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Abstract 
The Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to the researchers 

for its simplicity of implementation, efficiency, and low number of parameters. The BBO algorithm in 

optimization problems is one of the new algorithms that have been developed based on the biogeography 

concept. This algorithm uses the idea of animal migration to find suitable habitats for solving the optimization 

problems. The BBO algorithm has three principal operators called migration, mutation, and elite selection. The 

migration operator plays a very important role in sharing information among the candidate habitats. The 

original BBO algorithm, due to its poor exploration and exploitation, sometimes does not perform desirable 

results. On the other hand, the Edge Assembly Cross-over (EAX) has been one of the high powers cross-overs 

for acquiring off-spring, and it increases the diversity of the population. A combination of the BBO algorithm 

and EAX can provide a high efficiency in solving the optimization problems including the traveling salesman 

problem (TSP). In this paper, we propose a combination of those approaches to solve the traveling salesman 

problem. The new hybrid approach is examined with standard datasets for TSP in TSPLIB. In the experiments, 

the performance of the proposed approach is better than the original BBO and four others widely used 

metaheuristics algorithms. 

 
Keywords: Biogeography-Based Optimization, Evolutionary Algorithms, Edge Assembly Cross-over, Genetic 

Algorithm, Traveling Salesman Problem. 

 
1. Introduction 

In the recent years, many meta-heuristics 

algorithms have been proposed to solve complex 

optimization problems. Meanwhile, nature-

inspired algorithms have shown a good 

performance in solving the optimization problems. 

The biogeography-based optimization (BBO) 

algorithm is a population-based meta-heuristics 

algorithm that was developed by Simon in 2008 

[1]. The main idea behind this algorithm is inspired 

by the natural migration of the species between 

habitats. A migration operator leads to the sharing 

of information between habitats, where each 

habitat is a candidate solution of the problem.  

 
The BBO algorithm is similar to the evolutionary 

algorithms like particle swarm optimization (PSO) 

in the sense that each candidate solution in the 

search space moves toward better solutions in each 

iteration. In the BBO algorithm, unlike the genetic 

algorithm (GA), the poor solution will not be 

eliminated at the iteration, and in the next iteration, 

new solutions will be created. The major problem 

of the BBO algorithm is that it may be trapped in 

the local optima of the objective function. Many 

studies have been conducted to improve the 

performance of the original BBO algorithm, and 

most of these studies, which will be discussed 

below, have focused on improving the migration 

operator of the BBO algorithm.  

 
One of the known issues in the field of optimization 

problem is the traveling salesman problem (TSP), 

which is to find the shortest path to the optima. 

http://dx.doi.org/10.22044/jadm.2018.6311.1746
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Finding the shortest route among n different cities 

is the main issue of TSP, and the distance between 

the cities is given as a matrix as an input. This 

problem is NP-hard, and thus has attracted the 

attention of many researchers [2]. So far, many 

algorithms have been proposed to solve this 

problem. In general, these algorithms can be 

divided into two categories. One is the exact 

algorithms such as dynamic 

programming,  branch-and-bound, and  linear 

programming that can get the optimal solution but 

the problem is that their execution time expands 

exponentially according to the dimensions of the 

problem. The latter are the approximate 

and heuristics algorithms including constructive 

heuristics (like nearest neighbor, match twice, and 

stitch), iterative improvement, randomized 

improvement (like GA, Simulated Annealing (SA), 

Tabu search, ant colony optimization, river 

formation dynamics, PSO, etc., that can quickly 

provide good solutions [3]. In the recent years, 

many evolutionary algorithms (EAs) have been 

developed to solve TSP. The main objective of 

these algorithms has been to provide an appropriate 

cross-over operator for TSP since the performance 

of EAs depends heavily on the cross-over operator. 

In other words, the design of a good cross-over 

operator can increase the efficiency of the 

algorithm in solving problems. The Edge 

Assembly Cross-over (EAX) operator, first 

introduced by Nagata et al. has been one of the 

high-power cross-over operators to acquire off-

spring [4].  

 
In this paper, a novel hybrid BBO with EAX named 

as BBOEAX is proposed for solving TSP. The 

main idea of this research work is to improve the 

solutions obtained by the BBO algorithm using the 

EAX operator and causing diversity in the 

population. In this case, the solutions generated by 

the BBO algorithm have been given as parent tours 

to the EAX operator, which generated new off-

springs as solutions. This procedure caused a 

variety of algorithm solutions because a random 

selection of parent tours caused the candidate's 

solutions to be highly diverse. The BBO search 

algorithm has been found to be faster and more 

reliable, and has generally resulted in a better 

optimization than the other algorithms for the 

considered problems. The BBO algorithm has also 

received much attention in the recent years for its 

good capabilities. The performance of the proposed 

approach compared with the original BBO 

algorithm and four others widely used 

metaheuristics algorithms including GA [5, 6], 

PSO [7], SA, and Differential Evolution (DE). 

The rest of this paper has been organized as 

follows. Section 2 discusses the related work. In 

Section 3, the original BBO algorithm has been 

explained. Section 4 describes EAX in detail. In 

Section 5, the proposed BBOEAX algorithm has 

been described in detail. In Section 6, the 

performance of BBOEAX has been assessed on 

standard benchmark functions and the famous TSP. 

Finally, in Section 7, the paper has been concluded. 

 
2. Related works 

Many attempts to improve the performance of the 

BBO algorithm have been made by the researchers 

after the algorithm was introduced. In order to 

overcome the weaknesses of the original BBO 

algorithm, many ideas have been proposed that 

emphasizes the improvement of the performance of 

the migration operator. Zhang et al. have presented 

a novel hybrid algorithm based on the BBO 

algorithm and the Grey Wolf Optimizer (GWO), 

named as the HBBOG algorithm. In the proposed 

algorithm, both the BBO and GWO algorithms 

have been improved [8]. Here, in order to improve 

the BBO algorithm, the original migration operator 

was replaced with a multi-migration, and instead of 

the traditional mutation operator, the differential 

mutation operator was used to enhance the 

performance of the algorithm. The multi-migration 

operator uses two different migration operators 

according to the random-dimensional migration 

based on random selection. Yang et al. have 

presented an improved BBO algorithm that uses 

the non-linear migration operator, and they have 

applied the proposed algorithm in path planning for 

the mobile robot [9]. In the presented algorithm, a 

non-linear migration operator was used instead of 

the traditional migration operator. The main idea of 

the presented algorithm was the dynamic change of 

the migration rate based on the quantity. Bansal has 

presented a modified blended migration and 

polynomial mutation, named as BBO-MBLX-PM 

[10]. The modified migration operator used a 

blended cross-over for migration that was 

described as: 

 

                    1       Hi SIV Hi SIV Hj SIV     (1) 

Here, α affects the performance of the migration 

operator and can be determined by the habitat 

fitness or randomly. Also, the mutation operator 

was replaced with the polynomial mutation. In 

order to make the search process more diverse and 

to find solutions more accurately with high 

convergence rates, the modified BBO introduced 

by Farswan et al. was named as MBBO [11]. Their 

immigrating habitat accepted SIVs from 

https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Heuristic_(computer_science)
https://en.wikipedia.org/wiki/Nearest_neighbour_algorithm
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immigrating habitat, best habitat, and random 

habitat instead of accepting SIVs only from 

emigrating habitat. In order to enhance the 

performance of the original BBO algorithm, Al-

Roomi et al. have introduced a novel hybrid BBO 

with SA called MpBBO [12]. In their method, the 

principal condition of selecting the immigrating 

habitat is based on the metropolis criterion rules. 

