
1 

 

 
Journal of AI and Data Mining  

Vol 8, No 3, 2020, 331-341.                                                                                                                            DOI: 10.22044/JADM.2020.7847.1924  
 

 Shuffled Frog-Leaping Programming for Solving Regression Problems 
 

M. Abdollahi1* and M. Aliyari Shoorehdeli2  

 
1. Department of Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran. 

2. Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran. 

Received 19 December 2018; Revised 08 January 2020; Accepted 05 February 2020 

*Corresponding author M.abdollahi@ee.kntu.ac.ir (M. Abdollahi). 

 

Abstract 

There are various automatic programming models inspired by evolutionary computation techniques. Due to 

the importance of devising an automatic mechanism to explore the complicated search space of mathematical 

problems where numerical methods fail, the evolutionary computations are widely studied and applied to solve 

real-world problems. One of the famous algorithms in an optimization problem is the shuffled frog leaping 

algorithm (SFLA), which is inspired by the behavior of frogs to find the highest quantity of the available food 

by searching their environment both locally and globally. The results of SFLA prove that it is competitively 

effective to solve problems. In this paper, Shuffled Frog Leaping Programming (SFLP) inspired by SFLA is 

proposed as a novel type of automatic programming model to solve the symbolic regression problems based 

on tree representation. Also, in SFLP, a new mechanism is proposed for improving constant numbers in the 

tree structure. In this way, different domains of mathematical problems can be addressed with the use of the 

proposed method. To find out about the performance of the generated solutions by SFLP, various experiments 

are conducted using several benchmark functions. The results obtained are also compared with other 

evolutionary programming algorithms like BBP, GSP, GP, and many variants of GP. 

 

Keywords: Genetic Programming, Shuffled Frog Leaping Algorithm, Shuffled Frog Leaping Programming, 

Regression Problems. 

1. Introduction 

The evolutionary computation approach is a novel 

paradigm in the machine learning area. As a part of 

these approaches, there are a number of 

evolutionary iterations for growth and 

development in the population. Through a random 

search, the population is created to acquire the 

expected conclusion. These operations are inspired 

by evolution inside biological mechanisms [6]. 

Genetic programming (GP), which stems from the 

genetic algorithm (GA), shows the solutions as 

computer programs instead of binary strings [1]. 

GP offers solutions to complex problems by 

searching in the problem space automatically. The 

population of computer programs in GP is evolved 

during a number of generations. GP randomly 

changes and places populations of programs into 

new populations of programs with the hope of 

better solutions while the search is done using GA 

[21]. There are many types of GP with different 

cross-over operators including standard cross-over 

(SC) [21] operator in basic GP, semantic similarity-

based cross-over (SSC) [29], semantics-aware 

cross-over (SAC) [27], soft brood selection (SBS) 

[22], context-aware crossover (CAC) [25] and no 

same mate (NSM) [13]. In addition, modified 

versions of GP have been proposed with some 

improvement, for instance, linear GP (LGP) [4], 

cartesian GP (CGP) [26], and gene expression 

programming (GEP) [9]. Another evolutionary 

computation technique inspired from the biological 

immune system concepts is clone selection 

programming (CSP) [10]. 

Dynamic ant programming (DAP) is another 

technique for intelligent programming derived 

from ant colony optimization. This algorithm uses 

a pheromone table that changes dynamically. It is a 

pheromone value upon which the nodes (terminal 

and nonterminal) are chosen. The selection of 
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nodes with high pheromone rates has more 

feasibility than the other ones. In this method, the 

search space changes dynamically and the ants 

discover better solutions using portions of solutions 

based on the pheromone value [34]. 

Artificial bee colony programming (ABCP) is 

another method for automatic programming 

derived from the artificial bee colony (ABC) 

algorithm. Similar to the relation between GP and 

GA, ABCP is an extension of ABC algorithm that 

deals with the representation of the problem using 

substantially complex structures [18]. 

Biogeography-based optimization (BBO), 

proposed by Simon, is an inspiration of the 

geographical distribution and migration of species 

in an ecosystem [35]. Biogeography-Based 

Programming (BBP), inspired by BBO, has been 

offered as a paradigm combining the program-like 

representation of solutions to symbolic regression 

problems regarding the biogeographical system. 

BBP can be applied to different types of problem 

domains and its performance indicates that it can 

find solutions to problems effectively [11]. 

Gravitational search algorithm (GSA) is an 

optimization technique that is inspired by the 

Newton’s law of universal gravitation and how the 

law of motion happens. Gravitational search 

programming (GSP) is one of the recent methods 

for automatic programming proposed by 

Mahanipour et.al. [12]. This method focuses on a 

new gravitational search algorithm (GSA)-based 

algorithm to generate computer programs, 

automatically. GSP employs the GSA approach to 

generate the tree structure and insertion of internal 

nodes in a discrete space of tree-based solution 

representation. 

SFLA is one of the successful meta-heuristic 

methods in the evolutionary computation [8]. 

