

Journal of AI and Data Mining

Vol 8, No 3, 2020, 313-329. DOI: 10.22044/JADM.2020.7835.1922

Solving Traveling Salesman Problem based on Biogeography-based

Optimization and Edge Assembly Cross-over

A. Salehi and B. Masoumi*

Faculty of Computer and information Technology, Islamic Azad University, Qazvin Branch, Qazvin, Iran.

Received 27 December 2018; Revised 23 December 2019; Accepted 08 February 2020

*Corresponding author: Masoumi@qiau.ac.ir (B. Masoumi).

Abstract
The Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to the researchers

for its simplicity of implementation, efficiency, and low number of parameters. The BBO algorithm in

optimization problems is one of the new algorithms that have been developed based on the biogeography

concept. This algorithm uses the idea of animal migration to find suitable habitats for solving the optimization

problems. The BBO algorithm has three principal operators called migration, mutation, and elite selection. The

migration operator plays a very important role in sharing information among the candidate habitats. The

original BBO algorithm, due to its poor exploration and exploitation, sometimes does not perform desirable

results. On the other hand, the Edge Assembly Cross-over (EAX) has been one of the high powers cross-overs

for acquiring off-spring, and it increases the diversity of the population. A combination of the BBO algorithm

and EAX can provide a high efficiency in solving the optimization problems including the traveling salesman

problem (TSP). In this paper, we propose a combination of those approaches to solve the traveling salesman

problem. The new hybrid approach is examined with standard datasets for TSP in TSPLIB. In the experiments,

the performance of the proposed approach is better than the original BBO and four others widely used

metaheuristics algorithms.

Keywords: Biogeography-Based Optimization, Evolutionary Algorithms, Edge Assembly Cross-over, Genetic

Algorithm, Traveling Salesman Problem.

1. Introduction

In the recent years, many meta-heuristics

algorithms have been proposed to solve complex

optimization problems. Meanwhile, nature-

inspired algorithms have shown a good

performance in solving the optimization problems.

The biogeography-based optimization (BBO)

algorithm is a population-based meta-heuristics

algorithm that was developed by Simon in 2008

[1]. The main idea behind this algorithm is inspired

by the natural migration of the species between

habitats. A migration operator leads to the sharing

of information between habitats, where each

habitat is a candidate solution of the problem.

The BBO algorithm is similar to the evolutionary

algorithms like particle swarm optimization (PSO)

in the sense that each candidate solution in the

search space moves toward better solutions in each

iteration. In the BBO algorithm, unlike the genetic

algorithm (GA), the poor solution will not be

eliminated at the iteration, and in the next iteration,

new solutions will be created. The major problem

of the BBO algorithm is that it may be trapped in

the local optima of the objective function. Many

studies have been conducted to improve the

performance of the original BBO algorithm, and

most of these studies, which will be discussed

below, have focused on improving the migration

operator of the BBO algorithm.

One of the known issues in the field of optimization

problem is the traveling salesman problem (TSP),

which is to find the shortest path to the optima.

http://dx.doi.org/10.22044/jadm.2018.6311.1746
mailto:Masoumi@qiau.ac.ir

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

314

Finding the shortest route among n different cities

is the main issue of TSP, and the distance between

the cities is given as a matrix as an input. This

problem is NP-hard, and thus has attracted the

attention of many researchers [2]. So far, many

algorithms have been proposed to solve this

problem. In general, these algorithms can be

divided into two categories. One is the exact

algorithms such as dynamic

programming, branch-and-bound, and linear

programming that can get the optimal solution but

the problem is that their execution time expands

exponentially according to the dimensions of the

problem. The latter are the approximate

and heuristics algorithms including constructive

heuristics (like nearest neighbor, match twice, and

stitch), iterative improvement, randomized

improvement (like GA, Simulated Annealing (SA),

Tabu search, ant colony optimization, river

formation dynamics, PSO, etc., that can quickly

provide good solutions [3]. In the recent years,

many evolutionary algorithms (EAs) have been

developed to solve TSP. The main objective of

these algorithms has been to provide an appropriate

cross-over operator for TSP since the performance

of EAs depends heavily on the cross-over operator.

In other words, the design of a good cross-over

operator can increase the efficiency of the

algorithm in solving problems. The Edge

Assembly Cross-over (EAX) operator, first

introduced by Nagata et al. has been one of the

high-power cross-over operators to acquire off-

spring [4].

In this paper, a novel hybrid BBO with EAX named

as BBOEAX is proposed for solving TSP. The

main idea of this research work is to improve the

solutions obtained by the BBO algorithm using the

EAX operator and causing diversity in the

population. In this case, the solutions generated by

the BBO algorithm have been given as parent tours

to the EAX operator, which generated new off-

springs as solutions. This procedure caused a

variety of algorithm solutions because a random

selection of parent tours caused the candidate's

solutions to be highly diverse. The BBO search

algorithm has been found to be faster and more

reliable, and has generally resulted in a better

optimization than the other algorithms for the

considered problems. The BBO algorithm has also

received much attention in the recent years for its

good capabilities. The performance of the proposed

approach compared with the original BBO

algorithm and four others widely used

metaheuristics algorithms including GA [5, 6],

PSO [7], SA, and Differential Evolution (DE).