Chen et al. have developed the covariance matrix-

based migration (CMM) to decrease the 

dependence of the basic BBO algorithm to the pre-

defined system coordinates, which is one of the 

main disadvantages of the BBO algorithm [13].  

 

Fan et al. have developed a discrete BBO algorithm 

for detecting the overlapping community detection 

to improve the efficiency of the algorithm [14]. 

They used an affinity degree for mutation operator 

and designed problem-specific rules for migration 

operator. Khishe et al. have introduced a novel 

exponential-logarithmic migration operator for the 

original BBO algorithm, named as the ELBBO 

algorithm [15]. The main idea of their algorithm is 

that most undesirable habitats have an ascending 

logarithmic emigration rate and descending 

exponential immigration rates. On the other hand, 

the rich habitats have an exponential emigration 

rate and logarithmic immigration rate. 

Paraskevopoulos et al. have proposed a modified 

BBO, named as the real-coded biogeography-

based optimization (RCBBO), which combines 

fuzzy decision-making for the cognitive radio 

engine design used in the internet of things (IoT) 

[16]. In order to improve the population diversity, 

the authors employed Gaussian, Cauchy, and Levy 

mutations as the mutation operator. Feng et al. 

have proposed a modified BBO algorithm named 

as PRBBO for solving the global optimization 

problems [17]. In the modified algorithm, the triple 

combination is used, which includes migration 

operator combined with random ring topology, a 

modified mutation operator, and a self-adaptive 

Pow-ell’s method. In their method, the local ring 

topology is used instead of global topology to 

increase the population diversity. Lohokare et al. 

have introduced a novel version of the BBO 

algorithm based on the memetic behavior, called 

ABBOMDE, to improve mutation, and clearing of 

duplicate operators is used to speed-up the 

efficiency of the BBO algorithm [18]. 

 
EAX has been used for solving a TSP due to its 

high performance as well as the other similar issues 

in many evolutionary algorithms. Nagata et al. 

have applied EAX for solving TSP [19]. First, the 

advantages of the EAX operator were considered 

against the other cross-over operators, and then the 

advantages of the EAX operator in TSP with other 

candidate operators were examined. Nagata has 

developed a novel approach based on EAX for 

solving the capacitated vehicle routing problem 

[20]. Haque et al. have used the GA algorithm, 

memetic algorithm, and EAX to improve the 

solution of TSP [21]. Blocho et al., to reduce the 

number of routes and minimize them in the VRP 

issue with time windows, have developed a parallel 

algorithm based on EAX [22]. Their algorithm 

used the EAX when exchanging the best solutions 

between processes. For increasing the diversity of 

population in TSP, a fast EAX algorithm was 

introduced [23]. The main idea in the introduced 

algorithm is to localize the EAX operator by 

changing the edges, which leads to the local 

execution of the EAX algorithm. 

 

In the recent decades, many studies have been 

conducted to provide an efficient algorithm for 

solving TSP. Based on this, the local search 

strategies are designed to solve the problem of TSP 

in order to find the optimal solutions. For example, 

Kocer et al. have used an improved artificial bee 

colony (ABC) algorithm and a local search 

algorithm for solving TSP [24]. Also, a lot of 

research works have been conducted to solve TSP 

based on heuristic algorithms and evolutionary 

algorithms. Osaba et al. have used an improved 

discrete BAT algorithm for solving TSP [25]. 

Cheng et al. have introduced a hybrid artificial fish 

algorithm to solve TSP [26]. In the presented 

algorithm, the genetic cross-over operator was used 

to improve the efficiency of the artificial fish 

algorithm. Ardalan et al. have developed a novel 

Imperialist Competitive Algorithm (ICA) for TSP 

[27]. In the presented algorithm, all cities were 

divided into several groups and each group was 

visited only once. Liao et al. have used an 

improved version of PSO for solving TSP with an 

evolutionary algorithm [28]. The presented 

algorithm consists of two phases to solve the TSP 

efficiently. The first phase consists of fuzzy 

clustering, and in the second phase, the PSO 

algorithm is executed based on the genetic-based 

algorithm. 

 
3. Biogeography-Based Optimization (BBO) 

In this section, we describe the original BBO 

algorithm and summarize its main operators, 

migration operator, and mutation operator. BBO 

algorithm is a new intelligence-based metaheuristic 

algorithm inspired by nature based on the concept 

of animal migration to find the habitat. In this 

algorithm, each habitat represents a candidate 
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solution of the problem. The migration of species 

from one habitat to another is based on the 

suitability index called the habitat suitability index 

(HSI). HSI actually represents the individual’s 

fitness. The parameters such as rainfall, 

temperature, region, and humidity affect the 

excellent characteristics of biological habitats. In 

the BBO algorithm, from the Simon's viewpoint, 

these characteristics are called the suitability index 

variables (SIVs). Simply an n-dimensional habitat, 

which is a candidate solution of the problem, is 

formed by n SIVs whose HSI denotes its fitness. In 

the BBO algorithm, each habitat has an 

immigration rate, which means that it has a desire 

to accept poor habitats, and emigration rate, which 

means that there is a strong tendency to migrate to 

rich habitat. In BBO algorithm, in each solution, 

the solution features within habitats based on the 

immigration and emigration are improved. High-

HSI habitats share their good features with low-

HSI habitats, and low-HSI habitats accept the new 

features of high-HSI habitats. Based on the BBO 

algorithm approach, the sharing of features in good 

solutions to other solutions has a high probability, 

and poor solutions have high probabilities to accept 

SIVs from other solutions. The emigration rate of 

the habitat with a high HSI decreases to a habitat 

with a low HSI so the habitat with the highest HSI 

has the maximum emigration rate. The 

immigration rate of the habitat with a high HSI 

increases to a habitat with a low HSI, and therefore, 

the habitat with the highest HSI has the maximum 

immigration rate. The immigration rate λ and the 

emigration μ are calculated according to the 

following two formulas [1]:  

 

 1  
i
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where the immigration rate of the thi  habitat is 

determined by i , and i  is the emigration rate 

for the ith habitat. The maximum immigration rate 

and the maximum emigration rate are denoted with 

I and E, respectively, and N determines the size of 

the population; ik  stands for the fitness rank of the 

thi  habitat after sorting fitness of the thi  habitat so 

that the worst solution has ik  of 1 and the best 

solution has ik  of N. 

Migration and mutation are two principle operators 

in the BBO algorithm. The migration operator is 

responsible for generating a new solution in each 

iteration, and is similar to the cross-over operator 

in the evolutionary algorithm. The mutation 

operator is randomly assigned to habitats, and is 

responsible for preserving the diversity of habitats 

and preventing the trapping of the algorithm in the 

local optimal. 