SFLA simultaneously takes benefit of the genetic-

based memetic algorithms and the social-based 

PSO algorithms [20]. Different from the PSO 

algorithm, SFLA considers the evolution of both 

genes and memes. Elbeltagia et al. compared 

among five meta-heuristic methods including PSO 

and SFLA [7]. So far, SFLA has been used in many 

optimization problems such as cloud resource 

scheduling [28, 30, 38], identification of 

astrocytoma [36], planning and scheduling [3, 33], 

acoustic emissions waveform analysis [23], fuel 

management optimization [2], vehicle routing 

problem [5, 24], grade identification of 

astrocytoma [36], and photovoltaic model 

identification [14]. In this paper, Shuffled Frog 

Leaping Programming (SFLP) inspired by SFLA, 

is proposed as a novel model that aims at finding 

the mathematical solution for symbolic regression 

problems with the principles and theories of the 

memetic-based algorithm. The rest of this paper is 

formed as follows. In Section 2, a brief overview 

of SFLA is described. Section 3 presents the 

proposed SFLP. In Section 4, the performance of 

SFLP is tested on ten well-known benchmark 

datasets and the results obtained are compared with 

some existing algorithms. Also, the analysis of the 

performance sensitivity of the parameter settings 

for the proposed SFLP is presented in this section. 

Finally, the conclusion and further work are 

provided in Section 5. 

 

2. Shuffled Frog Leaping Algorithm (SFLA) 

SFLA is originally inspired by imitating, 

observing, and modeling of frogs’ behavior when 

they are seeking for a location containing the 

highest quantity of food [8]. Eusuff and Lansey 

have first introduced SFLA in 2003. This method 

is capable of dealing with many complex 

optimization problems that are nonlinear, non-

differentiable, and multi-modal [31]. The most 

prominent benefit of SFLA is its fast convergence 

speed [7]. SFLA takes advantage of both a memetic 

algorithm based on genetic and PSO algorithm 

depending on the social behavior [20]. The 

flowchart in figure 1 illustrates the SFLA approach. 

This algorithm is affected by the natural memetic 

benefits from the population with a random search. 

In this algorithm, several communities that contain 

groups of potential solutions are formed. Each 

solution represents a frog in the algorithm. Also, 

these communities are called memeplexes, and 

inside each one, the frogs perform a local search. 

Inside each memeplex, the behavior of a frog can 

be affected by other frogs’ behaviors, and through 

a process of memetic evolution, its behavior 

improves. With the lapse of some evolutionary 

steps, the memeplexes are mixed and then new 

memeplexes are developed using the shuffling 

process. Using the shuffling, the exchange of 

information is done among local searches, leading 

to a move toward a global optimum. The two 

processes of shuffling and local search continue 

until the convergence target is fulfilled (1). SFLA 

can be delineated in the following: 

 
• SFLA holds a population of possible solutions 

F, defined by a group of virtual frogs (n). 

• According to their fitness, frogs are sorted 
descendingly, and then divided into subsets 
named as memeplexes (m). 

• Frog 𝑖 is shown as 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑆) 
where 𝑆 represents the number of variables. 
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• Inside each memeplex, the worst 𝑋𝑤  and the 
best 𝑋𝑏  frogs are identified based on fitness. 

• Frog with the global best fitness 𝑋𝑔  is identified. 

• The fitness of the worst frog is improved using 
the following Equation: 

𝐷𝑖 = 𝑟𝑎𝑛𝑑()(𝑋𝑏 −  𝑋𝑤) (1) 

𝑋𝑤new= 𝑋𝑤𝑜𝑙𝑑 + 𝐷𝑖(−𝐷𝑚𝑎𝑥 ≤ 𝐷𝑖 ≤ 𝐷𝑚𝑎𝑥) (2) 

where rand stands for a random number in [0,1]; 𝐷𝑖 
is the frog leaping step size of the i − th frog. 
𝐷𝑚𝑎𝑥 is the maximum step allowed to make 
changes in a frog position. If the fitness of the new 
𝑋𝑤  is higher than the current one, 𝑋𝑤  will be 
accepted. If it is not improved, then Equations (1) 
and (2) are repeated by replacing 𝑋𝑏 with 𝑋𝑔. If no 

improvement becomes possible in the solution, a 
new 𝑋𝑤  will be generated randomly. Repeat the 
updating operation for a number of iterations. The 
local search flowchart of SFLA is demonstrated in 
figure 2. 

 

Figure 1. Flowchart of SFLA. 

After some memetic evolutionary steps inside each 

memeplex, the obtained solutions of evolved 

memeplexes are replaced into the new population. 

This process is called shuffling. The shuffling 

process encourages a global information exchange 

among the frogs. Afterward, the population is 

sorted in a descending manner based on the 

performance value, and the position of the best frog 

of the population is updated. Next, frogs are 

repartitioned into memeplexes, and the algorithm 

carries on the evolution within each memeplex 

until the convergence criteria are met. 

 

 

            Figure 2. Flowchart of Local Search. 

 

3. Shuffled Frog Leaping Programming (SFLP) 

SFLP is an extension of SFLA, which aims at 

finding an explicit mathematical expression for a 

given set of input and one output by applying the 

terminals and non-terminals defined in the 

algorithm. This type of programming intends to 

focus on the representation of the problem using a 

more complicated structure as the case between GP 

and GA. Despite the conventional regression, 

where the coefficients of functions are not 

calculated, the generated program carries out an 

extensively structured search in an evolving search 

space of symbolic functions. Solutions use the tree 

representation, which contains a group of terminals 

and non-terminals. Terminals are constant or 
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variable that usually are taken from mathematical 

or arithmetic operators and domain-specific 

functions that are selected inconsistent with the 

problem. 
In this work, SFLP is applied to symbolic 

regression problems to test its capability of 

introducing solutions. The global exchange of 

information among frogs and their interactions are 

the key elements of evolving memes in the 

proposed method. By employing tree 

representation for the structure of frogs, the storage 

of expressions in the computer memory is 

facilitated. Besides, the operations of the swap, add 

and remove of subtrees are done so quickly.  

