
1

Journal of AI and Data Mining

Vol 8, No 3, 2020, 331-341. DOI: 10.22044/JADM.2020.7847.1924

 Shuffled Frog-Leaping Programming for Solving Regression Problems

M. Abdollahi1* and M. Aliyari Shoorehdeli2

1. Department of Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran.

2. Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran.

Received 19 December 2018; Revised 08 January 2020; Accepted 05 February 2020

*Corresponding author M.abdollahi@ee.kntu.ac.ir (M. Abdollahi).

Abstract

There are various automatic programming models inspired by evolutionary computation techniques. Due to

the importance of devising an automatic mechanism to explore the complicated search space of mathematical

problems where numerical methods fail, the evolutionary computations are widely studied and applied to solve

real-world problems. One of the famous algorithms in an optimization problem is the shuffled frog leaping

algorithm (SFLA), which is inspired by the behavior of frogs to find the highest quantity of the available food

by searching their environment both locally and globally. The results of SFLA prove that it is competitively

effective to solve problems. In this paper, Shuffled Frog Leaping Programming (SFLP) inspired by SFLA is

proposed as a novel type of automatic programming model to solve the symbolic regression problems based

on tree representation. Also, in SFLP, a new mechanism is proposed for improving constant numbers in the

tree structure. In this way, different domains of mathematical problems can be addressed with the use of the

proposed method. To find out about the performance of the generated solutions by SFLP, various experiments

are conducted using several benchmark functions. The results obtained are also compared with other

evolutionary programming algorithms like BBP, GSP, GP, and many variants of GP.

Keywords: Genetic Programming, Shuffled Frog Leaping Algorithm, Shuffled Frog Leaping Programming,

Regression Problems.

1. Introduction

The evolutionary computation approach is a novel

paradigm in the machine learning area. As a part of

these approaches, there are a number of

evolutionary iterations for growth and

development in the population. Through a random

search, the population is created to acquire the

expected conclusion. These operations are inspired

by evolution inside biological mechanisms [6].

Genetic programming (GP), which stems from the

genetic algorithm (GA), shows the solutions as

computer programs instead of binary strings [1].

GP offers solutions to complex problems by

searching in the problem space automatically. The

population of computer programs in GP is evolved

during a number of generations. GP randomly

changes and places populations of programs into

new populations of programs with the hope of

better solutions while the search is done using GA

[21]. There are many types of GP with different

cross-over operators including standard cross-over

(SC) [21] operator in basic GP, semantic similarity-

based cross-over (SSC) [29], semantics-aware

cross-over (SAC) [27], soft brood selection (SBS)

[22], context-aware crossover (CAC) [25] and no

same mate (NSM) [13]. In addition, modified

versions of GP have been proposed with some

improvement, for instance, linear GP (LGP) [4],

cartesian GP (CGP) [26], and gene expression

programming (GEP) [9]. Another evolutionary

computation technique inspired from the biological

immune system concepts is clone selection

programming (CSP) [10].

Dynamic ant programming (DAP) is another

technique for intelligent programming derived

from ant colony optimization. This algorithm uses

a pheromone table that changes dynamically. It is a

pheromone value upon which the nodes (terminal

and nonterminal) are chosen. The selection of

http://dx.doi.org/10.22044/jadm.2018.6311.1746

Abdollahi & Aliyari Shoorehdeli / Journal of AI and Data Mining, Vol 8, No 3, 2020.

332

nodes with high pheromone rates has more

feasibility than the other ones. In this method, the

search space changes dynamically and the ants

discover better solutions using portions of solutions

based on the pheromone value [34].

Artificial bee colony programming (ABCP) is

another method for automatic programming

derived from the artificial bee colony (ABC)

algorithm. Similar to the relation between GP and

GA, ABCP is an extension of ABC algorithm that

deals with the representation of the problem using

substantially complex structures [18].

Biogeography-based optimization (BBO),

proposed by Simon, is an inspiration of the

geographical distribution and migration of species

in an ecosystem [35]. Biogeography-Based

Programming (BBP), inspired by BBO, has been

offered as a paradigm combining the program-like

representation of solutions to symbolic regression

problems regarding the biogeographical system.

BBP can be applied to different types of problem

domains and its performance indicates that it can

find solutions to problems effectively [11].

Gravitational search algorithm (GSA) is an

optimization technique that is inspired by the

Newton’s law of universal gravitation and how the

law of motion happens. Gravitational search

programming (GSP) is one of the recent methods

for automatic programming proposed by

Mahanipour et.al. [12]. This method focuses on a

new gravitational search algorithm (GSA)-based

algorithm to generate computer programs,

automatically. GSP employs the GSA approach to

generate the tree structure and insertion of internal

nodes in a discrete space of tree-based solution

representation.

SFLA is one of the successful meta-heuristic

methods in the evolutionary computation [8].

SFLA simultaneously takes benefit of the genetic-

based memetic algorithms and the social-based

PSO algorithms [20]. Different from the PSO

algorithm, SFLA considers the evolution of both

genes and memes. Elbeltagia et al. compared

among five meta-heuristic methods including PSO

and SFLA [7]. So far, SFLA has been used in many

optimization problems such as cloud resource

scheduling [28, 30, 38], identification of

astrocytoma [36], planning and scheduling [3, 33],

acoustic emissions waveform analysis [23], fuel

management optimization [2], vehicle routing

problem [5, 24], grade identification of

astrocytoma [36], and photovoltaic model

identification [14]. In this paper, Shuffled Frog

Leaping Programming (SFLP) inspired by SFLA,

is proposed as a novel model that aims at finding

the mathematical solution for symbolic regression

problems with the principles and theories of the

memetic-based algorithm. The rest of this paper is

formed as follows. In Section 2, a brief overview

of SFLA is described. Section 3 presents the

proposed SFLP. In Section 4, the performance of

SFLP is tested on ten well-known benchmark

datasets and the results obtained are compared with

some existing algorithms. Also, the analysis of the

performance sensitivity of the parameter settings

for the proposed SFLP is presented in this section.

Finally, the conclusion and further work are

provided in Section 5.