 

Changing the number of species from t to     t t  

in the habitat with s species is equal to the 𝑃𝑠 

probability, as follows: 

 

   s s s s s-1 s-1 s+1 s+1
P t +Δt = P t (1- λ Δt -μ Δt) +P λ Δt + P μ Δt  (4) 

 

The immigration rate of a habitat with s species is 

determined by .
s s

   is the emigration rate when 

there are s species in the habitat [14].  

 

For a habitat with s species at time t + Δt, one of 

the following conditions should hold: 

 

1. When in the time t there are s species in the 

habitat, then in the times t and    t t , there are no 

immigration and emigration among the species. 

 

2. When in the time t there are    1 s  species in the 

habitat, then in the times t and    t t , one species 

is immigrated. 
 

3. When in the time t there are    1 s  species in the 

habitat, then in the times t and    t t  one species 

is emigrated. 
 

For simplicity, we ignore the probability of 

immigration or emigration more than one species, 

and consider the Δ value 0     0t  . 

 

          
1 1

     0
S S S S S

P P S  
 
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1 1 1 1
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Therefore, solutions with very high HSI as well as 

low HSI solutions are rarely possible. Solutions 

with a medium HSI are more possible. The 

mutation rate im  is as follows, where maxm  denotes 

a user-defined parameter, the existence probability 
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is determined by i
p , and

       ,    1, 2,  , max i sp max p i p   . 
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  (6) 

                                             
In each solution, the mutation operator is randomly 

generated, and is based on the probabilistically of 

replacing SIV. 

 

Algorithm 1 shows the pseudo-code of migration 

operator, and the thi  habitat is denoted by iH  and 

the 
thj  habitat is denoted by jH . Also, n is the 

number of habitats and d is the dimension of a 

solution. 
 

Algorithm 1.  Pseudo-code of migration operator in the 

original BBO. 

      
initialize n;   // Population Size 

 for i: = 1 to n do 

     Select 𝐻𝑖 According to 𝜆𝑖; from Eq. (2) 

      if 𝐻𝑖  is selected, then 

         if rand (0,1) < 𝜆𝑖 ,   then 

           for j: = 1 to d do   // d is Dimension  

        Select Habitat 𝐻𝑗 according to 𝜇𝑖; from Eq.(3) 

        if  𝐻𝑗 is selected, if rand (0,1) < 𝜇𝑖 , then 

       replace SIV 𝐻𝑖 with Selected SIV from 𝐻𝑗; 

  end if 

            end for 

         end if 

       end if 

    end for 

 
 

The mutation operator during the BBO process 

changes the habitat SIVs randomly to determine 

the diversity of populations based on the 

probability of each habitat. It is also the duty of the 

mutation operator to avoid getting caught in the 

local optima. The pseudo-code of the migration 

operator is shown in Algorithm 2. Also, Algorithm 

3 describes the pseudo-code of the basic BBO. 

 
Algorithm 2. Pseudo-code of mutation operator in 

the original BBO. 

      
     Population size = n; 

     for i = 1 to Population do 

       Select Habitat 𝐻𝑖 According to 𝑃𝑖; from Eq.(6) 

          if 𝐻𝑖  is Selected, if rand (0,1) < 𝑚𝑖, then 

                𝐻𝑖(𝑆𝐼𝑉) ← randomly generated SIV; 

          end if 

     end for 

 

 

 

Finally, after applying the migration and mutation 

operator to the relevant habitat, the comparison 

between the habitat individual and the original 

individual is done. In the next assessment, if the 

obtained HSI value of the individual is higher than 

the original value, the original HSI value is well-

replaced by the new value obtained; otherwise, 

there is no change in the original HSI value. By 

repeating continuous assessments and applying 

operators, the algorithm obtains better individuals 

and directs poor habitats to better solutions. This 

process directs the algorithm to find optimal 

solutions. 

 
Algorithm 3. Pseudo-code of the original BBO algorithm. 

     
Randomly initialize a Population of n Habitats  𝐻𝑖 ,  

i = 1,…..,n; 

 Initialize Max Iteration; 

while (Termination Criteria) do 

  Calculate Fitness (HSI) for each Habitat and     

       sort Habitats according their HSI; 

   for i = 1 to n do  // n is Population size; 

     Calculate 𝜆 and 𝜇 for each Habitat according to HSI;  

     from (2, 3) 

   end for 

   /*Migration  

 

    Select 𝐻𝑖 with Probability according to 𝜆𝑖;  from  

    Eq.(2) 

   if  𝐻𝑖 is selected, then  

      select 𝐻𝑗 with Probability according to 𝜇𝑖 ; from  

       Eq(3) 

         if 𝐻𝑗 is selected then; from Eq.(5) 

              Randomly Select SIV from 𝐻𝑗; 

               Replace SIV in 𝐻𝑖 with one from 𝐻𝑗 ; 

          end if 

      end if 

/* Mutation 

   Select 𝐻𝑖 with Probability according to the  

        Mutation rate; from Eq. (6) 

   if 𝐻𝑖(𝑆𝐼𝑉) is selected, then from Eq. (5) 

            Perform Mutation; 

    end if 

 

  Evaluate the Fitness values of the Habitats; 

  Perform Elitism and Update the Best Solution; 

end while 

return Best Solution; 

 
 

4. Edge Assembly Cross-over (EAX) 

In this section, EAX is explained in detail. Most of 

the evolutionary algorithms use the cross-over 

operator because it is an operator that generates 

better solutions to the problem [4, 18]. In other 

words, the cross-over operator, by combining the 

parental responses, generates new off-spring in the 

next iteration, where the new generation inherits 

features from their parents. If this is done 

continuously, then the generations will be 

produced, and there is the possibility of getting 
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better solutions. The cross-over operator originally 

belongs to GA, which is used by other evolutionary 

algorithms too. In the recent years, different 

models have been developed for the cross-over 

operator but the edge assembly cross-over has one 

of the high performances based on the two 

advantages: (i) a  wide variety of children can be 

generated from a pair of parents because 

intermediate solutions are constructed under the 

relaxed condition of TSP, and (ii) children  can be 

constructed without introducing long edges, cross-

over with very high efficiency compared with them 

EAX generates new solutions (off-spring) by 

combining two solutions (parents) in a population. 

Off-springs generated by EAX were totally 

composed of edges of parents. The aim of EAX is 

to inherit as many edges as possible from parent to 

child. When two parents are selected for cross-

over, EAX combines them into an individual 

solution. The two parents are determined by A and 

B, respectively. The stages of the EAX operator are 

as follow: 

 

1. Selecting two parents for cross-over, called tour-

A and tour-B, respectively. 𝐺𝐴𝐵 is defined as a 

graph constructed by merging tour-A and tour-B. 
 

2. Extracting AB-cycles from GAB graph. AB-cycles 

are closed loops in GAB, which are derived from the 

alternate tracing of the edges of Tour-A and Tour-

B. 
 

3. Creating E-set with an AB-cycles based on a 

specific rule.  

 

4. Applying E-set to tour-A to construct an 

intermediate solution. For example, the edges of 

tour-A can be removed in the E-set from tour-A and 

replaced by the edges of tour-B in the E-set. 

