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Abstract 

Semantic labeling is an active field in remote sensing applications. Although handling highly detailed objects 

in a Very High Resolution (VHR) optical image, and the VHR Digital Surface Model (DSM) is a challenging 

task, it can improve the accuracy of the semantic labeling methods. In this paper, a semantic labeling method 

is proposed by fusion of optical and normalized DSM data. The spectral and spatial features are fused into a 

heterogeneous feature map to train the classifier. The evaluation database classes are impervious surface, 

building, low vegetation, tree, car, and background. The proposed method is implemented on the Google Earth 

Engine. The method consists of several levels. First, the Principal Component Analysis (PCA) is applied to 

the vegetation indices to find the maximum separable color space between the vegetation and non-vegetation 

areas. The Gray Level Co-occurrence Matrix (GLCM) is computed to provide the texture information as the 

spatial features. Several Random Forests (RFs) are trained with an automatically selected train dataset. Several 

spatial operators follow the classification to refine the result. The LeafLess Tree (LLT) feature is used to solve 

the underestimation problem in the tree detection. The area, and major and minor axes of the connected 

components are used to refine building and car detection. The evaluation shows a significant improvement in 

the tree, building, and car accuracy. The overall accuracy and Kappa coefficient are appropriate. 

 

Keywords: Very High Resolution Semantic Labeling, Spatial Feature, Google Earth Engine, Grey Level Co-

Occurrence Matrix, Random Forest, Leafless Tree. 

1. Introduction 

Semantic labeling is an active applicant research 

topic in the Remote Sensing (RS) image processing 

field, especially in urban areas [1-3]. Semantic 

labeling is one of the most important components 

of RS applications such as urban planning, 

vegetation investigation, and soil management [4]. 

In the past, spatial resolution of RS imagery was 

coarse and the Ground Sampling Distance (GSD) 

of images was greater than a meter. Since a coarse 

resolution image does not contain detailed 

information, the High Resolution (HR) and Very 

High Resolution (VHR) images have been 

considered recently [5]. On the other hand, small 

objects like cars are visible in VHR aerial imagery 

with a meter to sub-meter resolution [1, 6]. 

Therefore, VHR imagery has created new interests 

in extracting the man-made structures in urban 

areas [7].  

Increasing the spatial resolution (moving from low 

resolution to VHR) causes more uncertainty in 

decision-making, which leads to more complex 

algorithms [8]. Therefore, scientists are facing new 

challenges to provide a high accuracy in VHR 

images [9].  

The spectral information of different classes are 

more similar in the HR and VHR images than in 

the low spatial resolution scenes [10]. Therefore, 

accuracy of the typical and traditional classification 

methods decreases if they are applied to VHR 

images. In other words, the traditional algorithms 

can doubtfully support VHR images [11]. 

Feature extraction plays an important role in the 

preprocessing step [12], and the solution key is 

mixing the spectral information with the spatial 

features [13]. The spatial information like texture 

and structure (e.g. edges) contains more detailed 

information in the VHR images than in the coarse 
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resolution images [14]. This leads to an increasing 

demand for using the geometrical (spatial) features. 

Morphological profile (MP) is an example of 

popular spatial operators [7]. Gray-Level Co-

Occurrence Matrix (GLCM) is another popular 

feature to describe an image texture [15]. The 

GLCM operations are applied to neighborhood 

pixels (definite windows size) [16]. 
 

 

Figure 1. Typical framework of the semantic labeling 

methods. 

Figure 1 shows a typical framework of the VHR 

image sematic labeling methods in a high level of 

abstraction. The pre-processing step may include 

some noise-removal and/or color adjustment 

algorithms. Then the spectral and/or spatial 

features are used to classify the scene into pre-

defined classes. An initial semantic labeling map 

may be refined by connected component 

specifications. The performance of each box in 

figure 1 could be improved by the researchers.  

Each imagery platform has its unique specification. 