2. Shuffled Frog Leaping Algorithm (SFLA)

SFLA is originally inspired by imitating,

observing, and modeling of frogs’ behavior when

they are seeking for a location containing the

highest quantity of food [8]. Eusuff and Lansey

have first introduced SFLA in 2003. This method

is capable of dealing with many complex

optimization problems that are nonlinear, non-

differentiable, and multi-modal [31]. The most

prominent benefit of SFLA is its fast convergence

speed [7]. SFLA takes advantage of both a memetic

algorithm based on genetic and PSO algorithm

depending on the social behavior [20]. The

flowchart in figure 1 illustrates the SFLA approach.

This algorithm is affected by the natural memetic

benefits from the population with a random search.

In this algorithm, several communities that contain

groups of potential solutions are formed. Each

solution represents a frog in the algorithm. Also,

these communities are called memeplexes, and

inside each one, the frogs perform a local search.

Inside each memeplex, the behavior of a frog can

be affected by other frogs’ behaviors, and through

a process of memetic evolution, its behavior

improves. With the lapse of some evolutionary

steps, the memeplexes are mixed and then new

memeplexes are developed using the shuffling

process. Using the shuffling, the exchange of

information is done among local searches, leading

to a move toward a global optimum. The two

processes of shuffling and local search continue

until the convergence target is fulfilled (1). SFLA

can be delineated in the following:

• SFLA holds a population of possible solutions

F, defined by a group of virtual frogs (n).

• According to their fitness, frogs are sorted
descendingly, and then divided into subsets
named as memeplexes (m).

• Frog 𝑖 is shown as 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑆)
where 𝑆 represents the number of variables.

Abdollahi & Aliyari Shoorehdeli / Journal of AI and Data Mining, Vol 8, No 3, 2020.

333

• Inside each memeplex, the worst 𝑋𝑤 and the
best 𝑋𝑏 frogs are identified based on fitness.

• Frog with the global best fitness 𝑋𝑔 is identified.

• The fitness of the worst frog is improved using
the following Equation:

𝐷𝑖 = 𝑟𝑎𝑛𝑑()(𝑋𝑏 − 𝑋𝑤) (1)

𝑋𝑤new= 𝑋𝑤𝑜𝑙𝑑 + 𝐷𝑖(−𝐷𝑚𝑎𝑥 ≤ 𝐷𝑖 ≤ 𝐷𝑚𝑎𝑥) (2)

where rand stands for a random number in [0,1]; 𝐷𝑖
is the frog leaping step size of the i − th frog.
𝐷𝑚𝑎𝑥 is the maximum step allowed to make
changes in a frog position. If the fitness of the new
𝑋𝑤 is higher than the current one, 𝑋𝑤 will be
accepted. If it is not improved, then Equations (1)
and (2) are repeated by replacing 𝑋𝑏 with 𝑋𝑔. If no

improvement becomes possible in the solution, a
new 𝑋𝑤 will be generated randomly. Repeat the
updating operation for a number of iterations. The
local search flowchart of SFLA is demonstrated in
figure 2.

Figure 1. Flowchart of SFLA.

After some memetic evolutionary steps inside each

memeplex, the obtained solutions of evolved

memeplexes are replaced into the new population.

This process is called shuffling. The shuffling

process encourages a global information exchange

among the frogs. Afterward, the population is

sorted in a descending manner based on the

performance value, and the position of the best frog

of the population is updated. Next, frogs are

repartitioned into memeplexes, and the algorithm

carries on the evolution within each memeplex

until the convergence criteria are met.

 Figure 2. Flowchart of Local Search.

3. Shuffled Frog Leaping Programming (SFLP)

SFLP is an extension of SFLA, which aims at

finding an explicit mathematical expression for a

given set of input and one output by applying the

terminals and non-terminals defined in the

algorithm. This type of programming intends to

focus on the representation of the problem using a

more complicated structure as the case between GP

and GA. Despite the conventional regression,

where the coefficients of functions are not

calculated, the generated program carries out an

extensively structured search in an evolving search

space of symbolic functions. Solutions use the tree

representation, which contains a group of terminals

and non-terminals. Terminals are constant or

Initial population (frogs)

End

Stop criteria

 Shuffle the evolved memeplexes

Yes

No

No

No

Yes

No

Find 𝑋𝑔 and for each memeplex

𝑋𝑏 and 𝑋𝑤

Perform crossover

between 𝑋𝑤 and 𝑋𝑔

Perform crossover

between 𝑋𝑤and 𝑋𝑏

New frog is better than

worst 𝑋𝑤

Start

Generate a new random frog

New frog is better

than 𝑋𝑤

Stop criteria

End

Yes

Yes

Evaluate the initial and

sorting them in descending

order

population

Create memeplexes (m)

Local Search in each memeplex

Stop

Replace 𝑋𝑤 with the new frog

Abdollahi & Aliyari Shoorehdeli / Journal of AI and Data Mining, Vol 8, No 3, 2020.

334

variable that usually are taken from mathematical

or arithmetic operators and domain-specific

functions that are selected inconsistent with the

problem.
In this work, SFLP is applied to symbolic

regression problems to test its capability of

introducing solutions. The global exchange of

information among frogs and their interactions are

the key elements of evolving memes in the

proposed method. By employing tree

representation for the structure of frogs, the storage

of expressions in the computer memory is

facilitated. Besides, the operations of the swap, add

and remove of subtrees are done so quickly.

One of the main features of SFLP is the ability to

do the local search effectively by dividing the

initial population in to a number of sub-

populations. In this way, in each sub-population we

can find the local best much more effectively, and

by means of an information exchange mechanism

we can find the global best found among the sub

populations.
Thus, such structure should literally outperform

algorithms such as Genetic Programing in which in

GP there is no such population segmentation. It is

also shown in the experimental results that

population segmentation structure helps SFLP

outperform GP in practice. In the algorithm, the

performance of each computer program is

evaluated to measure the quality of each frog

position, which is named the fitness measurement.

This measurement shows how much the result of

the obtained solution fits with the desired function.

In the fitness measurement procedure, there is a

tendency for raw fitness towards zero, as in [32].

The pseudo-code of SFLP is defined in Algorithm

1.
In order to distribute the initial population among

memeplexes, first we sort the population in a

descending order. Then, the best individual in the

initial population is placed in the first memeplex,

and the second-best individual in the second

memeplex, and so on and so forth.

For the last memeplex (𝑛 − 𝑡ℎ), we let this

memeplex selects two best individuals of the initial

population i.e. 𝑛 and 𝑛 + 1. In this way, we let

each memeplex has a fair quality in terms of

solution accuracy.

