & Zainudin, S. (2014). Generating of derivative membership functions for fuzzy association rule mining by Particle Swarm Optimization. In: 2014 International Conference on Computational Science and Technology (ICCST): IEEE, pp. 1-6.
[49] Hong, T.-P., Lee, Y.-C., & Wu, M.-T. (2014). An effective parallel approach for genetic-fuzzy data mining. Expert Systems with Applications, vol. 41, pp. 655-662.
[50] Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In: Acm sigmod record: ACM, pp. 207-216.
[51] TSetlin, M., & TSetlin, M. (1973). Automaton theory and modeling of biological systems.
[52] Lakshmivarahan, S. (2012). Learning Algorithms Theory and Applications: Theory and Applications. Springer Science & Business Media.
[53] Meybodi, M., & Lakshmivarahan, S. (1984). On a class of learning algorithms which have a symmetric behavior under success and failure. Lecture Notes in Statistics, Berlin: SpringerVerlag, pp. 145-155.
[54] Meybodi, M.R., & Beigy, H. (2002). New learning automata based algorithms for adaptation of backpropagation algorithm parameters. International Journal of Neural Systems, vol. 12, pp. 45-67.
[55] Ghavipour, M., & Meybodi, M.R. (2018). A streaming sampling algorithm for social activity networks using fixed structure learning automata. Applied Intelligence, vol. 48, pp. 1054-1081.
[56] Narendra, K.S., & Thathachar, M.A. (1980). On the behavior of a learning automaton in a changing environment with application to telephone traffic routing. IEEE Transactions on Systems, Man, and Cybernetics, vol. 10, pp. 262-269.
[57] Anari, B., Torkestani, J. A., & Rahmani, A. M. (2017). Automatic data clustering using continuous action-set learning automata and its application in segmentation of images. Applied Soft Computing, vol. 51, pp. 253-265.
[58] Ghavipour, M., & Meybodi, M.R. (2016). An adaptive fuzzy recommender system based on learning automata. Electronic Commerce Research and Applications, vol. 20, pp. 105-115.
[59] Kumar, N., Lee, J.-H., & Rodrigues, J. J. (2014). Intelligent mobile video surveillance system as a Bayesian coalition game in vehicular sensor networks: Learning automata approach. IEEE Transactions on Intelligent Transportation Systems, vol. 16, pp. 1148-1161.
[60] Helmzadeh, A., & Kouhsari, S. M. (2016). Calibration of erroneous branch parameters utilising learning automata theory. IET Generation, Transmission & Distribution, vol. 10, pp. 3142-3151.
[61]Torkestani, J.A. (2012). An adaptive learning automata-based ranking function discovery algorithm. Journal of intelligent information systems, vol. 39, pp. 441-459.
[62] Morshedlou, H., & Meybodi, M. R. (2014). Decreasing impact of sla violations: a proactive resource allocation approachfor cloud computing environments. IEEE Transactions on Cloud Computing, vol. 2, pp. 156-167.
[63] Rezvanian, A., & Meybodi, M.R. (2010). Tracking extrema in dynamic environments using a learning automata-based immune algorithm. In: Grid and Distributed Computing, Control and Automation: Springer, pp. 216-225.
[64] Anari, B., Akbari Torkestani, J., & Rahmani, A.M. (2018). A learning automata‐based clustering algorithm using ant swarm intelligence. Expert systems, vol. 35, no. 6, e12310.
[65] Hong, T.-P., Chen, C.-H., Lee, Y.-C., & Wu, Y.-L. (2008). Genetic-fuzzy data mining with divide-and-conquer strategy. IEEE Transactions on Evolutionary Computation, vol. 12, pp. 252-265.
[66] Tao, Y.-H., Hong, T.-P., Lin, W.-Y., &Chiu, W.-Y. (2009). A practical extension of web usage mining with intentional browsing data toward usage. Expert Systems with Applications, vol. 36, pp. 3937-3945.
[67] http://www.cs.depaul.edu.
[68] Nosratian, F., Nematzadeh, H., & Motameni, H. (2019). A Technique for improving Web mining using enhanced genetic algorithm. Journal of AI and Data Mining, vol. 7, no. 4, pp. 597-606.
[69] Azimi Kashani, A., Ghanbari, M., & Rahmani, A. M. (2020). Improving performance of opportunistic routing protocol using fuzzy logic for vehicular ad-hoc networks in highways. Journal of AI and Data Mining, vol. 8 , no. 2, pp. 213-226.
[70] Roohollahi, S., Khatibi Bardsiri, A., & Keynia, F. (2020). Using an evaluator fixed structure learning automata in sampling of social networks. Journal of AI and Data Mining, vol. 8, no. 1, pp. 127-148.
[71] Vaghei, Y., & Farshidianfar, A. (2016). Trajectory tracking of under-actuated nonlinear dynamic robots: adaptive fuzzy hierarchical terminal sliding-mode control. Journal of AI and Data Mining, vol. 4, no. 1, pp. 93-102.
[72] Hatamlou, A. R., & Deljavan, M. (2019). Forecasting gold price using data mining techniques by considering new factors. Journal of AI and Data Mining, vol. 7, no. 3, pp. 411-420.