One of the main features of SFLP is the ability to 

do the local search effectively by dividing the 

initial population in to a number of sub-

populations. In this way, in each sub-population we 

can find the local best much more effectively, and 

by means of an information exchange mechanism 

we can find the global best found among the sub 

populations. 
Thus, such structure should literally outperform 

algorithms such as Genetic Programing in which in 

GP there is no such population segmentation. It is 

also shown in the experimental results that 

population segmentation structure helps SFLP 

outperform GP in practice. In the algorithm, the 

performance of each computer program is 

evaluated to measure the quality of each frog 

position, which is named the fitness measurement. 

This measurement shows how much the result of 

the obtained solution fits with the desired function. 

In the fitness measurement procedure, there is a 

tendency for raw fitness towards zero, as in [32]. 

The pseudo-code of SFLP is defined in Algorithm 

1. 
In order to distribute the initial population among 

memeplexes, first we sort the population in a 

descending order. Then, the best individual in the 

initial population is placed in the first memeplex, 

and the second-best individual in the second 

memeplex, and so on and so forth.  

For the last memeplex (𝑛 − 𝑡ℎ), we let this 

memeplex selects two best individuals of the initial 

population i.e. 𝑛 and 𝑛 +  1. In this way, we let 

each memeplex has a fair quality in terms of 

solution accuracy. 

The raw fitness is calculated by cumulating the 

absolute errors between the obtained and the 

desired functions derived from a number of fitness 

cases. Hits measurement is a criterion usually 

calculated in symbolic regression studies. 

 

 

 

 

Algorithm 1: Pseudo-code of SFLP 

Generate random frogs of F with Ramped half-and-half method 

Evaluate the frogs’ fitness 

Divide the whole frogs into m memeplexes, and each memeplex 

contains n frogs  
     contains 𝑛 frogs 

for max iteration do 

for each memeplex do 

      Construct a sub-memeplex Set 𝑖 =  0;  

      for 𝑖 <  𝑁𝑠𝑡𝑒𝑝 do  

Performing cross-over between worst frog and local      

best frog in every sub-memeplex 
      best frog in every sub-memeplex 

Improving constant numbers of resultant new tree  

if 𝑋𝑤  ≤  𝑋𝑤𝑛𝑒𝑤  then 

                     replace 𝑋𝑤  with 𝑋𝑤𝑛𝑒𝑤   

             else 

Performing cross-over between worst frog in 

each sub-memeplex and global best frog 
     sub-memeplex and global best frog 

Improving constant numbers of resultant new tree  

if 𝑋𝑤  ≤  𝑋𝑤𝑛𝑒𝑤 then 

                            replace 𝑋𝑤  with 𝑋𝑤𝑛𝑒𝑤  

else 

                               Perform mutation on local best frog and replace 

𝑋𝑤  with it 
                                    replace 𝑋𝑤  with it  

 
end if 

             end if 

             𝑖 =  𝑖 + 1 

                end for  

       end for 

       Shuffle the memeplexes and update global best frog 

       Check termination criteria 

end for 

 

The quantity of the absolute error of fitness cases 

with the values lower than the hits criterion will 

form the hit measurement. Some modifications are 

exerted on the GP basic operators to introduce the 

operators best fitted with the nature of SFLP, which 

are explained in the followings: 

 

3.1. Cross-over 

In SFLP, a cross-over operator is used to transfer 

the behavior of the local or global best frog to the 

worst frog of the current sub-memeplex. To 

perform cross-over, trees of the worst frog and the 

best frog in the sub-memeplex are considered as 

inputs. By swapping the random subtrees of the 

inputs the cross-over is performed. The proposed 

operator used in SFLP proceeds with the following 

steps: 
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• Select the worst and the best frogs based on 
their fitness in the sub-memeplex. The frog with 
the best fitness is selected and named as 
mimicked frog and the frog with the worst 
fitness as the memetic frog. 

• Select a random sub-tree in each mimicked frog 
and the memetic frog. 

• Replace the selected subtree of the memetic 
frog by the selected sub-tree of the mimicked 
frog. 

The resultant tree is a new frog whose depth should 

be checked. The transition process is shown in 

figure 3. After the changed memetic frog was 

created, its fitness is evaluated and compared with 

the fitness of the first memetic frog. If the fitness is 

better than the initial memetic frog, the worst frog 

is replaced with it; otherwise, this process is 

repeated using the best frog of the whole 

population along with the previous memetic frog. 

 

 
 

 

Figure 3. Proposed Cross-over. 

 

3.2. Mutation 

The mutation operator in SFLP causes random 

changes in the structure of the local best frog of the 

current sub-memeplex, while two previous 

performed cross-overs on the local best and global 

best frogs have not been successful to suggest a 

new candidate with better fitness comparing to the 

memetic frog. At this stage, SFLA generates a new 

individual to replace the memetic frog, while in 

SFLP, the local best frog is mutated for 

replacement. More specifically, the mutation 

operator selects a random point in the structure of 

the local best frog and then removes the selected 

point and its sub-tree at the current point and then 

inserts a subtree generated randomly in its place. 