The raw fitness is calculated by cumulating the

absolute errors between the obtained and the

desired functions derived from a number of fitness

cases. Hits measurement is a criterion usually

calculated in symbolic regression studies.

Algorithm 1: Pseudo-code of SFLP

Generate random frogs of F with Ramped half-and-half method

Evaluate the frogs’ fitness

Divide the whole frogs into m memeplexes, and each memeplex

contains n frogs
 contains 𝑛 frogs

for max iteration do

for each memeplex do

 Construct a sub-memeplex Set 𝑖 = 0;

 for 𝑖 < 𝑁𝑠𝑡𝑒𝑝 do

Performing cross-over between worst frog and local

best frog in every sub-memeplex
 best frog in every sub-memeplex

Improving constant numbers of resultant new tree

if 𝑋𝑤 ≤ 𝑋𝑤𝑛𝑒𝑤 then

 replace 𝑋𝑤 with 𝑋𝑤𝑛𝑒𝑤

 else

Performing cross-over between worst frog in

each sub-memeplex and global best frog
 sub-memeplex and global best frog

Improving constant numbers of resultant new tree

if 𝑋𝑤 ≤ 𝑋𝑤𝑛𝑒𝑤 then

 replace 𝑋𝑤 with 𝑋𝑤𝑛𝑒𝑤

else

 Perform mutation on local best frog and replace

𝑋𝑤 with it
 replace 𝑋𝑤 with it

end if

 end if

 𝑖 = 𝑖 + 1

 end for

 end for

 Shuffle the memeplexes and update global best frog

 Check termination criteria

end for

The quantity of the absolute error of fitness cases

with the values lower than the hits criterion will

form the hit measurement. Some modifications are

exerted on the GP basic operators to introduce the

operators best fitted with the nature of SFLP, which

are explained in the followings:

3.1. Cross-over

In SFLP, a cross-over operator is used to transfer

the behavior of the local or global best frog to the

worst frog of the current sub-memeplex. To

perform cross-over, trees of the worst frog and the

best frog in the sub-memeplex are considered as

inputs. By swapping the random subtrees of the

inputs the cross-over is performed. The proposed

operator used in SFLP proceeds with the following

steps:

Abdollahi & Aliyari Shoorehdeli / Journal of AI and Data Mining, Vol 8, No 3, 2020.

335

• Select the worst and the best frogs based on
their fitness in the sub-memeplex. The frog with
the best fitness is selected and named as
mimicked frog and the frog with the worst
fitness as the memetic frog.

• Select a random sub-tree in each mimicked frog
and the memetic frog.

• Replace the selected subtree of the memetic
frog by the selected sub-tree of the mimicked
frog.

The resultant tree is a new frog whose depth should

be checked. The transition process is shown in

figure 3. After the changed memetic frog was

created, its fitness is evaluated and compared with

the fitness of the first memetic frog. If the fitness is

better than the initial memetic frog, the worst frog

is replaced with it; otherwise, this process is

repeated using the best frog of the whole

population along with the previous memetic frog.

Figure 3. Proposed Cross-over.

3.2. Mutation

The mutation operator in SFLP causes random

changes in the structure of the local best frog of the

current sub-memeplex, while two previous

performed cross-overs on the local best and global

best frogs have not been successful to suggest a

new candidate with better fitness comparing to the

memetic frog. At this stage, SFLA generates a new

individual to replace the memetic frog, while in

SFLP, the local best frog is mutated for

replacement. More specifically, the mutation

operator selects a random point in the structure of

the local best frog and then removes the selected

point and its sub-tree at the current point and then

inserts a subtree generated randomly in its place.

To control an appropriate replacement during the

mutation operator, the depth of the generated sub-

tree is checked to be in the valid range using the

parameter of maximum tree depth. The relevant

process is illustrated in figure 4 in which an

optional candidate frog is mutated using the

described process of replacing a random sub-tree

with a generated one. As the next step, the

performance of the mutated frog is evaluated and

then inserted into the population.

Candidate frog Mutated frog

Figure 4. Basic mutation.

The frogs’ target is to move towards the best

solution by improving their memes. Others can use

either the ideas from the best frog from the

memeplex as a local search or from the currently

found global best. Considering the selection of the

memeplex best, it is not always suitable to use the

best frog because the frogs would tend to focus

about that specific frog that may be a local

optimum. Therefore, a subset of the memeplex

called a sub-memeplex is picked up [8]. To start the

local search, each memeplex acts as an independent

culture. A sub-memeplex including q frogs in the

memeplex is selected randomly, where 𝑞 < 𝑛.

Conceptually, since the local meme of each sub-

memeplex is employed to guide its frogs toward the

local best frog, it is rational to use the local best

frog of each sub-memeplex for mutation. If the

global best frog is mutated as the last operation on

each sub-memeplex, the convergence of the

population stops at a certain value, because the

whole population mimics the behavior of the first

best frog. As a result, the information of each sub-

memeplex is lost, and the whole structure of the

algorithm becomes meaningless.

3.3. Constant creation method

One of the challenging fields of automatic

programming is the improvement of constant

numbers during the evolution. For this reason,

methodologies such as ABCP use the value of one

as the constant number for the terminal with no

changes during the evolution. In this way, no

*

cos +

/

x y

log

/

x y

*

cos +

/

x y

sin

exp

x

Changed memetic frog

Abdollahi & Aliyari Shoorehdeli / Journal of AI and Data Mining, Vol 8, No 3, 2020.

336

attempt will be made to estimate the constant

numbers in the target solution.

In SFLP, we proposed a novel method to improve

the constant numbers. The inputs of this method are

two trees named as 𝑊 and 𝐵, which stand for the

worst tree and the best tree, respectively. The

number of constants in 𝑊 is 𝑞 and 𝑊(𝑖) is the 𝑖 −
𝑡ℎ constant number of 𝑊, and 𝑖 occurs between 0

and 𝑞. Also, the number of constants in 𝐵 is 𝑝 and

𝐵(𝑗) is the 𝑗 − 𝑡ℎ constant number of 𝐵 and 𝑗

occurs between 0 and 𝑝. Each constant number in

𝑊 is randomly changed to one of the constant

numbers of 𝐵 by the formula inspired by the PSO

algorithm. The equation is displayed below:

𝑊(𝑖) = 𝑊(𝑖) + 2 ∗ 𝑟𝑎𝑛𝑑((𝐵(𝑗) − 𝑊(𝑖))) (3)

In the equation, rand is a random number in the

interval of [0,1]. This method will help to use an

interval of constant numbers in GP systems when

we define constant numbers. Changes of the

constant numbers will be towards better ones,

which increase the possibility of using better

constant numbers in 𝑊.