Thus fusion of multi-sensor imagery may increase 

the accuracy of the VHR image analysis [6]. Fusion 

can occur in different levels in which data-level 

refers to mixing the information of  one sensor with 

another [5]. Fusion of the satellite, aerial, and UAV 

images has been utilized by Kakooei and Baleghi 

[17] for building a damage assessment. Fusion of a 

Digital Surface Model (DSM) and optical images 

can facilitate building detection [18] and  small 

object extraction [10]. DSM generation is based on 

the radar imagery that follows geometric distortion 

removal (i.e. layover, foreshortening, and 

shadows) [19]. Hussain and Shan [20] have fused 

optical VHR aerial images with elevation 

information and city zoning maps for an urban land 

cover classification. Combination of the optical 

and long-wave infrared images has been utilized by 

Guan et al. [21] to improve land classification.  

Although VHR images contain fine detailed 

objects, they have a large amount of noise that can 

potentially mislead the classification. An extension 

of mean filter can smooth the noise of VHR images 

as the pre-processing step [22].  

In [23], spectral features are used to detect some 

special non-urban areas like vegetation and water. 

Then they proposed a structural feature in the 

refinement step. An automatic method has been 

proposed by Ozdarici Ok [24] to detect individual 

trees. It is based on vegetation extraction, fast 

radial symmetry (FRS) transform, and simple 

object-based hierarchical operations. Kakooei and 

Baleghi [17] have mentioned that a leafless tree 

does not contain any leaf to be classified as tree 

class by the spectral features. Therefore, a spatial 

feature named LeafLess Tree (LLT) has been 

proposed to improve the tree detection accuracy. 

The proposed LLT feature is also used in this work 

to improve tree detection accuracy. 

The spatial-based method is a part of many 

previous VHR image analysis algorithms. MPs 

require Structural Elements (SEs) to apply different 

operations to a definite neighborhood. SEs are 

typically disk-shaped. Bellens et al. [7] have 

proposed new linear SEs and utilized partial 

morphological reconstruction to preserve the shape 

of objects. Qin [25] has proposed a new special 

feature that is based on mean shift. Li et al. [26] 

have arranged the spatial features of land cover to 

mix with common land cover indices to improve 

the classification accuracy.  

Classification can be improved by following a 

feature extraction step. Regniers et al. [27] have 

proposed a supervised classification method, in 

which the features are based on the wavelet 

multivariate models. Huang et al. [10] have 

extracted a wavelet-based feature to fuse the 

spectral and spatial information in a multi-scale 

procedure. Xu and Li [14] have extracted the shape 

features (Hu’s moments, Zernike moments, and 

wavelet moments) from segmented objects. These 

features were classified by an object-based method. 

Chaib et al. [28] have proposed a method 

containing scale-invariant feature transform, and 

sparse principal component analysis (sPCA). 

Convolutional Neural Network (CNN) creates a 

hierarchy of decision nodes to classify objects.  

Volpi and Tuia [2] have presented a CNN-based 

method for semantic labeling. The designed 

method contains down-sampling and up-sampling 

sections. Deep features play an important role in 

VHR detailed images [29]. Sherrah [1] has applied 

Deep Convolutional Neural Networks (DCNNs) to 

VHR remote sensing images for semantic labeling. 

A DCNN-based decision-level fusion approach has 

been proposed by Liu et al. [6] for semantic 

labeling. Fusion was based on a probabilistic 

graphical model.  

Random Forest (RF) is a popular classification 

algorithm. The RF classifier creates multiple 

decision trees, in which a train dataset is selected 

randomly. RF is fast and it is an appropriate 

classifier for high-dimensional data [30]. Du et al. 

[31] have trained many high-dimensional features 
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by a random forest classifier to classify buildings 

into seven categories. Abe et al. [32] have 

compared the RF and Support Vector Machine 

(SVM) performance in hyperspectral land 

classification. RF can handle vegetation mapping 

[33], analysis of gross primary production 

upscaling [34], and building irregularity detection 

[35]. 

As many satellites are orbiting the earth to acquire 

images, satellite data collection is becoming a big 

data. Managing this large amount of data is tough 

for the developers, and requires time and effort. 