 

5. Intermediate solution should be modified to 

create a valid tour by merging sub-tours together. 

 
In the first step, two parents are selected for cross-

over, and the 𝐺𝐴𝐵 graph is made. Then AB-cycles 

are extracted from the 𝐺𝐴𝐵 graph. When the graph 

is undirected, the edge between two nodes is the 

same, and AB-cycles of them are ineffective. In 

other words, these types of cycles consist of only 

two edges that are ineffective, and should be 

eliminated. In the next step, according to the rules, 

which will be described later, an E-set is 

constructed by selecting different combinations of 

AB-cycles. Next, by applying the E-set to the tour-

A, intermediate solution, which includes several 

sub-tours, is made. In the final stage, the sub-tours 

are combined in an innovative way and a valid tour 

is constructed. In order to connect two sub-tours, 

one edge is removed from the first sub-tour, and 

one edge from the second sub-tour, and the two 

new edges are added to connect them. Selecting the 

edges to remove, as well as selecting the sub-tours 

to connect to each other, should be intelligently 

determined. Figure 1 shows the steps of EAX. 

 
EAX Strategies 

There are different approaches to construct E-

set, and hence, each E-set can be constructed 

from any combination of AB-cycles. Here are 

some strategies to construct an E-set. 

 
EAX-1AB: In this strategy, a single AB-cycle 

constructs a one E-set. Hence, each AB-cycle alone 

is an E-set and leads to the increase in the number 

of E-sets. This method makes intermediate 

solutions that tend to be similar to tour-A. 

 

EAX-Rand: Random selection of AB-cycles 

constructs these types of E-sets. This method 

makes intermediate solutions that tend to use the 

edges of both tour-A and tour-B. 

 
EAX-Block: First of all, a one AB-cycle that is 

large enough to be selected randomly is called 

center AB-cycle. Then the small AB-cycles that the 

incident to the center AB-cycle are added to the E-

set. 

 

Random selection of AB-cycles to construct E-sets 

is simple and can generate a wide variety of off-

springs. Selecting single AB-cycles is also simple 

and leads to use both parents. The most important 

disadvantage of these two methods is that they may 

be caught up in the local optimum. Since the AB-

cycle of EAX-Block method is large enough, it is 

more efficient than the two methods above. A more 

detailed description of these methods can be found 

in [20-23]. 

 

EAX-Block algorithm steps: 
1. Selecting a one AB-cycle with large size that will 

be considered as the center AB-cycle. 

 

2. Center AB-cycle applied to tour-A. Constructing 

an intermediate solution, 𝑢𝑖 = (i= 1,2,…,m), i is 

the ith sub-tour and m is the number of sub-tour. 

3. Selecting an AB-cycle that satisfies the following 

criteria. 

 

 First condition: Connect with the vertices 

in 𝑈𝑖. 
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 Second condition: Their size is smaller 

than the center AB-cycle. 

 

4. Creating E-set from center AB-cycle and 

selecting AB-cycles in step 3. 

 

The more advantageous EAX-Block than simple 

EAX is that assembling a block of tour-A and a 

block of tour-B leads to construct medium 

solutions. If the size of the AB-cycle selected is 

small, the number of vertices connected to tour-A 

(tour-B) tends to be smaller. In this case, EAX-

block gains the most ideal feature and can satisfy 

the above conditions. Given what was described 

about EAX-Block, the particular conditions of this 

method were applied to the proposed algorithm. 

Comparing the three strategies mentioned above 

shows that EAX-Block works faster than the 

optimal response, which causes the speed of the 

algorithm to rise. Table 1 shows the comparison of 

the three strategies above. 
 

Table 1. Comparison of the strategies of constructing E-

set. 

 

5. Proposed BBOEAX Algorithm 

In this section, a hybrid algorithm based on BBO 

and EAX, called BBOEAX, for solving TSP is 

proposed. In the proposed algorithm, the migration 

operator had an important role in the performance 

of the BBO algorithm because it was responsible 

for sharing information between habitats. The 

migration operator generated new solutions in each 

iteration to the problem that better solutions were 

replaced by the current solution. Since the EAX 

operator has been one of the best cross-over 

operators to produce new off-spring, it could help 

the BBO’s migration operator to generate new 

solutions. 

 
The main idea of this combination was that since 

the EAX operator selected the parent's edges 

randomly, the habitats had a variety of SIVs, which 

was one of the great weaknesses of the BBO 

algorithm. In other words, the original BBO 

algorithm, due to the complete replacement of rich 

habitat indices with poor habitats, after repeated 

repetition of the algorithm's execution, all habitats 

had almost identical and repetitive SIVs that would 

no longer be able to make better solutions. The 

EAX operator, by randomly selecting the edges 

and increasing diversity in the population, partially 

solves this problem in the BBO algorithm. 

Choosing two habitats as the parent for the EAX 

operator and changing their variables based on the 

operator's rules created new off-springs that were 

highly diverse. The same variation in habitat 

indices made the algorithm achieves better 

solutions.  
 

In the proposed hybrid BBOEAX algorithm, when 

a poor habitat was selected based on the 𝜆 

parameter, the migration operator replaced its SIV 

with the SIV of rich habitats. Then this poor habitat 

was selected along with another random habitat as 

the EAX operator's parents. After these two steps, 

the mutation operator was used to prevent the 

trapping of the algorithm in the local optimal. 

Figure 2 shows a flowchart of the BBOEAX. Also, 

the pseudo-code of the proposed BBOEAX 

algorithm has been shown in Algorithm 4. 
 

Algorithm 4. Pseudo-code of the proposed 

BBOEAX algorithm. 
 Randomly initialize a Population of n Habitats 𝐻𝑖, i = 

1,…..,n; 

while the Termination Criteria are not Satisfied, do 

Calculate Fitness (HSI) for each Habitat and sort Habitats 

according their HSI; 

 

for i = 1 to n do, where n is Population size; 

     Calculate 𝜆 and 𝜇 for each Habitat Based on  

     HSI;    from Eq. (2, 3) 

end for 

/*Migration 

 Select 𝐻𝑖 with Probability based on 𝜆𝑖; from  

   Eq. (2) 

   if 𝐻𝑖 is selected, then  

    select 𝐻𝑗 with Probability based on 𝜇𝑖; from  

    Eq.(3) 

      if 𝐻𝑗 is selected then from Eq. (5) 

           Randomly Select SIV from 𝐻𝑗; 

           Replace SIV in 𝐻𝑖 with one from 𝐻𝑗; 

     end if 

   end if 

/* EAX 

   Select two habitats as a parent based on best strategy 

    Execute EAX procedure  

    Add the valid tours to the population  

/* Mutation 

 Select 𝐻𝑖 with Probability based on the Mutation rate; from 

(6) 

   if 𝐻𝑖(𝑆𝐼𝑉) is selected, then 

        Perform Mutation; from Eq. (5)  

   end if 

    Evaluate the Fitness values of the Habitats; 

 Perform Elitism and Update the Best Solution; 

  end while 

return Best Solution; 

          Dataset             

Strategies        

Eli51 Berlin52 Kroa100 Qatar194 

 

EAX-1AB 498 9234 23176 10126 

EAX-Rand 467 7981 22895 9954 

EAX-Block 431 7551 22234 9735 
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Figure 1. Stages of producing off-spring by combining parent edges; Figure use from [23]. 