Algorithm 2 Constant number creation

Inputs: 𝑊, 𝐵 Outputs: 𝑊 𝑞 = 𝑛𝑐𝑜𝑛𝑠𝑡(𝑊); 𝑝 = 𝑛𝑐𝑜𝑛𝑠𝑡(𝐵);

for 𝑖 = 1 ∶ 𝑞 do

 𝑗 = 𝑟𝑎𝑛𝑑𝑖(1, 𝑝)

contains n frogs
 𝑗 = 𝑟𝑎𝑛𝑑𝑖(1, 𝑝)

 𝑊(𝑖) = 𝑊(𝑖) + 2 ∗ 𝑟𝑎𝑛𝑑((𝐵(𝑗) − 𝑊(𝑖)))

endfor

where 𝑛𝑐𝑜𝑛𝑠𝑡() is a function that counts constant

numbers of a tree. 𝑟𝑎𝑛𝑑𝑖 is also a function that

generates uniformly distributed pseudo-random

integers within a given interval.

4. Experiments and results

4.1. Experimental results

In order to find out about the performance of SFLP,

this method was compared with algorithms of this

class such as BBP [11], and GSP [12]. Some

techniques based on GP, namely, semantic

similarity-based cross-over (SSC) [29] plus

standard cross-over (SC) [21], soft brood selection

(SBS) [22], no same mate(NSM) [13], context

aware cross-over (CAC) [25], and semantics-aware

cross-over (SAC) [27]. The performance criteria

for comparison among them are a set of problems

of symbolic regression employed in references [15,

17]. These ten real-valued problems are classified

into three categories:

1. polynomial functions

2. logarithm, trigonometric, and square root

functions

3. bivariate functions

Their problem definitions are given in table 1. The

number of function node evaluations was

considered during the experiment to control the

computational cost for each run. This measurement

has been utilized in some recent automatic

programming studies [16, 29, 37]. In order to

remove random correlations in the experiment,

each solution was independently executed 100

times. The number of node evaluations was set to

15 × 106 in the experiments. To examine and

compare the performance of solutions, two classic

performance metrics were calculated. One was the

matrix of mean best fitness and the other, matrix of

the percentage of successful runs.

A successful run occurs when an individual’s score

on all fitness cases reaches a value < 0.01. This

fitness value is called the score hit. The main and

internal parameters of the SFLP, BBP, GSP and

GP-based techniques are given in tables 2 and 3,

respectively. The results of other considered

algorithms were reported from references [18, 29],

which were compared with the proposed method in

tables 4 and 5. The number of successful runs and

the mean best fitness values of SFLP and other

techniques are presented in tables 4 and 5,

respectively. In each setting, the best obtained

result is written in bold face. The number of local

evolutions is 𝑁𝑠𝑡𝑒𝑝, sub-memeplex size is 𝑞, the

number of memeplexes 𝑚, the memeplex size is n,

and the total number of frogs is 𝑚 × 𝑛. The

parameter values employed in the method are

𝑁𝑠𝑡𝑒𝑝 = 50, 𝑞 = 2, 𝑚 = 100, 𝑛 = 5. The

relevant parameter analysis for each of them has

been presented in the following sections. Can be

seen in tables 4 and 5, SFLP considerably

outperforms other algorithms and on all benchmark

functions in both aspects of the number of

successful runs and the mean best fitness values.

Also, the results of table 4 are consistent with those

of table 5. In evolutionary computation, the optimal

search strategy is regarded as a vital aspect

affecting the performance of the algorithms.

Indeed, the ability to perform global and local

search simultaneously is because of its hybrid

nature of GA and PSO, which helps the algorithm

to have an appropriate search strategy.

Abdollahi & Aliyari Shoorehdeli / Journal of AI and Data Mining, Vol 8, No 3, 2020.

337

Table 1. Symbolic regression functions.

Functions Fit cases

𝐹1 = 𝑥3 +𝑥2 +𝑥 20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆ [−1,1]

𝐹2 = 𝑥4 +𝑥3 +𝑥2 +𝑥 20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆ [−1,1]

𝐹3 = 𝑥5 +𝑥4 +𝑥3 +𝑥2 +𝑥 20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆ [−1,1]

𝐹4 = 𝑥6 +𝑥5 +𝑥4 +𝑥3 +𝑥2 +𝑥 20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆ [−1,1]

𝐹5 = 𝑠𝑖𝑛(𝑥2) 𝑐𝑜𝑠(𝑥) − 1 20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆ [−1,1]

𝐹6 = 𝑠𝑖𝑛(𝑥) + 𝑠𝑖𝑛(𝑥 + 𝑥2) 20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆ [−1,1]

𝐹7 = 𝑙𝑜𝑔√(𝑥 + 1) + 𝑙𝑜𝑔 (𝑥2 + 1)

𝐹8 = 𝑥

20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆ [0,2]

20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆ [0,4]

𝐹9 = 𝑠𝑖𝑛(𝑥) + 𝑠𝑖𝑛(𝑦2) 100 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆ [−1,1] × [−1,1]

𝐹10 = 2𝑠𝑖𝑛(𝑥)𝑐𝑜𝑠(𝑦) 100 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆ [−1,1] × [−1,1]

Table 2. Main parameters of models.

Parameter Value

Selection Tournament

Tournament size 3

Initial max depth 6

Max depth 15

Max depth of mutation tree 5

Non-terminals +, −,×,/, 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑒𝑥𝑝, 𝑟𝑙𝑜𝑔

Terminals 𝑋, 1 for single variable problems and 𝑋, 𝑌 𝑎𝑛𝑑 1 for bi-variable problems

Row fitness Sum of absolute error on all fitness cases

Hit when an individual’s absolute error is < 0.01 on a fitness case

Successful run When an individual’s score hits on all fitness cases

Trials per treatment 100 independent runs for each value

The results obtained demonstrate that SFLP is a

robust algorithm and its search strategy has a

positive impact on the performance of the proposed

model.

Simply, the superior performance of the SFLP

should be attributed to its ability to take advantage

of local search while it still searches globally.

Also, the top three methods are statistically

analyzed using 1-tailed and 2-tailed multiple-

problem Wilcoxon’s signed rank tests in table 6.