Besides, processing requires a high computational 

capability. The developers desire to focus on 

algorithms instead of data and hardware [36]. 

Google has provided a developing environment for 

remote sensing developers named Google Earth 

Engine (GEE). It is a parallel cloud-based platform 

that provides free access to many satellites [37]. 

Recently, several developers have used GEE to 

implement their methods. Miettinen et al. [38] have 

proposed an automatic decision tree to classify land 

cover into 11 classes on GEE. GEE can be used for 

mapping an urban area, rice paddy, and flood. This 

is also useful to estimate forest change, water 

change, and crop yield [39]. 

In this work, the spectral and spatial features are 

fused into a heterogeneous feature map to propose 

a new semantic labeling method. The VHR optical 

and VHR DSM data are fused in the first step to 

produce the spectral features. Some GLCM 

features are extracted from VHR optical data, as 

the spatial features. These spectral and spatial 

features are used to train the classifier. Random 

forest classifier is trained by an automatically 

selected train dataset. The final refinement is based 

on the LeafLess Tree (LLT) feature and some 

popular connected component specifications such 

as area, and major and minor axes. The process is 

totally automatic and implemented on GEE.   

The evaluation dataset that contains the VHR 

optical image and DSM data is described in the 

next section. Then our proposed method is 

presented step by step in detail. It is implemented 

on GEE, and the evaluation result is presented on 

the VHR dataset. 

 

2. Data source 

The utilized data sources were from two different 

sensors that were provided by ISPRS Commission 

II/4 in the 2D semantic labeling contest in 2017 

("ISPRS 2D semantic labeling contest-Potsdam") 

[40]. This dataset covers part of the Potsdam city in 

Germany. It comprises 38 patches of optical and 

DSM images with the same size. Only the ground 

truth of 24 patches is provided.  

It contains aerial VHR optical images in four bands 

including Red, Green, Blue, and Near Infra-Red 

(RGB and NIR).  

It also contains VHR DSM and normalized DSM 

(nDSM) data in the area of interest. GSD of optical 

and DSM images is 5 cm and the size of each image 

tile is 6000 × 6000. 

All image patches are uploaded to the GEE servers. 

An overview of 24 patches are shown in figure 2. 

Figures 2a and 2b illustrate the VHR optical 

images. Figure 2a shows an RGB image that is 

presented in the R-G-B format. The visualization 

of figure 2b is NIR-R-G. Figure 2c displays the 

VHR nDSM of the dataset.  Figure 2d shows the 

ground truth comprising six classes. These classes 

are: 

 Impervious surfaces (RGB: 255, 255, 255) 

 Building (RGB: 0, 0, 255) 

 Low vegetation (RGB: 0, 255, 255) 

 Tree (RGB: 0, 255, 0) 

 Car (RGB: 255, 255, 0) 

 Clutter/background (RGB: 255, 0, 0) 

 

 

Figure 2. An overview of the dataset on the GEE. All 24 

patches are shown. (a) RGB image. (b) NIR-R-G image. 

(c) nDSM image. (d) Ground truth. 
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Figure 3. The framework of the proposed method. 

 

Figure 4. Similarity investigation based on histogram correlation (a) Patch 5-11 RGB (b) Patch 5-11 nDSM (c) Patch 5-12 

RGB (d) Patch 5-12 nDSM (e) Patch 6-12 RGB (f) Patch 6-12 nDSM.

3. Proposed method 

This section contains five sub-sections. The 

method framework is shown in figure 3 and briefly 

described in the following sub-section. 

Furthermore, the purpose of all phases is explained 

in this sub-section. Then in the next four sub-

sections, the phases are detailed. 

 

3.1. Method framework 

An overview of the multi-level structure of the 

proposed method is shown in figure 3. At the left 

side of the flowchart, the VHR RGB+NIR optical 

image and VHR nDSM data are divided into the 

train and test dataset patches. First, the histogram 

correlation between each test patch and all the 

available training patches are calculated. 