 
6. Experimental results 

In this section, we compare the proposed hybrid 

BBOEAX algorithm with the basic BBO algorithm 

and with different evolutionary algorithms such as 

PSO, GA, SA, and DE. In order to evaluate the 

performance of the proposed BBOEAX algorithm 

on the standard benchmark functions and TSP, 

several experiments have been conducted whose 

results have been reported below. In the 

experiments, various benchmark functions and 

datasets of TSPLib have been used [29].  

In all experiments, the size of the population was 

200 and the maximum iterations of the in algorithm 

was considered to be 500. In addition, for each 

experiment, all algorithms were executed 30 times 

independently for each problem, and the results of 

the tests were presented based on the best, worst, 

mean, and standard deviations. Also, all 
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implementations were done by the MATLAB 

software (version R2016). 

  

 

 

Figure 2. Main process of BBOEAX for solving alpha problem using offspring from parent edges combination. 

 

Start 

Set the parameters and randomly initialize a population of n habitats 𝐻𝑖 

Calculate fitness (HSI) for each habitat and sort habitats according their HSI 

 

Calculate 𝜆 and 𝜇 for each habitat based on HSI from Eq. (2, 3) 

 

Select 𝐻𝑖 with probability based on 𝜆𝑖 , then select 𝐻𝑗 with probability based on 𝜇𝑖 from Eq. (4) 

 

Randomly select SIV from 𝐻𝑗 , then replace SIV in 𝐻𝑖 with one from 𝐻𝑗 from Eq. (5) 

Select 𝐻𝑖 as a tour-A and select random habitat as a tour-B 

 

Generate AB-cycles from 𝐺𝐴𝐵 and then construct E-set according a given roles 

 

Apply E-set to tour-A to construct an intermediate solution, then merge sub-tours to create a valid tour 

Select 𝐻𝑖 with probability based on the mutation rate, then perform mutation from Eq. (6) 

 

calculate the fitness for each habitat 

 

Select best habitat and update the best solution 

 

Termination criteria 

(max Iteration) are 

satisfied? 

No 

Yes 

Return best solution 

 

End 
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In the previous study, the parameter settings, like 

population size impact, and mutation probability 

impact of the BBO algorithm in details were 

considered [30]. Also, other algorithm parameter 

settings were considered. The parameters of the 

GA and SA algorithms were based on [31]. The 

parameters of the different evolution algorithms 

were determined by [32]. In addition, the PSO 

algorithm parameters were considered based on 

[33]. The parameter settings of all algorithms 

recommended by authors were considered and 

summarized in table 2. The experiments were 

performed on 12 standard test functions. Also, the 

experiments were performed over 50 times running 

algorithm on any benchmark functions. The list of 

standard test functions used in the experiments is 

represented in table 3. Additional explanations 

about these test functions can be found in [13, 34]. 

TSPLIB, since its release, has included a collection 

of different types of traveling salesman problem 

instance with different sizes; it is used to compare 

the results of the newly proposed algorithms. Table 

4 shows the datasets used in this paper. The other 

TSP instances could be found in [29, 35]. 

 

Experiment 1: This experiment is conducted to 

compare the proposed algorithm with several 

evolutionary algorithms like BBO [30], DE [32], 

GA [5], PSO [7], and SA [5] on standard functions 

with many local minima. These functions reflect 

the algorithm’s ability to escape from the poor 

local optima and locate a good near-global 

optimum [36].  

In order to evaluate the efficiency of the 

algorithms, the parameter Success Rate (SR) is 

used. The success rate of the algorithm is to obtain 

the minimum required result above the specified 

accuracy value before the termination condition 

expires [36, 37]. 

Table 5 presents the values for SR, mean value, and  

standard deviation for all algorithms. From the 

results, the following points can be made:  

 

1. The results show that the proposed algorithm has 

a better performance than the BBO, GA, and PSO 

algorithms. 

 

2. In some functions (like 𝑓1, 𝑓9, 𝑓10, and 𝑓12 ) the 

proposed algorithm in terms of SR with DE and SA 

algorithms is equivalent and, in some 

functions, the proposed algorithm is ranked the 

third.  

 

3. In function 𝑓5, only BBOEAX has a SR, and no 

algorithm has SR. 

 

Experiment 2: This experiment is conducted to 

compare the proposed algorithm with several 

evolutionary algorithms on TSP instances with less 

than 100 cities and more than 100 cities based on 

TSPLIB. Tables 6 and 7 present the results of 

comparing the proposed BBOEAX algorithm with 

the original BBO algorithm and other evolutionary 

algorithms based on the best, mean, worst, and 

standard deviation. The results showed that the 

proposed BBOEAX achieved better results than 

the other algorithms and performed better. On the 

other hand, by examining the results shown in table 

6 and 7, it was clear that the BBOEAX algorithm 

could get a better optimal result than the others. 

Also figures 3 and 4 show the results of the 

simulations for two datasets. Also, in all cases, the 

proposed algorithm had the lowest standard 

deviation than the other algorithms. 

 

 

 

 
Table 2. Parameter settings of all algorithms. 

 

 

 

Algorit

hm 

Itr Pop E I MP Pc w C1 C2 Wr T T0 α q0 F CR NP SR 

BBOE

AX 

500 100 1 1 0.5 --- --- --- --- --- --- --- --- --- --- --- --- --- 

GA 500 100 --- --- 0.5 0.2 --- --- --- --- --- --- --- --- --- --- --- --- 

PSO 500 100 --- --- --- --- 1.5 1.5 1.5 0.9 --- --- --- --- --- --- --- --- 

SA 500 100 --- --- --- 0.99 --- 0.8 --- --- 10000 1 0.9 --- --- --- --- --- 

DE 500 100 --- --- --- ---  --- --- --- --- --- --- 0.9 0.9 0.9 5 20% 
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Table 3. Standard functions used in experiments. Table 4. TSP instances with its details. 

 
No. Name Dimension Optima 

length 

1 Oliver 30 423 

2 Djibouti 38 6656 
3 Eil 51 428 

4 Berlin 52 7544 

5 Pr 76 108159 
6 Kroa 100 21285 

7 Gr 137 69853 

8 Ch 150 6532 
9 U 159 42080 

10 Qatar 194 9352 

11 D 198 10557 
12 Kroa 200 29368 

13 Lin-Kernighan  318 42029 

 

 

 

Experiment 3. This experiment is conducted to 

compare the proposed algorithm with several 

evolutionary algorithms in terms of the execution 

time. We have measured the execution time using 

a computer with processor Intel Core 5 with a clock 

frequency of 2.53GHz, which supports Microsoft 

Windows 10 Pro on 8GB, RAM. Table 8 shows the 

results of this experiment.  

From the results of Experiment 2 and 3, the 

following can be concluded: 

 

1. In all datasets, the proposed BBOEAX algorithm 

has the best performance. 