According to the table and considering 𝑝 −
𝑣𝑎𝑙𝑢𝑒 < 0.05 at 𝛼 = 0.05, SFLP significantly

outperforms BBP in the case of total performance,

which proves that SFLP can generate competitive

solutions for the problems.

Also, it exhibits better average error than BBP

based on table 5. SFLP also significantly out-

performs GSP in the case of total performance,

which proves that SFLP can generate competitive

solutions for the problems.

Besides, it exhibits better average error than GSP

based on table 5. It should be noted that SFLP

introduces a new methodology of automatic

programming and opens a new field for

investigation toward generating programs using the

genetic programming concepts. Finally, by

comparing SFLP with GP, it is clear that SFLP is

significantly better than GP.

4.2. Effects of number of memeplexes and size

The main parameters of SFLP were aimed to study

their effect on the results of the runs of the

benchmark problems. At first, the number of

memeplexes, as well as the memeplex size, are

variable and other parameters, namely, the number

of local evolutions is 𝑁𝑠𝑡𝑒𝑝 = 30 and, sub-

memeplex size is 𝑞 = 5. It should be noted that

the total number of frogs is the multiplication of the

number of memeplexes m and the memeplex size n

that is 𝑚 × 𝑛. Therefore, by studying the number

of memeplexes for the fixed value of the total

number of frogs, the memeplex size is implicitly

investigated. By comparing SFLA with SFLP in

the case of search space, SFLP performs the search

in a more complex search space; therefore, larger

values for parameters should be set, and on the

other hand, to help the algorithm do the local search

more efficiently, lower values for local search is

required. In order to compare the outputs, the

parameters are set in a way that the local search is

performed more precisely and effectively while

their values are bounded to certain values. Table 7

shows the results of different values of

memeplexes and their size. According to the results

obtained, the performance of SFLP improves as the

number of memeplexes becomes larger.

Abdollahi & Aliyari Shoorehdeli / Journal of AI and Data Mining, Vol 8, No 3, 2020.

338

4.3. Effects of sub-memeplex size

In order to understand the impact of sub-memeplex

size on the algorithm, the parameter q showing the

frogs in a sub-memeplex was varied from 2 to 10.

The other parameters were set to 𝑚 = 100, 𝑛 = 5,

and 𝑁𝑠𝑡𝑒𝑝 = 30. As it can be observed in table 8,

for lower values of q the number of successful runs

is increased.

Table 3. Algorithms internal parameter.

SFLP BBP GSP GP

Parameters Values Parameters Values Parameters Values Parameters Values

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓

𝑓𝑟𝑜𝑔𝑠

500 𝐻𝑎𝑏𝑖𝑡𝑎𝑡 𝑠𝑖𝑧𝑒 500 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑔𝑒𝑛𝑡𝑠 500 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 500

𝑜𝑓 𝑛𝑜𝑑𝑒

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠

15 × 106 # 𝑜𝑓 𝑛𝑜𝑑𝑒

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠

15 × 106 # 𝑜𝑓 𝑛𝑜𝑑𝑒

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠

15 × 106 # 𝑜𝑓 𝑛𝑜𝑑𝑒

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠

15 × 106

𝑀𝑒𝑚𝑒𝑝𝑙𝑒𝑥 𝑠𝑖𝑧𝑒 5 𝑃𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 0.9 𝐺𝐶0 5 𝑃𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 0.9

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓

𝑚𝑒𝑚𝑒𝑝𝑙𝑒𝑥𝑒𝑠

100 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 0.1 𝛼 20 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 0.05

𝑆𝑢𝑏𝑚𝑒𝑚𝑒𝑝𝑙𝑒𝑥

𝑠𝑖𝑧𝑒

2 𝐾0 50

𝐿𝑜𝑐𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 50 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐 −

𝑡𝑖𝑜𝑛’𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

𝑁𝑜 𝑐ℎ𝑎𝑛𝑔𝑒,
∧2,∧3,

𝑠𝑞𝑢𝑎𝑟𝑒 𝑟𝑜𝑜𝑡

Table 4. Number of successful runs of SFLP and other considered models with parameter setting of 𝑵𝒔𝒕𝒆𝒑 = 𝟓𝟎, 𝒒 = 𝟐, 𝒎 =
𝟏𝟎𝟎, 𝒂𝒏𝒅 𝒏 = 𝟓.

 Functions

Models F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SFLP 100 97 82 75 94 94 93 94 100 78

GSP 92 85 90 86 84 80 75 79 76 65

BBP 100 96 80 69 90 98 97 90 77 86

ABCP 89 50 22 12 57 87 58 37 33 21

SC 48 22 7 4 20 35 35 16 7 18

NSM 48 16 4 4 19 36 40 28 4 17

SAC2 53 25 7 4 17 32 25 13 4 4

SAC3 56 19 6 2 21 23 25 12 3 8

SAC4 53 17 11 1 20 23 29 14 3 8

SAC5 53 17 11 1 19 27 30 12 3 8

CAC1 34 19 7 7 12 22 25 9 1 15

CAC2 34 20 7 7 13 23 25 9 2 16

CAC4 35 22 7 8 12 22 26 10 3 16

SBS31 43 15 9 6 31 28 31 17 13 33

SBS32 42 26 7 8 36 27 44 30 17 27

SBS34 51 21 10 9 34 33 46 25 26 33

SBS41 41 22 9 5 31 34 38 25 19 33

SBS42 50 22 17 10 41 32 51 24 24 33

SBS44 40 25 16 9 35 43 42 28 33 34

SSC8 66 28 22 10 48 56 59 21 25 47

SSC12 67 33 14 12 47 47 66 38 37 51

SSC16 55 39 20 11 46 44 67 29 30 59

SSC20 58 27 10 9 52 48 63 26 39 51

The frogs of each memeplex have more chance to

exchange the existing information among them,

and therefore, it helps them to move towards the

local best frog in each memeplex.

It is better to select a smaller size of sub-memeplex

for more complex problems to introduce better

global solutions and to let the local search

exchange the information within each sub-

memeplex in depth.

Table 6. Results of the multiple-problem Wilcoxon’s

signed rank test for SFLP, BBP, and GSP.