To control an appropriate replacement during the 

mutation operator, the depth of the generated sub-

tree is checked to be in the valid range using the 

parameter of maximum tree depth. The relevant 

process is illustrated in figure 4 in which an 

optional candidate frog is mutated using the 

described process of replacing a random sub-tree 

with a generated one. As the next step, the 

performance of the mutated frog is evaluated and 

then inserted into the population. 

 

       

Candidate frog                                             Mutated frog  

Figure 4. Basic mutation. 

The frogs’ target is to move towards the best 

solution by improving their memes. Others can use 

either the ideas from the best frog from the 

memeplex as a local search or from the currently 

found global best. Considering the selection of the 

memeplex best, it is not always suitable to use the 

best frog because the frogs would tend to focus 

about that specific frog that may be a local 

optimum. Therefore, a subset of the memeplex 

called a sub-memeplex is picked up [8]. To start the 

local search, each memeplex acts as an independent 

culture. A sub-memeplex including q frogs in the 

memeplex is selected randomly, where 𝑞 <  𝑛. 

Conceptually, since the local meme of each sub-

memeplex is employed to guide its frogs toward the 

local best frog, it is rational to use the local best 

frog of each sub-memeplex for mutation. If the 

global best frog is mutated as the last operation on 

each sub-memeplex, the convergence of the 

population stops at a certain value, because the 

whole population mimics the behavior of the first 

best frog. As a result, the information of each sub-

memeplex is lost, and the whole structure of the 

algorithm becomes meaningless.  

 

3.3. Constant creation method 

One of the challenging fields of automatic 

programming is the improvement of constant 

numbers during the evolution. For this reason, 

methodologies such as ABCP use the value of one 

as the constant number for the terminal with no 

changes during the evolution. In this way, no 
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attempt will be made to estimate the constant 

numbers in the target solution. 

In SFLP, we proposed a novel method to improve 

the constant numbers. The inputs of this method are 

two trees named as 𝑊 and 𝐵, which stand for the 

worst tree and the best tree, respectively. The 

number of constants in 𝑊 is 𝑞 and 𝑊(𝑖) is the 𝑖 −
𝑡ℎ constant number of 𝑊, and 𝑖 occurs between 0 

and 𝑞. Also, the number of constants in 𝐵 is 𝑝 and 

𝐵(𝑗) is the 𝑗 − 𝑡ℎ constant number of 𝐵 and 𝑗 

occurs between 0 and 𝑝. Each constant number in 

𝑊 is randomly changed to one of the constant 

numbers of 𝐵 by the formula inspired by the PSO 

algorithm. The equation is displayed below: 

 
𝑊(𝑖)  = 𝑊(𝑖) + 2 ∗ 𝑟𝑎𝑛𝑑((𝐵(𝑗) − 𝑊(𝑖))) (3) 

 

In the equation, rand is a random number in the 

interval of [0,1]. This method will help to use an 

interval of constant numbers in GP systems when 

we define constant numbers. Changes of the 

constant numbers will be towards better ones, 

which increase the possibility of using better 

constant numbers in 𝑊. 

 

Algorithm 2 Constant number creation 

Inputs: 𝑊, 𝐵 Outputs: 𝑊 𝑞 = 𝑛𝑐𝑜𝑛𝑠𝑡(𝑊);  𝑝 = 𝑛𝑐𝑜𝑛𝑠𝑡(𝐵); 

 

for 𝑖 =  1 ∶  𝑞 do  

      𝑗 = 𝑟𝑎𝑛𝑑𝑖(1, 𝑝) 

contains n frogs  
      𝑗 = 𝑟𝑎𝑛𝑑𝑖(1, 𝑝) 

 
     𝑊(𝑖) = 𝑊(𝑖) + 2 ∗ 𝑟𝑎𝑛𝑑((𝐵(𝑗) − 𝑊(𝑖))) 

 

 

 

endfor

 

where 𝑛𝑐𝑜𝑛𝑠𝑡() is a function that counts constant 

numbers of a tree. 𝑟𝑎𝑛𝑑𝑖 is also a function that 

generates uniformly distributed pseudo-random 

integers within a given interval. 

 

4. Experiments and results 

4.1. Experimental results 

In order to find out about the performance of SFLP, 

this method was compared with algorithms of this 

class such as BBP [11], and GSP [12]. Some 

techniques based on GP, namely, semantic 

similarity-based cross-over (SSC) [29] plus 

standard cross-over (SC) [21], soft brood selection 

(SBS) [22], no same mate(NSM) [13], context 

aware cross-over (CAC) [25], and semantics-aware 

cross-over (SAC) [27]. The performance criteria 

for comparison among them are a set of problems 

of symbolic regression employed in references [15, 

17]. These ten real-valued problems are classified 

into three categories: 

 

1. polynomial functions 

2. logarithm, trigonometric, and square root 

functions 

3. bivariate functions 

 

Their problem definitions are given in table 1. The 

number of function node evaluations was 

considered during the experiment to control the 

computational cost for each run. This measurement 

has been utilized in some recent automatic 

programming studies [16, 29, 37]. In order to 

remove random correlations in the experiment, 

each solution was independently executed 100 

times. The number of node evaluations was set to 

15 × 106 in the experiments. To examine and 

compare the performance of solutions, two classic 

performance metrics were calculated. One was the 

matrix of mean best fitness and the other, matrix of 

the percentage of successful runs. 