For each test patch, two patches are selected from 

the dataset to train the classifier. These patches are 

the most similar ones to test them in the RGB+NIR 

and nDSM histograms, and they are selected 

automatically. Thus it is possible to use just one 

training patch if both the RGB+NIR and nDSM test 

histograms are similar to one training patch.  

In the second phase, the features are extracted from 

the train and test patches. Then the RF classifier is 

trained in the third phase. This classifier is used to 

classify the test patch into the desired classes.  

Phase 4 is dedicated to spatial operations to refine 

and improve the classification result. The LeafLess 
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Tree (LLT) feature is extracted from the optical 

image to improve tree detection. The area, major 

axis, and minor axis properties are utilized to 

improve the car and building detection. Besides, 

some typical morphology operations like opening 

and closing are applied to create the final semantic 

labels. 

 

3.2. Phase 1: Selecting train patches 

Cross-correlation between the histogram of each 

test patch and the histogram of all training patches 

can find the most similar training patches to the test 

patch. For instance, the experimental investigation 

indicates that patch No. 5-11 (in Figures 4a and 4b) 

is similar to the patch No. 5-12 in the nDSM 

histogram (Figure 4d), and it is similar to patch No. 

6-12 in the RGB+NIR histogram (Figure 4e). 

These RGB and nDSM patches are shown in figure 

4. It means that these two patches (No. 5-12 and 6-

12) are sampled to train the RF classifier to classify 

patch No. 5-11. 
 

3.3. Phase 2: Feature extraction 

The feature extraction step is divided into three 

phases in figure 5. A heterogeneous feature map is 

the outcome of this section in phase 2.3. 

The first phase (phase 2.1) is based on three indices 

including Normalized Difference Vegetation Index 

(NDVI), Enhanced Vegetation Index (EVI), and 

Green Ratio Vegetation Index (GRVI). These 

indices are calculated in (1) to (3).  

NIR - R
NDVI =

NIR + R
 

(1) 

NIR - R
EVI = 2.5

NIR + 6×R - 7.5×B +1
 

(2) 

NIR
GRVI =

G
 

(3) 

The PCA algorithm is applied to this 3-band image, 

and the band with the largest Eigen value is 

selected to be one band of the heterogeneous 

feature map. This band improves the separability 

between the vegetation area (low vegetation and 

tree) and the other classes. Figure 6a shows this 

band for patch No. 5-11.  

 The gray level image is constructed by RGB bands 

in phase 2.3. Some GLCM features are calculated 

based on the Gray and NIR images as the 

classification features. These features are Angular 

Second Moment (ASM), Inverse difference 

Moment (IDM), Image correlation 1d 

(IMCORR1), Image correlation 2d (IMCORR2), 

Sum of Entropy (SENT), and Difference of 

Entropy (DENT). These features have been 

described in [41, 42]. For instance, ASM, IDM, 

IMCORR1 and DENT of Gray image are shown in 

figures 6b to 6e. 

 

Figure 5. Heterogeneous Feature Map Flowchart. 

 

Figure 6. Bands of heterogeneous feature map (a) PC1 of vegetation PCA (b) Gray ASM (c) Gray IDM (d) Gray IMCORR1 

(e) Gray DENT (f) Three PCA bands of 5-band.
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PCA is applied to a constructed 5-band image in 

phase 2.2. These bands are Red, Green, Blue, NIR, 

and nDSM. Three PCA bands with the largest 

Eigen values are selected as the classification 

features, which are shown in RGB false color in 

figure 6f for patch No. 5-11. The final 

heterogeneous feature map contains sixteen bands: 

 One band is selected from phase 2.1 (PCA 

of vegetation indices) 

 Six bands are from GLCM of Gray image 

 Six bands are from GLCM of NIR image 

 Three bands are selected from phase 2.2 

(PCA of VHR data) 
 

3.4. Phase 3: Random forest classification 

An overview of Random Forest classification is 

shown in figure 7. Three separate classifiers are 

trained to improve the classification result. The 

classifier that is indicated with number 1 is a 4-

class classifier, in which low vegetation and tree 

impervious surface and background are merged, 

compared to the original one. There are two 2-class 

classifiers that are indicated by numbers 2 and 3 to 

generate the final 6-class map. 