Methods SFLP vs BBP SFLP vs GSP SFLP vs GP

p-Value(1-tailed) 0.8499 0.0008 0.0001

p-Value(2-tailed) 0.3387 0.0036 0.0001

4.4. Effects of Nstep size

The number of evaluation steps for different Nstep

size is shown in table 9, in which the values are 10,

20, 30, 50, and 100.

Abdollahi & Aliyari Shoorehdeli / Journal of AI and Data Mining, Vol 8, No 3, 2020.

339

Table 5. Mean best fitness values of SFLP and other mentioned methods with parameter setting of 𝑵𝒔𝒕𝒆𝒑 = 𝟓𝟎, 𝒒 = 𝟐, 𝒎 =
𝟏𝟎𝟎, 𝒂𝒏𝒅 𝒏 = 𝟓.

 Functions

Models F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SFLP <0.01 <0.01 0.01 0.02 0.01 <0.01 0.01 <0.01 <0.01 0.05

GSP 0.01 0.05 <0.01 0.1 0.05 0.02 0.06 0.1 0.47 1.06

BBP <0.01 <0.01 0.02 0.03 0.01 <0.01 <0.01 0.02 0.20 0.09

ABCP 0.01 0.05 0.07 0.1 0.05 0.02 0.06 0.1 0.47 1.06

SC 0.18 0.26 0.39 0.41 0.21 0.22 0.13 0.26 5.54 2.26

NSM 0.16 0.29 0.34 0.4 0.19 0.17 0.11 0.19 5.44 2.16

SAC2 0.16 0.27 0.42 0.5 0.22 0.23 0.15 0.27 5.99 3.19

SAC3 0.13 0.27 0.42 0.48 0.18 0.23 0.15 0.27 5.77 3.13

SAC4 0.15 0.29 0.41 0.46 0.17 0.22 0.15 0.26 5.77 3.03

SAC5 0.15 0.29 0.4 0.46 0.17 0.21 0.15 0.26 5.77 83.03

CAC1 0.33 0.41 0.51 0.53 0.31 0.42 0.17 0.35 7.83 4.4

CAC2 0.32 0.41 0.52 0.53 0.31 0.42 0.17 0.35 7.38 4.3

CAC4 0.33 0.41 0.53 0.53 0.3 0.42 0.17 0.35 7.8 4.32

SBS31 0.18 0.29 0.3 0.36 0.17 0.3 0.15 0.19 4.78 2.75

SBS32 0.18 0.23 0.28 0.36 0.13 0.28 0.1 0.18 4.47 2.77

SBS34 0.16 0.23 0.31 0.33 0.13 0.21 0.11 0.19 4.17 2.9

SBS41 0.18 0.26 0.27 0.38 0.12 0.2 0.13 0.2 4.4 2.75

SBS42 0.12 0.24 0.29 0.3 0.12 0.18 0.1 0.16 3.95 2.76

SBS44 0.18 0.24 0.33 0.35 0.15 0.16 0.11 0.19 2.85 1.75

SSC8 0.09 0.15 0.19 0.29 0.1 0.09 0.07 0.15 3.91 1.53

SSC12 0.07 0.17 0.18 0.28 0.1 0.12 0.07 0.13 3.54 1.45

SSC16 0.1 0.15 0.23 0.26 0.1 0.1 0.06 0.14 3.11 1.22

SSC20 0.08 0.18 0.23 0.3 0.09 0.1 0.06 0.14 2.64 1.23

The other parameters are 𝑚 = 100, 𝑛 = 5, and

𝑞 = 2. It can be realized from table 9 that a higher

value for Nstep leads to a greater number of

successful runs. As a result, this parameter helps

the algorithm converge by generating better

solutions, whereas it lengthens the evaluation

process. For a reasonable evaluation time with

considering the benchmark functions, it is

recommended to set 𝑁𝑠𝑡𝑒𝑝 to 50 because for

values higher than 50, despite a massive increase in

the evaluation time, the number of successful runs

does not have a bilateral growth. Tables 4 and 5 in

the above section have considered 𝑁𝑠𝑡𝑒𝑝 = 50.

It seems rational to boost the algorithm by selecting

higher values for either of the parameters while the

evaluation process of the algorithm becomes

longer. Parameters such as Nstep and the

population of frogs have direct impacts on the

algorithm performance.

Table 7. Number of successful runs for different

memeplex size. The total number of frogs is fixed and is

equal to 𝟓𝟎𝟎.

Number of

memeplexes

(memeplex size)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

5(100) 65 52 25 22 49 55 36 44 54 42

10(50) 74 56 28 26 58 59 46 51 60 48

25(20) 88 65 33 31 61 68 56 58 64 57

50(10) 91 71 39 37 70 75 62 65 77 61

100(5) 95 80 60 58 79 83 73 78 84 64

Table 8. Number of successful runs for different sub-

memeplex size(q).

Sub-

memeplex

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

2 89 81 51 52 64 69 47 68 100 71

3 92 72 30 37 61 83 48 69 99 68

4 90 71 42 31 50 89 50 19 89 67

5 94 82 37 34 64 73 41 73 92 65

6 86 62 36 32 48 76 35 69 79 63

7 91 59 41 36 62 75 32 68 78 55

8 84 65 28 32 54 66 26 64 86 53

9 87 60 26 27 45 64 17 60 78 51

10 81 44 18 14 27 42 18 56 66 45

Table 9. Number of evaluation steps for different Nstep

size.

Number of

evaluation steps

(Nstep)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

10 67 61 41 49 53 67 61 69 76 55

20 85 71 46 55 69 74 73 77 83 61

30 96 80 60 60 75 79 81 84 91 64

50 100 91 64 74 90 90 89 85 100 69

100 100 93 74 75 92 90 92 91 100 70

5. Conclusion

In this paper, a novel method of evolutionary

computation was proposed, which is an extension

of SFLA to study the symbolic regression

problems. The new approach named as shuffled

frog leaping programming is able to evolve

expressions and constants in the tree representation

Abdollahi & Aliyari Shoorehdeli / Journal of AI and Data Mining, Vol 8, No 3, 2020.

340

and build mathematical functions automatically.

Also, a new method for creating constant numbers

is presented, which helps to change the constant

numbers towards the target solution. The proposed

approach was tested on a set of symbolic regression

benchmark problems which exhibited to be

competitive with other popular automatic

programming algorithms such as BBP, GSP,

canonical GP, and different approaches of GP.