A successful run occurs when an individual’s score 

on all fitness cases reaches a value <  0.01. This 

fitness value is called the score hit. The main and 

internal parameters of the SFLP, BBP, GSP and 

GP-based techniques are given in tables 2 and 3, 

respectively. The results of other considered 

algorithms were reported from references [18, 29], 

which were compared with the proposed method in 

tables 4 and 5. The number of successful runs and 

the mean best fitness values of SFLP and other 

techniques are presented in tables 4 and 5, 

respectively. In each setting, the best obtained 

result is written in bold face. The number of local 

evolutions is 𝑁𝑠𝑡𝑒𝑝, sub-memeplex size is 𝑞, the 

number of memeplexes 𝑚, the memeplex size is n, 

and the total number of frogs is 𝑚 × 𝑛. The 

parameter values employed in the method are 

𝑁𝑠𝑡𝑒𝑝 =  50, 𝑞 =  2, 𝑚 =  100, 𝑛 =  5. The 

relevant parameter analysis for each of them has 

been presented in the following sections. Can be 

seen in tables 4 and 5, SFLP considerably 

outperforms other algorithms and on all benchmark 

functions in both aspects of the number of 

successful runs and the mean best fitness values. 

Also, the results of table 4 are consistent with those 

of table 5. In evolutionary computation, the optimal 

search strategy is regarded as a vital aspect 

affecting the performance of the algorithms. 

Indeed, the ability to perform global and local 

search simultaneously is because of its hybrid 

nature of GA and PSO, which helps the algorithm 

to have an appropriate search strategy.   
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Table 1. Symbolic regression functions. 

Functions Fit cases 

𝐹1 =  𝑥3 +𝑥2 +𝑥 20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆  [−1,1] 

𝐹2 =  𝑥4 +𝑥3 +𝑥2 +𝑥 20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆  [−1,1] 

𝐹3 =  𝑥5 +𝑥4 +𝑥3 +𝑥2 +𝑥 20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆  [−1,1] 

𝐹4 =  𝑥6 +𝑥5 +𝑥4 +𝑥3 +𝑥2 +𝑥 20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆  [−1,1] 

𝐹5 =  𝑠𝑖𝑛(𝑥2) 𝑐𝑜𝑠(𝑥) − 1 20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆  [−1,1] 

𝐹6 =  𝑠𝑖𝑛(𝑥) + 𝑠𝑖𝑛(𝑥 + 𝑥2) 20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆  [−1,1] 

𝐹7 =  𝑙𝑜𝑔√(𝑥 + 1) + 𝑙𝑜𝑔 (𝑥2 + 1) 

𝐹8 =  𝑥 

20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆  [0,2] 

20 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆  [0,4] 

𝐹9 =  𝑠𝑖𝑛(𝑥) + 𝑠𝑖𝑛(𝑦2) 100 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆  [−1,1]  × [−1,1] 

𝐹10 =  2𝑠𝑖𝑛(𝑥)𝑐𝑜𝑠(𝑦) 100 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 ⊆  [−1,1]  × [−1,1] 

 

Table 2. Main parameters of models. 

Parameter Value 

Selection Tournament 

Tournament size 3 

Initial max depth 6 

Max depth 15 

Max depth of mutation tree 5 

Non-terminals +, −,×,/, 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑒𝑥𝑝, 𝑟𝑙𝑜𝑔  

Terminals 𝑋, 1 for single variable problems and 𝑋, 𝑌 𝑎𝑛𝑑 1 for bi-variable problems 

Row fitness Sum of absolute error on all fitness cases 

Hit when an individual’s absolute error is < 0.01 on a fitness case 

Successful run When an individual’s score hits on all fitness cases 

Trials per treatment 100 independent runs for each value 

The results obtained demonstrate that SFLP is a 

robust algorithm and its search strategy has a 

positive impact on the performance of the proposed 

model.     

Simply, the superior performance of the SFLP 

should be attributed to its ability to take advantage 

of local search while it still searches globally. 

Also, the top three methods are statistically 

analyzed using 1-tailed and 2-tailed multiple-

problem Wilcoxon’s signed rank tests in table 6. 

According to the table and considering 𝑝 −
𝑣𝑎𝑙𝑢𝑒 <  0.05 at 𝛼 =  0.05, SFLP significantly 

outperforms BBP in the case of total performance, 

which proves that SFLP can generate competitive 

solutions for the problems.  

Also, it exhibits better average error than BBP 

based on table 5. SFLP also significantly out-

performs GSP in the case of total performance, 

which proves that SFLP can generate competitive 

solutions for the problems.  

Besides, it exhibits better average error than GSP 

based on table 5. It should be noted that SFLP 

introduces a new methodology of automatic 

programming and opens a new field for 

investigation toward generating programs using the 

genetic programming concepts. Finally, by 

comparing SFLP with GP, it is clear that SFLP is 

significantly better than GP. 