There are different systems available to combine 

the classifiers such as serial, parallel, and 

embedded modes [43]. The proposed method 

utilizes a serial combination of classifiers.  

Assume that there are n numbers of samples with p 

features, and RF uses nT number of trees. The 

training complexity of the RF classification in big 

O notation is 
2

TO(n pn ) , and the prediction 

complexity is TO(pn ) . 

The serial classifiers work on sub-samples of the 

original samples n. Assume that there are nS 

number of serial classifiers, in which each classifier 

works on si samples ( )is n . In the worst case, the 

training and prediction complexities are 
2

T SO(n pn n )and T SO(pn n ) , respectively. 

Thus, while the number of classes does not directly 

play a role in the computation complexity, different 

numbers of classes can result in different numbers 

of serial classifiers that affect the complexity.  
 

 

Figure 7. Multi-level Random Forest Classification. 

 

3.5. Phase 4: Spatial operations 

Spectral features are insufficient to handle the 

VHR semantic labelling methods. Thus the 

proposed method uses the GLCM features to 

contribute some texture information in the 

classification. It is followed by some spatial 

operations in this phase, which are defined 

according to the structure of different objects. A 

feature named LeafLess Tree (LLT) that has been 

proposed in [44] is utilized to improve tree 

detection. The structure of car and building 

connected components are considered to define 

some spatial operators to refine the results.  

The spatial operations in this step include 

morphological closing, filtering by size, and 

thresholding on major and minor axes. A flowchart 

of the spatial operations is shown in figure 8, which 

includes three phases that are applied 

hierarchically. In order to simplify the explanation, 

each phase is explained in a challenge and solution 

manner. In figure 9a, ground truth of patch No. 5-

11 is shown. Figures 9b and 9c show the results of 

classification and spatial refinement, respectively. 
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Phase 4.1: Refining car detection 

Challenge 1: Windshield is not classified as car. 

Windshield is probably detected and classified as 

shadow since it appears dark. Abundance of 

shadow in the impervious surface and low 

vegetation classes is more than car class, which 

will force the classifier to classify windshield as a 

non-car class. 
 

 

 

Figure 8. Spatial Operations to Refine Classification Result. 

 

 

Figure 9. Spatial Operation on patch No. 5-11 a) Ground truth b) Classified image c) Result of refinement by spatial 

operators. 
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Figure 10. Car refinement on a part of patch No. 5-11 a) RGB view b) Ground truth c) Classified image d) Result of 

refinement by spatial operators. 

 

 
Figure 11. Building refinement on a part of patch No. 5-11 a) RGB view b) Ground truth c) Classified image with false 

negative rooftop as vegetation and small points d) Refining building detection on rooftop. 

 

 
Figure 12. Tree refinement on a part of patch No. 5-11 a) Leafless tree detection b) Part of original image c) Leafless tree 

detection in a part of image. 

 

Solution 1: Morphological dilation will be applied 

to car connected components. Two vertical and 

horizontal lines are used as the Structural Element 

(SE) to connect the car’s hood and trunk to the roof. 

This operation will put the windshield in the hole. 

Filling the holes is utilized to put the windshield in 

the car class. 

Challenge 2: Small points and large areas are 

detected as car. 

Solution 2: Thresholding on size of connected 

component refines the result. 

Challenge 3: The connected component size is 

correct but the structure seems wrong. For 

example, sometimes street lines are detected as car. 

Solution 3: Thresholding on the minor axis of the 

connected component removes this false detection. 

The minor axis of car should be at least greater than 

1 m.  

Figure 10 shows a part of patch No. 5-11, in which 

three cars are in the middle of the street. The car 

windshields are detected after refinement in figure 

10d. The lines are removed. 
Phase 4.2: Refining building detection 

Challenge 1: Vegetation on rooftop of building is 

detected as low vegetation. 