Based on the simulations results, the developed

model outputs are superior to all of the considered

well-known methods in the symbolic regression

problems. Also, the statistical analysis, Wilcoxon’s

signed rank test, proves that the overall

performance of the proposed method is remarkably

better than the other competitors. The superior

performance of SFLP is due to its ability to

simultaneously do a local search while still

searching globally.

Overall, the success rate of the algorithm is

acceptable and promising. In general, this number

upsurges while the number of frogs in the

population or each sub-memeplex increases but it

increases the function evaluation required to find

the solution. Also, it was noted that the success rate

had a higher sensitivity to the memeplexes number

comparing to the frogs’ number in a memeplex.

Therefore, it reinforces the idea of exploring more

regions in the domain. Also, the success rate

decreased when the number of frogs in a memeplex

reached a particular value. This matter may refer to

the nature of this type of problem. It is

recommended to research on this phenomenon of

SFLP. In conclusion, SFLP is capable of solving

modeling and automatic programming problems

effectively. As a future work, it is planned to apply

SFLP to solve complex real-world regression

problems and study on some modifications that

lead to increase speed and accuracy.

References
[1] Alavi, A. H., & Gandomi, A. H. (2011). A robust

data mining approach for formulation of geotechnical

engineering systems. Engineering Computations, vol.

28, no. 3, pp. 242-274.

[2] Arshi, S. S., Zolfaghari, A., & Mirvakili, S. (2014).

A multi-objective shuffled frog leaping algorithm for in-

core fuel management optimization. Computer Physics

Communications, vol. 185, no. 10, pp. 2622-2628.

[3] Bala, S. M., & Meenakumari, R. (2015). Optimum

generation scheduling using an improved adaptive

shuffled frog leaping algorithm. In Cognitive computing

and information, international conference on, pp. 1-6.

[4] Brameier, M. F., & Banzhaf, W. (2010). Linear

genetic programming (1st ed.): Springer Publishing

Company, Incorporated.

[5] de Oliveira da Costa, P. R., Mauceri, S., Carroll, P.,

& Pallonetto, F. (2018). A genetic algorithm for a green

vehicle routing problem. Electronic Notes in Discrete

Mathematics, vol. 64, pp. 65-74. 8th International

Network Optimization Conference - INOC 2017.

[6] Eiben, A. E., & Smith, J. E. (2003). Introduction to

evolutionary computing: SpringerVerlag.

[7] Elbeltagi, E., Hegazy, T., & Grierson, D. (2005).

Comparison among five evolutionary-based

optimization algorithms. Advanced Engineering

Informatics, vol. 19, pp. 43-53.

[8] Eusuff, M., Lansey, K., & Pasha, F. (2006). Shuffled

frog-leaping algorithm: A memetic meta-heuristic for

discrete optimization. Engineering Optimization, vol.

38, pp. 129-154.

[9] Ferreira, C. (2001). Gene expression programming:

a new adaptive algorithm for solving problems. CoRR,

cs.AI/0102027, pp. 87-129.

[10] Gan, Z., Chow, T. W., & Chau, W. (2009). Clone

selection programming and its application to symbolic

regression. Expert Systems with Applications, vol. 36,

pp. 3996-4005.

[11] Golafshani, E. M. (2015). Introduction of

biogeography-based programming as a new algorithm

for solving problems. Applied Mathematics and

Computation, vol. 270, pp. 1-12.

[12] Gustafson, S., Burke, E. K., & Krasnogor, N.

(2005). On improving genetic programming for

symbolic regression. In Ieee congress on evolutionary

computation, vol. 1, pp. 912-919.

[13] Hasanien, H. M. (2015). Shuffled frog leaping

algorithm for photovoltaic model identification. IEEE

Transactions on Sustainable Energy, vol. 6, pp. 509-515.

[14] Hoai, N. X., McKay, R. I., Essam, D., & Chau, R.

(2002). Solving the symbolic regression problem with

tree-adjunct grammar guided genetic programming: the

comparative results. In Evolutionary computation. cec

’02. proceedings of the 2002 congress, Vol. 2, pp. 1326-

1331.

[15] Hoang, T.-H., Essam, D., McKay, B., & Hoai, N.-

X. (2007). Advances in computation and intelligence:

Second international symposium, isica 2007 Wuhan,

china, 2007 proceedings, pp. 137–146. Berlin,

Heidelberg: Springer Berlin Heidelberg.

[16] Johnson, C. G. (2009). Genetic programming: 12th

European conference, eurogp 2009 Tübingen, Germany,

April 15-17, 2009 proceedings, pp. 97-108. Berlin,

Heidelberg: Springer Berlin Heidelberg.

[17] Karaboga, D., Ozturk, C., Karaboga, N., &

Gorkemli, B. (2012). Artificial bee colony programming

for symbolic regression. Inf. Sci., vol. 209, pp. 1-15.

Abdollahi & Aliyari Shoorehdeli / Journal of AI and Data Mining, Vol 8, No 3, 2020.

341

[18] Keijzer, M. (2003). Genetic programming: 6th

European conference, eurogp 2003 Essex, uk, April 14–

16, 2003 proceedings. pp. 70-82. Berlin, Heidelberg:

Springer Berlin Heidelberg.

[19] Kennedy, J., & Eberhart, R. (1995). Particle swarm

optimization. In Neural networks, proceedings., ieee

international conference, vol. 4, pp. 1942-1948.

[20] Koza, J. R. (1992). Genetic programming: On the

programming of computers by means of natural

selection. Cambridge, MA, USA: MIT Press.

[21] L.Altenberg. (1996). Advances in genetic

programming (Vol. 2). Cambridge, USA: MIT Press.

[22] Li, J., Zhao, L., Yue, J., & Yang, Y. (2015).

Acoustic emissions waveform analysis for the

recognition of coal rock stability. In International

conference on information technology systems and

innovation (icitsi), pp. 1-6.

[23] Luo, J., Li, X., Chen, M.-R., & Liu, H. (2015). A

novel hybrid shuffled frog leaping algorithm for vehicle

routing problem with time windows. Information

Sciences, vol. 316, pp. 266-292.

[24] Mahanipour, A., & Nezamabadi-pour, H. (2018).

GSP: an automatic programming technique with

gravitational search algorithm. Applied Intelligence,

vol. 49, pp. 1502-1516.

[25] Majeed, H., & Ryan, C. (2006). Genetic

programming: 9th European conference, eurogp 2006,

Budapest, Hungary, April 10-12, 2006. proceedings. pp.