 

 

4.2. Effects of number of memeplexes and size 

The main parameters of SFLP were aimed to study 

their effect on the results of the runs of the 

benchmark problems. At first, the number of 

memeplexes, as well as the memeplex size, are 

variable and other parameters, namely, the number 

of local evolutions is 𝑁𝑠𝑡𝑒𝑝 =  30 and, sub-

memeplex size is 𝑞 =  5. It should be noted that 

the total number of frogs is the multiplication of the 

number of memeplexes m and the memeplex size n 

that is 𝑚 × 𝑛. Therefore, by studying the number 

of memeplexes for the fixed value of the total 

number of frogs, the memeplex size is implicitly 

investigated. By comparing SFLA with SFLP in 

the case of search space, SFLP performs the search 

in a more complex search space; therefore, larger 

values for parameters should be set, and on the 

other hand, to help the algorithm do the local search 

more efficiently, lower values for local search is 

required. In order to compare the outputs, the 

parameters are set in a way that the local search is 

performed more precisely and effectively while 

their values are bounded to certain values. Table 7 

shows the results of different values of 

memeplexes and their size. According to the results 

obtained, the performance of SFLP improves as the 

number of memeplexes becomes larger. 
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4.3. Effects of sub-memeplex size 

In order to understand the impact of sub-memeplex 

size on the algorithm, the parameter q showing the 

frogs in a sub-memeplex was varied from 2 to 10. 

The other parameters were set to 𝑚 = 100, 𝑛 = 5, 

and 𝑁𝑠𝑡𝑒𝑝 = 30. As it can be observed in table 8, 

for lower values of q the number of successful runs 

is increased.

Table 3. Algorithms internal parameter. 

SFLP  BBP  GSP  GP  

Parameters Values Parameters Values Parameters Values Parameters Values 

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓 

𝑓𝑟𝑜𝑔𝑠 

500 𝐻𝑎𝑏𝑖𝑡𝑎𝑡 𝑠𝑖𝑧𝑒 500 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑔𝑒𝑛𝑡𝑠 500 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 500 

# 𝑜𝑓 𝑛𝑜𝑑𝑒 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠 

15 ×  106 # 𝑜𝑓 𝑛𝑜𝑑𝑒 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠 

15 × 106 # 𝑜𝑓 𝑛𝑜𝑑𝑒 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠 

15 × 106 # 𝑜𝑓 𝑛𝑜𝑑𝑒 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠 

15 × 106 

𝑀𝑒𝑚𝑒𝑝𝑙𝑒𝑥 𝑠𝑖𝑧𝑒 5 𝑃𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 0.9 𝐺𝐶0 5 𝑃𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 0.9 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 

𝑚𝑒𝑚𝑒𝑝𝑙𝑒𝑥𝑒𝑠 

100 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 0.1 𝛼 20 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 0.05 

𝑆𝑢𝑏𝑚𝑒𝑚𝑒𝑝𝑙𝑒𝑥 

𝑠𝑖𝑧𝑒 

2   𝐾0 50   

𝐿𝑜𝑐𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 50   𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐 − 

𝑡𝑖𝑜𝑛’𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 

𝑁𝑜 𝑐ℎ𝑎𝑛𝑔𝑒, 
∧2,∧3, 

𝑠𝑞𝑢𝑎𝑟𝑒 𝑟𝑜𝑜𝑡 

  

 

Table 4. Number of successful runs of SFLP and other considered models with parameter setting of 𝑵𝒔𝒕𝒆𝒑 = 𝟓𝟎, 𝒒 = 𝟐, 𝒎 =
𝟏𝟎𝟎, 𝒂𝒏𝒅 𝒏 = 𝟓. 

 Functions         

Models F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

SFLP 100 97 82 75 94 94 93 94 100 78 

GSP 92 85 90 86 84 80 75 79 76 65 

BBP 100 96 80 69 90 98 97 90 77 86 

ABCP 89 50 22 12 57 87 58 37 33 21 

SC 48 22 7 4 20 35 35 16 7 18 

NSM 48 16 4 4 19 36 40 28 4 17 

SAC2 53 25 7 4 17 32 25 13 4 4 

SAC3 56 19 6 2 21 23 25 12 3 8 

SAC4 53 17 11 1 20 23 29 14 3 8 

SAC5 53 17 11 1 19 27 30 12 3 8 

CAC1 34 19 7 7 12 22 25 9 1 15 

CAC2 34 20 7 7 13 23 25 9 2 16 

CAC4 35 22 7 8 12 22 26 10 3 16 

SBS31 43 15 9 6 31 28 31 17 13 33 

SBS32 42 26 7 8 36 27 44 30 17 27 

SBS34 51 21 10 9 34 33 46 25 26 33 

SBS41 41 22 9 5 31 34 38 25 19 33 

SBS42 50 22 17 10 41 32 51 24 24 33 

SBS44 40 25 16 9 35 43 42 28 33 34 

SSC8 66 28 22 10 48 56 59 21 25 47 

SSC12 67 33 14 12 47 47 66 38 37 51 

SSC16 55 39 20 11 46 44 67 29 30 59 

SSC20 58 27 10 9 52 48 63 26 39 51 

The frogs of each memeplex have more chance to 

exchange the existing information among them, 

and therefore, it helps them to move towards the 

local best frog in each memeplex.  

It is better to select a smaller size of sub-memeplex 

for more complex problems to introduce better 

global solutions and to let the local search 

exchange the information within each sub-

memeplex in depth. 

 

Table 6. Results of the multiple-problem Wilcoxon’s 

signed rank test for SFLP, BBP, and GSP. 