Solution 1: Using the nDSM data, if the nDSM 

value of low vegetation classes are similar to 

building classes, they will be corrected and the 
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class will be changed from low vegetation to 

building. 

Challenge 2: Small areas are detected as building. 

Solution 2: The connected components with small 

areas are removed by thresholding. 

In the center of figure 11c, there is a mixture 

detection of building and vegetation, which is 

refined in 11d. There are some small points that are 

removed from image compared to ground truth in 

figure 11b. 
Phase 4.3: Refining tree detection 

Challenge 1: The distributed small points are 

classified as trees. 

Solution 1: Thresholding on size of tree connected 

components to remove the small sparse points. 

Figure 13a contains several small points, which are 

removed in figure 13b after refinement. 

Challenge 2: Dense fence shrub and similar 

structures may be detected as tree. 

Solution 2:  Eccentricity of a region is defined as 

the ratio of the major axis to its minor axis. 

Eccentricity should be less than a specified 

threshold. 

Challenge 3: Leafless trees are not detected. 

Solution 3: The LLT feature is utilized. The LLT 

feature is based on the structure of leafless tree 

branches in the VHR optical images. A special 

gradient operator was proposed to find gradient in 

four directions. Mixing with directional filters and 

maximum operator finds the point of the center of 

the tree in the orthophoto image [44]. Figure 12a 

shows leafless tree detection by LLT in patch No. 

5-11. A part of patch is provided in figures 12b and 

12c for a better visualization. 
 

3.6. Ground truth overestimation 

The provided ground truth seems to be 

overestimated, especially in tree detection. As our 

proposed method is based on fusion of the spectral 

and spatial features, it can detect tree branches in 

the image, while the ground truth is overestimated 

in the tree class. Figure 13a shows the initial 

classified image, which is refined by spatial 

operators to create the final sematic labelling map 

in figure 13b. The ground truth is shown in figure 

13c. It seems that our proposed method is accurate 

in all classes except tree. Considering the RGB 

image in figure 13d, our proposed method 

preserves the structure of tree, which is not defined 

well in ground truth. This issue affected the 

evaluation results of the next section, especially in 

the tree class. 

 
Figure. 13. Ground truth overestimation a) Result of 

classification b) Result of spatial refinement c) Ground 

truth d) Original RGB image. 

 

4. Evaluation 

The utilized dataset comprises 24 images with 

ground truth. Three recent published papers that 

have used the same dataset are selected for 

comparison. The test dataset of [1, 2, 6] methods 

are summarized in table 1. Our test dataset patches 

contain a mixture of [1, 2, 6] dataset patches. 

Table 1. Test Dataset in Our Evaluation and Previous 

Works. 
Method Test dataset 

[1] 2-11, 2-12, 4-10, 5-11, 6-7, 7-8, 7-10 

[2] 2-12, 3-12, 4-12, 5-12, 6-12, 7-12 

[6] 4-10, 6-8, 6-11 

Proposed 
2-11, 2-12, 3-12, 4-10, 4-12, 5-11, 6-7, 6-8, 6-

11, 7-8 

Performance of the serial classification and spatial 

operations is analyzed in table 2. In this table, the 

Overall Accuracy (OA) and Kappa (K) coefficient 

values are shown for a typical classification, multi-

level classification, and spatial refinement. OA is 

calculated by summing the number of correctly 

classified pixels and dividing by the total number 

of pixels. Calculation of the K coefficient in (4) 

shows the degree of accuracy and reliability of the 

proposed method.  

,1 1

2

1

( )

( )

n n

i i i ii i

n

i ii

N m F D
k

N F D

 








 


 

(4) 

where i is the class number, N is the total number 

of classified pixels, mi,i is the number of pixels 

belonging to the class i that have been classified as 

class i, Di is the total number of predicted pixels 

belonging to class i, and Fi is the total number of 

pixels belonging to class i. 