36-48. Berlin, Heidelberg: Springer Berlin Heidelberg.

[26] Miller, J. F., & Harding, S. L. (2008). Cartesian

genetic programming. In Proceedings of the 10th annual

conference companion on genetic and evolutionary

computation, pp. 2701-2726. New York, USA: ACM.

[27] Nguyen, Q. U., Nguyen, X. H., & O’Neill, M.

(2009). Semantic aware crossover for genetic

programming: The case for real-valued function

regression. In Genetic programming: 12th European

conference, eurogp 2009 Tübingen, Germany, 2009

proceedings, pp. 292–302. Berlin, Heidelberg: Springer

Berlin Heidelberg.

[28] Niu, K., Wang, J. D., Zhang, H. W., & Na, W.

(2015). Cloud resource scheduling method based on

estimation of distribution shuffled frog leaping

algorithm. In Third international conference on

cyberspace technology, pp. 1-6.

[29] N.Q.Uy, M. N. R. E.-L., N.X.Hoai. (2010).

Semantically-based crossover in genetic programming:

application to real-valued symbolic regression. Genetic

Programming and Evolvable Machines, vol. 12(2), pp.

91-119.

[30] ping Luo, J., Li, X., & rong Chen, M. (2014).

Hybrid shuffled frog leaping algorithm for energy-

efficient dynamic consolidation of virtual machines in

cloud data centers. Expert Systems with Applications,

vol. 41(13), pp. 5804-5816.

[31] Rahimi-Vahed, A., & Mirzaei, A. H. (2007). A

hybrid multi-objective shuffled frog-leaping algorithm

for a mixed-model assembly line sequencing problem.

Computers & Industrial Engineering, vol. 53(4), pp.

642-666.

[32] R.Whittaker. (1998). Island biogeography: ecology,

evolution and conservation. Oxford, UK: Oxford

University Press.

[33] Samuel, G. G., & Rajan, C. C. A. (2015). Hybrid:

Particle swarm optimization–genetic algorithm and

particle swarm optimization–shuffled frog leaping

algorithm for long-term generator maintenance

scheduling. International Journal of Electrical Power &

Energy Systems, vol. 65, pp. 432-442.

[34] Shirakawa, S., Ogino, S., & Nagao, T. (2008).

Dynamic ant programming for automatic construction

of programs. IEEJ Transactions on Electrical and

Electronic Engineering, vol. 3(5), pp.540-548.

[35] Simon, D. (2008, Dec). Biogeography-based

optimization. IEEE Transactions on Evolutionary

Computation, vol. 12(6), pp. 702-713.

[36] Subashini, M. M., Sahoo, S. K., Sunil, V., &

Easwaran, S. (2016). A non-invasive methodology for

the grade identification of astrocytoma using image

processing and artificial intelligence techniques. Expert

Systems with Applications, vol. 43, pp. 186-196.

[37] Wong, P., & Zhang, M. (2008). Scheme: Caching

subtrees in genetic programming. In Ieee congress on

evolutionary computation (ieee world congress on

computational intelligence), pp. 2678-2685.

[38] Zhan, Z.-H., Li, Y., & Zhang, J. (2016). Cloudde:

A heterogeneous differential evolution algorithm and its

distributed cloud version. IEEE Transactions on Parallel

and Distributed Systems, vol. 28, pp. 1-1.

 نشریه هوش مصنوعی و داده کاوی

 کیسمبل ونیحل مسائل رگرس یجهش قورباغه برا یسیبرنامه نو

 2مهدی علییاری شوره دلی و *1محمد عبدالهی

 .نرایتهران، ا ،یطوس نیدرالیخواجه نص یدانشگاه صنعت وتر،یکامپ انشکده، د وتریکامپ یگروه مهندس 1

 .نرای، تهران، ایطوس نیدرالیخواجه نص یدانشگاه صنعت ک،یالکترون انشکدهد ، کیمکاترون یگروه مهندس 2

 05/02/2020 پذیرش؛ 08/01/2020 بازنگری؛ 19/12/2018 ارسال

 چکیده:

 یخودکار برا یمزیمکا ن یطراح تیوجود دارد. با توجه به اهم یتکامل یمحاسبات یهاکیخودکار الهام گرفته از تکن یسیمختلف از برنامه نو یهامدل

 یراب به طور گسترده مورد مطالعه و کاربرد یناموفق هستند، محاسبات تکامل یعدد یهاکه در آن روش یاضیاز مسائل ر یادهیچیجستجو پ یفضا کشف

ها قورباغه است که از رفتار (SFLA)جهش قورباغه تمیالگور ،یسازنهیمعروف در مسئله به یهاتمیاز الگور یکیاند. قرار گرفته یواقع یایحل مسائل دن

کند که یم ثابت جیباشد. نتایم یو هم سراسر یاطراف خود هم به صورت محل طیدر مح یموجود با جستجو یمقدار غذا نیشتریکردن ب دایپ یبرا

SFLA جهش قورباغه یسیمقاله، برنامه نو نیحل مسائل موثر است. در ا یبرا(SFLP) جهش قورباغه تمیبا الهام از الگورSFLA نوع کی به عنوان

 زمینمکا کی SFLPدر نیشده است. همچن شنهادیدرخت پ شیبر اساس نما کیسمبل ونیحل مسائل رگرس یخودکار برا یسیاز مدل برنامه نو دیجد

را یاضیر از مسائل یمختلف یهانهیزم ،یشنهادیبا استفاده از روش پ ب،یترت نیشده است. به ا شنهادیبهبود عدد ثابت در ساختار درخت پ یبرا دیجد

انجام اریمع توابع از یمختلف با استفاده از تعداد یهاشی، آزماSFLPشده توسط دیتول یهادر مورد عملکرد راه حل افتنی یآگاه یتوان حل کرد. برایم

، (GSP) یگرانش یجستجو یسیبرنامه نو (BBP) یستیز یایبر جغراف یمبتن یسیمانند برنامه نو یتکامل یسیبرنامه نو یهاتمیالگور گریبا د زین جیشد. نتا

 شده است. سهیها مقا GPاز انواع یاریو بس (GP) کیژنت یسیبرنامه نو

 .ونیجهش قورباغه، مسائل رگرس یسیجهش قورباغه، برنامه نو تمیالگور ک،یژنت یسیبرنامه نو :کلمات کلیدی