Methods SFLP vs BBP SFLP vs GSP SFLP vs GP 

p-Value(1-tailed) 0.8499 0.0008 0.0001 

p-Value(2-tailed) 0.3387 0.0036 0.0001 

 

4.4. Effects of Nstep size 

The number of evaluation steps for different Nstep 

size is shown in table 9, in which the values are 10, 

20, 30, 50, and 100. 
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Table 5. Mean best fitness values of SFLP and other mentioned methods with parameter setting of 𝑵𝒔𝒕𝒆𝒑 = 𝟓𝟎, 𝒒 = 𝟐, 𝒎 =
𝟏𝟎𝟎, 𝒂𝒏𝒅 𝒏 = 𝟓. 

 Functions         

Models F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

SFLP <0.01 <0.01 0.01 0.02 0.01 <0.01 0.01 <0.01 <0.01 0.05 

GSP 0.01 0.05 <0.01 0.1 0.05 0.02 0.06 0.1 0.47 1.06 

BBP <0.01 <0.01 0.02 0.03 0.01 <0.01 <0.01 0.02 0.20 0.09 

ABCP 0.01 0.05 0.07 0.1 0.05 0.02 0.06 0.1 0.47 1.06 

SC 0.18 0.26 0.39 0.41 0.21 0.22 0.13 0.26 5.54 2.26 

NSM 0.16 0.29 0.34 0.4 0.19 0.17 0.11 0.19 5.44 2.16 

SAC2 0.16 0.27 0.42 0.5 0.22 0.23 0.15 0.27 5.99 3.19 

SAC3 0.13 0.27 0.42 0.48 0.18 0.23 0.15 0.27 5.77 3.13 

SAC4 0.15 0.29 0.41 0.46 0.17 0.22 0.15 0.26 5.77 3.03 

SAC5 0.15 0.29 0.4 0.46 0.17 0.21 0.15 0.26 5.77 83.03 

CAC1 0.33 0.41 0.51 0.53 0.31 0.42 0.17 0.35 7.83 4.4 

CAC2 0.32 0.41 0.52 0.53 0.31 0.42 0.17 0.35 7.38 4.3 

CAC4 0.33 0.41 0.53 0.53 0.3 0.42 0.17 0.35 7.8 4.32 

SBS31 0.18 0.29 0.3 0.36 0.17 0.3 0.15 0.19 4.78 2.75 

SBS32 0.18 0.23 0.28 0.36 0.13 0.28 0.1 0.18 4.47 2.77 

SBS34 0.16 0.23 0.31 0.33 0.13 0.21 0.11 0.19 4.17 2.9 

SBS41 0.18 0.26 0.27 0.38 0.12 0.2 0.13 0.2 4.4 2.75 

SBS42 0.12 0.24 0.29 0.3 0.12 0.18 0.1 0.16 3.95 2.76 

SBS44 0.18 0.24 0.33 0.35 0.15 0.16 0.11 0.19 2.85 1.75 

SSC8 0.09 0.15 0.19 0.29 0.1 0.09 0.07 0.15 3.91 1.53 

SSC12 0.07 0.17 0.18 0.28 0.1 0.12 0.07 0.13 3.54 1.45 

SSC16 0.1 0.15 0.23 0.26 0.1 0.1 0.06 0.14 3.11 1.22 

SSC20 0.08 0.18 0.23 0.3 0.09 0.1 0.06 0.14 2.64 1.23 

The other parameters are 𝑚 = 100, 𝑛 = 5, and 

𝑞 = 2. It can be realized from table 9 that a higher 

value for Nstep leads to a greater number of 

successful runs. As a result, this parameter helps 

the algorithm converge by generating better 

solutions, whereas it lengthens the evaluation 

process. For a reasonable evaluation time with 

considering the benchmark functions, it is 

recommended to set 𝑁𝑠𝑡𝑒𝑝 to 50 because for 

values higher than 50, despite a massive increase in 

the evaluation time, the number of successful runs 

does not have a bilateral growth. Tables 4 and 5 in 

the above section have considered 𝑁𝑠𝑡𝑒𝑝 =  50.    

It seems rational to boost the algorithm by selecting 

higher values for either of the parameters while the 

evaluation process of the algorithm becomes 

longer. Parameters such as Nstep and the 

population of frogs have direct impacts on the 

algorithm performance.  

Table 7. Number of successful runs for different 

memeplex size. The total number of frogs is fixed and is 

equal to 𝟓𝟎𝟎.  

Number of 

memeplexes 

(memeplex size) 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

5(100) 65 52 25 22 49 55 36 44 54 42 

10(50) 74 56 28 26 58 59 46 51 60 48 

25(20) 88 65 33 31 61 68 56 58 64 57 

50(10) 91 71 39 37 70 75 62 65 77 61 

100(5) 95 80 60 58 79 83 73 78 84 64 

 

Table 8. Number of successful runs for different sub-

memeplex size(q).  

Sub-

memeplex 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

2 89 81 51 52 64 69 47 68 100 71 

3 92 72 30 37 61 83 48 69 99 68 

4 90 71 42 31 50 89 50 19 89 67 

5 94 82 37 34 64 73 41 73 92 65 

6 86 62 36 32 48 76 35 69 79 63 

7 91 59 41 36 62 75 32 68 78 55 

8 84 65 28 32 54 66 26 64 86 53 

9 87 60 26 27 45 64 17 60 78 51 

10 81 44 18 14 27 42 18 56 66 45 

Table 9. Number of evaluation steps for different Nstep 

size.  