Comparing the results of the typical classification 

and multiple classification shows the performance 

of the utilized multi-level classification method. 

Furthermore, the effect of spatial refinement is 

evaluated and illustrated in table 2.  
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The table verifies a significant improvement in 

using a serial combination of classifiers. On the 

other hand, although there is a little improvement 

in utilizing the spatial refinement, the most 

important achievement is about achieving more 

accurate results in human-made classes. 

The producer accuracy of all classes is plotted in 

Figures 14 to 18 to demonstrate the effects of the 

designed steps. Considering the accuracy of each 

class, there is a little decrease in the impervious 

surface and low vegetation classes but show 

significant improvements in the building, tree, and 

car classes, which are man-made objects in urban 

areas. 

Table 2. Overall accuracy and Kappa coefficient of test patches in the proposed method. 

Patch 

number 

Typical classification result  Multi-level classification result  Spatial refinement 

Overall 

accuracy 

Kappa 

coefficient 

Overall 

Accuracy 

Kappa 

Coefficient 

Overall 

Accuracy 

Kappa 

Coefficient 

2-11 71.5558 0.5951  79.1282 0.7072  81.8967 0.7478 

2-12 69.7295 0.5527  83.3584 0.7368  83.1100 0.7415 

3-12 76.389 0.6884  83.7557 0.7836  84.8757 0.7987 

4-10 73.0919 0.647  83.74758 0.7816  85.4160 0.8043 

4-12 84.5974 0.7862  90.9518 0.8718  91.7267 0.8828 

5-11 82.3244 0.7478  87.3597 0.8188  87.9796 0.8273 

6-7 60.2285 0.4622  85.2256 0.7467  85.4232 0.7533 

6-8 77.0864 0.7  85.2216 0.8029  86.5333 0.8205 

6-11 85.651 0.777  90.3974 0.8487  90.4832 0.8485 

7-8 78.0161 0.7026  84.5269 0.7867  85.3667 0.7970 

 

 

 
Figure 14.  Impervious surface accuracy of the 

proposed method in test patches. 

 

 

 

 
Figure 15.  Building accuracy of the proposed method 

in test patches. 

 

 

 

 
Figure 16. Low vegetation accuracy of the proposed 

method in test patches. 

 

 

 
Figure 17. Tree accuracy of the proposed method in 

test patches. 
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Figure 18.  Car accuracy of the proposed method in 

test patches. 

 

The visual comparison is based on part of the image 

patches that is available in [1, 2, 6]. These images 

are shown in Figure 19. The visual comparison 

includes RGB, ground truth, reference result, and 

the result of our proposed method. Some purple 

eclipses are added to the results to emphasize on 

the differences. Figures 19a to 19d compare the 

result of our proposed method versus the method 

proposed by Sherrah [1]. Our proposed method 

detects cars in the main street, which are ignored in 

the reference result.  

Volpi and Tuia [2] have proposed a method that 

cannot identify the background properly. This is 

shown by comparing the ground truth and their 

results in Figures 19f and 19g, respectively. Our 

proposed method detects the background in Figure 

19h. 

The visual-based comparison of our proposed 

method against reference [6] is shown in the last 

row of Figure 19. As it shows, the quality of 

building detection is better in our proposed method. 

The bottom eclipse shows that our proposed 

method properly detects trees, which are falsely 

detected as low vegetation in [6]. 

 

 

Figure 19. Visual result comparison between our proposed method and the previous works. The second column includes 

the original RGB images, where the corresponding ground truth is shown in the third column. The fourth column shows the 

reported results in the previous works, noted in the first column. The last column is the result of our proposed method. 
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5. Conclusion 

A multi-level method was proposed in this work for 

semantic labelling, which includes fusion of 

spectral and spatial features. The VHR optical 

RGB+NIR image and nDSM data are fused for 

object classification. The impervious surface, 

building, low vegetation, tree, car, and background 

were detected in different levels. Although the 

procedure of the proposed method is not deep, the 

results are comparable to deep models. 