 

2. Due to the good performance of the proposed 

algorithm, the standard deviation of the BBOEAX 

algorithm is much lower than the other algorithms. 

 

3. The proposed algorithm performs well in 

terms of time complexity, and does not have 

much time complexity than the basic BBO and 

GA. 

4. Although the proposed algorithm is hybrid, it 

still performs better in terms of time complexity 

than the PSO, SA, and DE algorithms. 

 

Statistical analysis 

To ensure the efficiency of the BBOEAX 

algorithm, some statistical analyses were applied 

on the proposed BBOEAX and other algorithms. 

Based on the results of table 5, in order to ensure 

the results obtained, three different statistical tests 

were examined. First, in order to statistically 

validate the superiority of the proposed BBOEAX, 

the Friedman’s test was carried out, and the 

resulting Friedman statistic has been shown in table 

9.  
In order to ensure the statistical results, the results 

of the proposed BBOEAX algorithm were 

compared using ANOVA (ANalysis of VAriance) 

with five other algorithms. Table 10 presents the 

ANOVA test for the proposed algorithm relative to 

the five existing algorithms including BBO, GA, 

PSO, SA, and DE, respectively, and in all case, the 

p-value was less than 0.05.  

The third test is the relative error (RE) to evaluate 

the performance of the proposed BBOEAX 

algorithm.  

The absolute error ratio to the obtained resulting 

value is called a relative error (RE). In the other 

words, relative error is based on the size of 

measure, which is expressed in percentages not in 

a single unit, and is defined as follows: 

100
B O

RE
O


    (7) 

 

 

 

 

 

 

 Function D Range space Global minimum 

𝑓1 Sphere d [-5.12, +5.12] 0 

𝑓2 Ackley d [-32.768, 
+32.768] 

0 

𝑓3 Griewank d [-600, +600] 0 

𝑓4 Rastrigin d [-5.12, +5.12] 0 

𝑓5 Zakharov d [-5, +10] 0 

𝑓6 Rosenbrock d [-2.048, +2.048] 0 

𝑓7 Michalewicz d [0, 𝜋] at d = 2: 
-1.8013 

at d = 5: 

-4.687658 
at d = 10: 

-9.66015 

𝑓8 Langermann 2 [0, 10] at d = 2: 
-.1621259 

at d = 5: -1.4 

𝑓9 Levy d [-10, +10] 0 

𝑓10 Rotated Hyper 

Ellipsoid 

d [-65.536, 

+65.536] 

0 

𝑓11 Schaffer N.2 2 [-100, +100] 0 

𝑓12 Matyas 2 [-10, +10] 0 
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Table 5. Comparison of proposed algorithm with different evolutionary algorithms. 

 
Functions  

 

BBO 

[30] 

DE 

[32] 

GA 

[5] 

PSO 

[7] 

SA 

[5] 

BBOEAX 

 

 SR 0 50 0 45 50 50 

𝑓1 Mean 2.98E-08 4.57E-25 1.28E-06 5.34E-08 7.81E-50 2.98E-08 

 Std 2.32E-05 2.02E-24 9.06E-07 1.60E-07 3.35E-49 2.25E-08 

 SR 0 50 0 0 50 0 

𝑓2 Mean 5.40E-02 6.87E-14 7.37E-03 1.78E-02 2.88E-14 7.28E-04 

 Std 1.43E-02 1.23E-13 1.96E-03 2.50E-02 7.28E-15 2.48E-04 

 SR 0 0 0 0 0 0 

𝑓3 Mean 1.11E-01 3.08E-02 3.48E-02 2.03E-01 6.59E-03 3.58E-03 

 Std 2.98E-02 1.64E-02 3.00E-02 1.18E-01 7.98E-03 4.40E-03 

 SR 0 0 0 0 47 10 

𝑓4 Mean 3.772218 1.48E-04 3.22E-04 11.24737 2.02E-07 2.01E-04 

 Std 1.159120 1.04E-03 1.72E-04 5.975528 4.94E-07 1.40E-03 

 SR 0 0 0 0 0 15 

𝑓5 Mean 1.53E-03 5.55E-05 1.46E-01 2.20E-01 9.230691 2.68E-07  

 Std 7.08E-04 7.70E-05 9.02E-02 2.62E-01 3.953846 1.63E-07 

 SR 0 0 0 0 0 0 

𝑓6 Mean 3.30907 4.79E-01 6.711351 5.387153 1.056651 0.284873 

 Std 1.496001 6.33E-01 1.206713 2.675939 4.39E-01 0.170509 

 SR 0 0 0 0 0 0 

𝑓7 Mean -9.25997 -9.6602 -9.02469 -6.08352 -9.66006 -8.74362 

 Std 2.74E-01 1.07E-14 2.75E-01 1.03100 7.18E-04 0.486548 

 SR 0 0 0 0 0 0 

𝑓8 Mean -4.12784 -4.14734 -4.13968 -4.13526 -4.15567 -4.1276 

 Std 2.81E-02 1.30E-02 2.46E-02 3.16E-02 2.53E-04 0 

 SR 0 50 0 2 50 50 

𝑓9 Mean 9.92E-05 1.84E-24 2.71E-06 1.18E-03 1.50E-32 3.06E-08 

 Std 3.57E-05 6.51E-24 1.19E-06 2.26E-03 8.29E-48 1.53E-08 

 SR 0 50 0 0 50 15 

𝑓10 Mean 4.01E-02 6.00E-22 9.10E-04 6.91E-04 7.12E-41 4.60E-06 

 Std 1.90E-02 2.03E-21 5.18E-04 1.60E-03 1.07E-40 4.14E-06 

 SR 50 50 50 50 24 50 

𝑓11 Mean 4.04E-10 0.00E+00 0.00E+00 0.00E+00 2.27E-07 0.00E+00 

 Std 6.25E-10 0.00E+00 0.00E+00 0.00E+00 3.55E-07 0.00E+00 

 SR 50 50 50 50 14 50 

𝑓12 Mean 1.85E-09 6.98E-23 7.87E-18 7.74E-41 1.78E-06 0.00E+00 

 Std 3.02E-09 2.71E-22 1.79E-17 3.31E-40 3.04E-06 0.00E+00 

 
Table 6. Computational results for TSP instances with less than 100 cities. 