Number of 

evaluation steps 

(Nstep) 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

10 67 61 41 49 53 67 61 69 76 55 

20 85 71 46 55 69 74 73 77 83 61 

30 96 80 60 60 75 79 81 84 91 64 

50 100 91 64 74 90 90 89 85 100 69 

100 100 93 74 75 92 90 92 91 100 70 

 

5. Conclusion 

In this paper, a novel method of evolutionary 

computation was proposed, which is an extension 

of SFLA to study the symbolic regression 

problems. The new approach named as shuffled 

frog leaping programming is able to evolve 

expressions and constants in the tree representation 
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and build mathematical functions automatically. 

Also, a new method for creating constant numbers 

is presented, which helps to change the constant 

numbers towards the target solution. The proposed 

approach was tested on a set of symbolic regression 

benchmark problems which exhibited to be 

competitive with other popular automatic 

programming algorithms such as BBP, GSP, 

canonical GP, and different approaches of GP. 

Based on the simulations results, the developed 

model outputs are superior to all of the considered 

well-known methods in the symbolic regression 

problems. Also, the statistical analysis, Wilcoxon’s 

signed rank test, proves that the overall 

performance of the proposed method is remarkably 

better than the other competitors. The superior 

performance of SFLP is due to its ability to 

simultaneously do a local search while still 

searching globally. 

Overall, the success rate of the algorithm is 

acceptable and promising. In general, this number 

upsurges while the number of frogs in the 

population or each sub-memeplex increases but it 

increases the function evaluation required to find 

the solution. Also, it was noted that the success rate 

had a higher sensitivity to the memeplexes number 

comparing to the frogs’ number in a memeplex. 

Therefore, it reinforces the idea of exploring more 

regions in the domain. Also, the success rate 

decreased when the number of frogs in a memeplex 

reached a particular value. This matter may refer to 

the nature of this type of problem. It is 

recommended to research on this phenomenon of 

SFLP. In conclusion, SFLP is capable of solving 

modeling and automatic programming problems 

effectively. As a future work, it is planned to apply 

SFLP to solve complex real-world regression 

problems and study on some modifications that 

lead to increase speed and accuracy. 
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  کیسمبل ونیحل مسائل رگرس یجهش قورباغه برا یسیبرنامه نو

 

 2مهدی علییاری شوره دلی و *1محمد عبدالهی

 .نرایتهران، ا ،یطوس نیدرالیخواجه نص یدانشگاه صنعت وتر،یکامپ انشکده، د وتریکامپ یگروه مهندس 1

 .نرای، تهران، ایطوس نیدرالیخواجه نص یدانشگاه صنعت ک،یالکترون انشکدهد ، کیمکاترون یگروه مهندس 2

 05/02/2020 پذیرش؛ 08/01/2020 بازنگری؛ 19/12/2018 ارسال

 چکیده:

 یخودکار برا یمزیمکا ن یطراح تیوجود دارد. با توجه به اهم یتکامل یمحاسبات یهاکیخودکار الهام گرفته از تکن یسیمختلف از برنامه نو یهامدل

 یراب به طور گسترده مورد مطالعه و کاربرد یناموفق هستند، محاسبات تکامل یعدد یهاکه در آن روش یاضیاز مسائل ر یادهیچیجستجو پ یفضا کشف

ها قورباغه است که از رفتار (SFLA)جهش قورباغه  تمیالگور ،یسازنهیمعروف در مسئله به یهاتمیاز الگور یکیاند. قرار گرفته یواقع یایحل مسائل دن

کند که یم ثابت جیباشد. نتایم یو هم سراسر یاطراف خود هم به صورت محل طیدر مح یموجود با جستجو یمقدار غذا نیشتریکردن ب دایپ یبرا

SFLA جهش قورباغه  یسیمقاله، برنامه نو نیحل مسائل موثر است. در ا یبرا(SFLP) جهش قورباغه  تمیبا الهام از الگورSFLA نوع  کی به عنوان

 زمینمکا کی SFLPدر  نیشده است. همچن شنهادیدرخت پ شیبر اساس نما کیسمبل ونیحل مسائل رگرس یخودکار برا یسیاز مدل برنامه نو دیجد

را  یاضیر از مسائل یمختلف یهانهیزم ،یشنهادیبا استفاده از روش پ ب،یترت نیشده است. به ا شنهادیبهبود عدد ثابت در ساختار درخت پ یبرا دیجد

انجام  اریمع توابع از یمختلف با استفاده از تعداد یهاشی، آزماSFLPشده توسط  دیتول یهادر مورد عملکرد راه حل افتنی یآگاه یتوان حل کرد. برایم

، (GSP) یگرانش یجستجو یسیبرنامه نو (BBP) یستیز یایبر جغراف یمبتن یسیمانند برنامه نو یتکامل یسیبرنامه نو یهاتمیالگور گریبا د زین جیشد. نتا

 شده است. سهیها مقا GPاز انواع  یاریو بس (GP) کیژنت یسیبرنامه نو

 .ونیجهش قورباغه، مسائل رگرس یسیجهش قورباغه، برنامه نو تمیالگور ک،یژنت یسیبرنامه نو :کلمات کلیدی

 

 