Our proposed method comprises four phases. First, 

the optical and nDSM images of the area of interest 

are compared to dynamically find the best training 

set, which is found in a histogram-based manner. 

Feature set is extracted in the following phase, 

which includes the spectral and spatial features. 

Then three Random Forest (RF) classifiers are 

trained to classify the selected image into the 

desired classes. 

The spatial operations refine the classification 

result. It contains a new feature named LLT to find 

the leafless tree structures, which are typically hard 

to find in a spectral analysis. It considers the 

structure of car and building to improve the 

detection accuracy of these man-made structures. 

Although our evaluation does not show a high 

improvement in the overall accuracy and Kappa 

coefficient, our non-deep proposed method with 

spatial refinements gets similar results compared to 

deep methods. It is also implemented in GEE that 

is fast and of interest by many developers recently. 
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 نشریه هوش مصنوعی و داده کاوی

 

 

 

 بر مکانی و طیفی هایویژگی ادغام و تصادفی جنگل بندی طبقه با VHR تصاویر مفهومی زنی برچسب

 Google Earth موتور روی

 

 *یاسر بالغی محمد کاکوئی و

 .ایران بابل، ،کامپیوتر و برق مهندسی دانشکده بابل، نوشیروانی صنعتی دانشگاه

 31/03/2020 پذیرش؛ 03/02/2020 بازنگری؛ 08/04/2019 ارسال

 چکیده:

با رزولوشن خیلی   (DSM) سطح مدل رقومی  زنی مفهومی است. اشیا در تصاویر نوری و   های فعال در کاربردهای سنجش از دور، برچسب  یکی از زمینه

زنی مفهومی را افزایش دهد، اما مدیریت آنها یک کار چالش برانگیز استتت. در این  توانند دقت برچستتبمی ( دارای جزییات زیادی هستتدند وVHRبالا )

اند تا برای آموزش  های طیفی و مکانی اشتتیا ادغام شتتداارائه شتتدا استتت. وی  ی DSMزنی مفهومی با ادغام تصتتاویر نوری و مقاله، یک روش برچستتب

ار، درخت،  زانداز: سطوح غیر قابل نفوذ، ساخدمان، سبزاهای آن عبارتاست که کلاس ای اسدفادا شدادادا ارزیابی از پایگاابند اسدفادا شوند. برای طبقه

 تحلیل سازی شدا است. این روش از چندین سطح تشکیل شدا است. ابددا،    پیادا Google Earthزمینه. روش پیشنهادی بر بر روی موتور  ماشین و پس 

 هم سماتری شود تا باندی با حداکثر فاصله بین مناطق سبز و غیر سبز ایجاد شود. ماتریس     های سبزینگی اعمال می به شاخص  (PCA) اصلی  هایمؤلفه

به صتتورت   (RF) بند جنگل تصتتادفی یرد. چندین طبقههای مکانی مورد استتدفادا قرار میبرای محاستتبه وی  ی (GLCM) خاکستتدری ستتطح رخداد

 LeafLess درخت بدون برگ پردازند. وی  یبندی میبندی، چندین عملگر مکانی به تصتتحیح ندایط طبقیشتتود. پس از طبقهخودکار آموزش دادا می

Tree (LLT )     سدفادا می سایی درخت و افزایش دقت آن ا شنا صحیح        برای بهبود  صلی و محور فرعی برای ت ساحت، محور ا سای   شود. اندازا م ی  شنا

دهد که ارتقای قابل توجهی در شناسایی درخت، ساخدمان و ماشین ایجاد شدا است. دقت کل و       شود. ارزیابی نشان می  اسدفادا می  ساخدمان و ماشین  

 .دارندضریب کاپا نیز مقدار مناسبی 

  ستتطح رخداد هم ماتریس، Google Earth ،GLCM ، وی  ی مکانی، موتوربا رزولوشتتن خیلی بالا برچستتب زنی مفهومی تصتتاویر  :کلمات کلیدی

 .جنگل تصادفی، درخت بدون برگ ،خاکسدری

 