 
Problem Algorithm Best Mean Worst Std 

Oliver30 BBO [30] 426.1971 485.3531 574.4661 35.546117 

GA [5] 491.3252 618.6262 699.7872 45.219135 

PSO [7] 424.6353 424.6353 424.6353 00000000 
SA [5] 493.4304 588.2051 660.7181 36.695123 

DE [32] 489.6571 603.4635 652.5531 33.748171 

BBOEAX 424.4640 424.4641 424.4641 00000000 

Djibouti38 BBO 8058.335 8560.427 8976.178 234.73575 
GA 9554.783 12555.41 14805.01 1232.0711 

PSO 10731.38 13063.77 15714.61 1290.3118 

SA 9040.522 11264.95 13439.68 877.70417 
DE 10846.29 12359.65 13643.71 545.04813 

BBOEAX 7835.317 8083.586 8297.894 110.12118 

Eli51 BBO 508.4931 559.3012 674.0454 42.448216 
GA 608.4192 659.4078 730.6268 34.618139 

PSO 713.3733 779.6131 837.4869 39.669347 

SA 671.6291 715.0792 761.4861 26.200874 
DE 579.5692 605.0076 648.2844 18.714788 

BBOEAX 431.5877 446.4324 461.3597 9.8121793 

Berlin52 BBO 7982.5481 8655.9231 9438.2871 382.30432 

GA 9624.1782 10611.933 11637.985 499.31688 

PSO 13178.384 14323.472 15552.447 644.14576 

SA 10895.756 12300.661 13543.494 734.75249 
DE 8539.9484 9581.8117 10348.811 523.56614 

BBOEAX 7551.6247 7816.7274 8373.5017 248.05667 

Pr76 BBO 137461.27 147251.95 162164.6 6466.6002 

GA 128674.51 134545.24 141685.4 3401.7594 
PSO 164352.95 191527.09 216085.6 12754.771 

SA 147363.88 163999.80 186892.2 11105.078 

DE 124397.16 129074.27 133429.5 2169.7517 

BBOEAX 115743.94 121185.88 129366.5 3245.9509 
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Figure 3. Comparison results of BBOEAX with the other 

algorithms on Eli51. 

Figure 4. Comparison results of BBOEAX with the other 

algorithms on Kroa100.

Table 7. Computational results for TSP instances above 100 cities. 

 
Problem Algorithm Best Mean Worst Std 

Kroa100 BBO [30] 26397.428 31569.145 37348.299 2747.1506 

GA [5] 34486.736 38500.081 43582.496 2696.6862 

PSO [7] 72736.435 78566.767 83624.192 3064.2611 
SA [5] 58908.485 64817.101 70260.192 3138.7088 

DE [32] 46827.651 52434.201 59280.184 3054.6447 

BBOEAX 22234.268 22549.539 23218.721 203.5753 

Gr137 BBO 76554.967 82036.835 88248.651 2906.7115 
GA 79253.674 84167.192 89793.176 3400.6297 

PSO 98347.624 104046.754 112748.35 3181.8374 

SA 93418.091 97932.479 106248.47 3218.0138 
DE 76492.638 88030.612 93752.564 3089.0839 

BBOEAX 71057.693 73950.368 79365.196 1991.7772 

Ch150 BBO 796.47171 7911.7371 9421.674 1410.0441 
GA 11347.647 12555.495 13428.163 432.15277 

PSO 13861.273 14612.601 15293.865 383.69794 

SA 12728.672 13456.060 14656.793 453.54869 

DE 9426.8941 10473.475 11736.628 580.95523 

BBOEAX 6751.6582 7093.4667 7433.683 173.00415 

U159 BBO 49875.287 56282.732 62751.593 3186.2762 
GA 68324.077 74064.228 78268.584 2366.4047 

PSO 87542.724 90809.042 93372.207 1671.8518 

SA 78726.698 82412.124 85208.048 1679.4464 
DE 58052.709 64236.296 69317.191 3286.0455 

BBOEAX 43502.289 45477.601 47441.104 1179.6131 

Qatar194 BBO 10633.805 11393.943 12168.959 451.34112 

GA 15169.959 16688.867 18095.085 868.58783 
PSO 19394.101 23033.71 26396.321 1648.3598 

SA 13346.514 14073.736 14776.197 392.79677 

DE 11947.502 12690.896 13497.604 408.04494 

BBOEAX 9735.741 10291.172 10895.157 319.96251 

D198 BBO 16397.491 19900.069 23557.945 2063.856 

GA 27144.156 33506.772 38631.578 3075.8319 
PSO 43840.630 51076.161 56361.112 2562.8273 

SA 38098.781 41819.347 48140.933 2127.9538 

DE 17624.941 24094.804 29615.694 3147.4947 

BBOEAX 12587.326 15606.778 17718.439 1319.9594 

Kroa200 BBO 36369.528 42063.848 46071.994 2131.3622 

GA 39486.949 46899.655 52119.066 3100.8285 

PSO 57753.542 64231.523 69233.273 3187.7587 
SA 66625.107 79782.986 226335.37 27882.541 

DE 49627.103 56737.964 62006.027 3096.0753 

BBOEAX 33206.541 34527.082 36857.621 896.22611 

Lin-Kernighan318 BBO 48053.932 54926.895 61832.942 3597.9537 

GA 59123.764 64088.804 71452.102 3151.3728 

PSO 75673.101 82638.126 88263.931 2527.3489 
SA 88703.267 96800.513 104894.44 3648.1643 

DE 67263.018 74045.119 83239.693 3444.9274 

BBOEAX 45109.376 46755.492 49875.865 1230.3681 
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Table 8. Comparison of proposed algorithm with different evolutionary algorithms in term of execution time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Table 9. Ranking of algorithms based on Friedman’s test.                              Table 11. Results of the relative error. 

 

 

Table 10. ANOVA test for BBOEAX vs. BBO, GA, PSO, SA, and DE at the 0.05 significant level. 

 
No. BBOEAX vs. BBO BBOEAX vs. GA BBOEAX vs. PSO BBOEAX vs. SA BBOEAX vs. DE 

 𝑥 − 𝑦(%) 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑥 − 𝑦(%) 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑥 − 𝑦(%) 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑥 − 𝑦(%) 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑥 − 𝑦(%) 𝑝 − 𝑣𝑎𝑙𝑢𝑒 
 

1 -68.9483 1.16E-19 -189.256 8.17E-67 -0.17110 0.97968 -157.520 8.04E-56 -182.9 1.01E-64 

2 -498.973 0.022582 -4598.39 4.16E-50 -5317.79 2.38E-58 -3135.12 1.25E-31 -4273.0 3.49E-46 

3 -112.868 8.14E-31 -212.974 1.54E-63 -333.176 9.80E-93 -268.646 2.98E-78 -158.57 9.74E-47 

4 -839.198 5.677E-9 -2795.20 4.45E-48 -6506.74 1.2E-101 -4483.92 2.46E-76 -1765.0 3.87E-27 

5 -26066.0 8.15E-28 -13359.3 2.36E-10 -70341.2 1.70E-81 -42813.9 4.86E-51 -7888.3 0.000103 

6 -9019.61 2.16E-27 -15950.5 1.51E-54 -56017.2 9.5E-140 -42267.5 3.3E-119 -29884.6 1.19E-94 

7 -8086.45 4.06E-20 -10216.8 5.53E-28 -30096.3 1.12E-87 -23982.1 1.10E-72 -14080.2 4.54E-42 

8 -818.270 0.000010 -5462.02 1.25E-71 -7519.13 7.20E-93 -6362.59 1.44E-81 -3380.00 6.99E-44 

9 -10805.1 9.52E-41 -28586.6 1.5E-100 -45331.4 1.1E-133 -36934.5 9.0E-119 -18758.6 3.45E-72 

10 -1102.76 6.451E-7 -6397.69 1.23E-70 -12742.5 7.6E-118 -3782.56 7.88E-41 -2399.72 2.12E-22 

11 -4293.29 2.17E-10 -17899.9 1.27E-66 -35469.3 7.0E-113 -26212.5 1.21E-91 -8488.02 2.11E-28 

12 -7536.76 0.013024 -12372.5 0.000059 -29704.4 1.41E-18 -45255.9 2.29E-33 -22210.8 5.76E-12 

13 -8171.40 6.65E-20 -17333.3 4.28E-52 -35882.6 1.48E-98 -50045.0 2.9E-122 -27289.6 6.19E-80 

 

Also figure 5 and figure 6 show the stability of the 

ompared algorithms in achieving coverage, that all 

algorithms were executed 30 times independently 

(the algorithms were executed 30 times per TSP 

Algorithms 

 
Dataset   

BBO 

[30] 

GA 

[5] 

PSO 

[7] 

SA 

[5] 

DE 

[32] 
BBOEAX 

Oliver 10.98 11.58 13.42 12.67 15.29 11.28 

Djibouti 13.61 14.2 17.84 15.93 17.81 14.67 

Eli51 20.32 22.64 25.62 27.94 29.41 23.83 

Berlin 20.46 23.88 27.64 28.61 30.87 26.23 

Pr76 36.64 37.89 38.73 37.45 39.54 38.2 

Kroa100 57.05 60.52 63.82 61.42 66.87 63.48 

Gr137 96.11 99.73 103.47 98.8 108.62 101.73 

Ch150 112.19 118.34 126.94 117.28 128.12 116.72 

U150 124.96 128.18 135.76 126.44 132.71 128.27 

Qatar194 177.63 182.75 192.78 180.49 189.16 184.67 

D198 185.4 188.72 193.24 187.32 197.21 189.49 

Kr200 193.52 201.38 208.91 198.27 215.73 203.42 

LK318 469.41 498.24 516.81 548.62 586.46 482.08 

Algorithm Average ranking Final rank 

 

BBO 

 

 

2.23 

 

2 

GA 

 

3.92 4 

PSO 

 

5.54 6 

SA 

 

4.85 5 

DE 

 

3.46 3 

BBOEAX 

 

1.00 1 

Problem BBO GA PSO SA DE BBOEAX 

Oliver30 14.74 46.24 0.386 39.05 42.66 0.346 
Djibouti38 28.61 88.63 96.27 69.24 85.69 21.44 

Eli51 30.41 53.75 81.78 66.73 41.07 4.095 

Berlin52 14.73 40.71 89.85 63.04 27.00 3.670 
Pr76 36.14 24.39 77.07 51.62 19.33 12.04 

Kroa100 48.31 80.87 269.1 204.5 146.3 5.938 

Gr137 17.44 20.49 48.95 40.19 26.02 5.865 
Ch150 21.11 92.20 123.6 105.9 60.33 8.590 

U159 33.75 76.00 115.8 95.84 52.65 8.074 

Qatar194 21.83 78.45 146.2 50.48 35.70 10.04 
D198 88.50 217.3 383.8 296.1 128.2 47.83 

Kroa200 43.23 59.69 118.7 171.6 93.19 17.56 

L-K318 30.68 52.48 96.62 130.3 76.17 11.24 
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instances for each number of individuals defined in 

table 5, i.e. in total, 180 runs per TSP instances). 

According to figure 5, the proposed BBOEAX had 

a good performance to stablish full coverage. The 

optimum tour length was determined by O, and the 

obtained result via the proposed algorithm was 

determined by B. The relative error results have 

been shown in table 11. Figure 7 also shows the 

obtained REs of algorithms. (the mean value was 

considered.( 

 

 

 

 

   

 

 

 

 

 

 

Figure 5. Stability analysis on the branch coverage                                       Figure 6. Stability analysis on the branch coverage    

                               on Eli51.                                                                                                              on Oliver30.             
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. RE comparisons of the all algorithms on TSP dataset. 
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7. Conclusion 

In this work proposed a new hybrid BBO with 

EAX for solving optimization problems including 

the traveling salesman problem. In this research 

work, using the capabilities of the EAX operator, 

the proposed BBOEAX algorithm eliminated the 

weaknesses of the original BBO algorithm, and it 

obtained better solutions, and performed better 

than the original version of BBO and other 

evolutionary algorithms. The EAX operator had 

different strategies that was chosen in the proposed 

algorithm after examining the best possible 

strategy. The performance of the EAX operator 

was that with random choices, the diversity was 

increased in the population, which would provide 

better solutions to the algorithm. The BBO 

algorithm alone had a high performance, and its 

combination with the EAX operator increased its 

efficiency. The efficiency of the proposed 

BBOEAX algorithm was compared with the 

original version of BBO and other evolutionary 

algorithms, and the results obtained showed that 

the proposed BBOEAX algorithm had a high 

efficiency in obtaining quadratic solutions. 
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 نشریه هوش مصنوعی و داده کاوی

 

 

 

 سازی جغرافیای زیستی و اسمبلی مجدد لبهوره گرد مبتنی بر الگوریتم بهینهحل مسئله فروشنده د

 

 *عباس صالحی و بهروز معصومی

 دانشکده مهندسی کامپیوتر و فناوری اطلاعات، دانشگاه آزاد اسلامی واحد قزوین، قزوین،  

 08/02/2020 پذیرش ؛23/12/2019بازنگری ؛ 27/12/2018 ارسال

 چکیده:

اخیراً به دلیل سادگی در اجرای، کارآیی و تعداد کم پارامترها مورد توجه محققان قرار گرفته  (BBO)سازی مبتنی بر جغرافیای زیستی الگوریتم بهینه

های جدیدی است که بر اساس مفهوم جغرافیایی ارائه شده است. این الگوریتم از ایده سازی یکی از الگوریتمسائل بهینهدر م BBOاست. الگوریتم 

های دارای سه عملگر اصلی به نام BBOکند. الگوریتم سازی استفاده میمناسب برای حل مسائل بهینه هایمهاجرت حیوانات برای یافتن زیستگاه

کند. های کاندید ایفا می، جهش و انتخاب نخبگان است. اپراتور مهاجرت نقش بسیار مهمی در به اشتراک گذاری اطلاعات در بین زیستگاهمهاجرت

یکی  (EAX)آورد. از طرف دیگر، اسمبلی مجدد لبه شناسایی ضعیف، گاهی اوقات نتایج مطلوبی را بدست نمی ، به دلیل اکتشاف وBBOالگوریتم اصلی 

تواند می EAXو  BBOشود. ترکیبی از الگوریتم ترین عملگرهای متقاطع برای دستیابی به فرزندان بوده است و این باعث افزایش تنوع جمعیت میاز قوی

داشته باشد. در این مقاله، ما ترکیبی از این رویکردها را برای حل  (TSP)سازی از جمله مسئله فروشنده دوره گرد ئل بهینهاراندمان بالایی در حل مس

بررسی شده است. در آزمایشات،  TSPLIBدر  TSPهای استاندارد برای کنیم. رویکرد ترکیبی جدید با مجموعه دادهمسئله فروشنده دوره گرد پیشنهاد می

 و چهار الگوریتم فراابتکاری پرکاربرد دیگر است. BBOالگوریتم پیشنهادی بهتر از الگوریتم اصلی عملکرد 
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