The rest of this paper has been organized as

follows. Section 2 discusses the related work. In

Section 3, the original BBO algorithm has been

explained. Section 4 describes EAX in detail. In

Section 5, the proposed BBOEAX algorithm has

been described in detail. In Section 6, the

performance of BBOEAX has been assessed on

standard benchmark functions and the famous TSP.

Finally, in Section 7, the paper has been concluded.

2. Related works

Many attempts to improve the performance of the

BBO algorithm have been made by the researchers

after the algorithm was introduced. In order to

overcome the weaknesses of the original BBO

algorithm, many ideas have been proposed that

emphasizes the improvement of the performance of

the migration operator. Zhang et al. have presented

a novel hybrid algorithm based on the BBO

algorithm and the Grey Wolf Optimizer (GWO),

named as the HBBOG algorithm. In the proposed

algorithm, both the BBO and GWO algorithms

have been improved [8]. Here, in order to improve

the BBO algorithm, the original migration operator

was replaced with a multi-migration, and instead of

the traditional mutation operator, the differential

mutation operator was used to enhance the

performance of the algorithm. The multi-migration

operator uses two different migration operators

according to the random-dimensional migration

based on random selection. Yang et al. have

presented an improved BBO algorithm that uses

the non-linear migration operator, and they have

applied the proposed algorithm in path planning for

the mobile robot [9]. In the presented algorithm, a

non-linear migration operator was used instead of

the traditional migration operator. The main idea of

the presented algorithm was the dynamic change of

the migration rate based on the quantity. Bansal has

presented a modified blended migration and

polynomial mutation, named as BBO-MBLX-PM

[10]. The modified migration operator used a

blended cross-over for migration that was

described as:

         1 Hi SIV Hi SIV Hj SIV    (1)

Here, α affects the performance of the migration

operator and can be determined by the habitat

fitness or randomly. Also, the mutation operator

was replaced with the polynomial mutation. In

order to make the search process more diverse and

to find solutions more accurately with high

convergence rates, the modified BBO introduced

by Farswan et al. was named as MBBO [11]. Their

immigrating habitat accepted SIVs from

https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Heuristic_(computer_science)
https://en.wikipedia.org/wiki/Nearest_neighbour_algorithm

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

315

immigrating habitat, best habitat, and random

habitat instead of accepting SIVs only from

emigrating habitat. In order to enhance the

performance of the original BBO algorithm, Al-

Roomi et al. have introduced a novel hybrid BBO

with SA called MpBBO [12]. In their method, the

principal condition of selecting the immigrating

habitat is based on the metropolis criterion rules.

Chen et al. have developed the covariance matrix-

based migration (CMM) to decrease the

dependence of the basic BBO algorithm to the pre-

defined system coordinates, which is one of the

main disadvantages of the BBO algorithm [13].

Fan et al. have developed a discrete BBO algorithm

for detecting the overlapping community detection

to improve the efficiency of the algorithm [14].

They used an affinity degree for mutation operator

and designed problem-specific rules for migration

operator. Khishe et al. have introduced a novel

exponential-logarithmic migration operator for the

original BBO algorithm, named as the ELBBO

algorithm [15]. The main idea of their algorithm is

that most undesirable habitats have an ascending

logarithmic emigration rate and descending

exponential immigration rates. On the other hand,

the rich habitats have an exponential emigration

rate and logarithmic immigration rate.

Paraskevopoulos et al. have proposed a modified

BBO, named as the real-coded biogeography-

based optimization (RCBBO), which combines

fuzzy decision-making for the cognitive radio

engine design used in the internet of things (IoT)

[16]. In order to improve the population diversity,

the authors employed Gaussian, Cauchy, and Levy

mutations as the mutation operator. Feng et al.

have proposed a modified BBO algorithm named

as PRBBO for solving the global optimization

problems [17]. In the modified algorithm, the triple

combination is used, which includes migration

operator combined with random ring topology, a

modified mutation operator, and a self-adaptive

Pow-ell’s method. In their method, the local ring

topology is used instead of global topology to

increase the population diversity. Lohokare et al.

have introduced a novel version of the BBO

algorithm based on the memetic behavior, called

ABBOMDE, to improve mutation, and clearing of

duplicate operators is used to speed-up the

efficiency of the BBO algorithm [18].

EAX has been used for solving a TSP due to its

high performance as well as the other similar issues

in many evolutionary algorithms. Nagata et al.

have applied EAX for solving TSP [19]. First, the

advantages of the EAX operator were considered

against the other cross-over operators, and then the

advantages of the EAX operator in TSP with other

candidate operators were examined. Nagata has

developed a novel approach based on EAX for

solving the capacitated vehicle routing problem

[20]. Haque et al. have used the GA algorithm,

memetic algorithm, and EAX to improve the

solution of TSP [21]. Blocho et al., to reduce the

number of routes and minimize them in the VRP

issue with time windows, have developed a parallel

algorithm based on EAX [22]. Their algorithm

used the EAX when exchanging the best solutions

between processes. For increasing the diversity of

population in TSP, a fast EAX algorithm was

introduced [23]. The main idea in the introduced

algorithm is to localize the EAX operator by

changing the edges, which leads to the local

execution of the EAX algorithm.

In the recent decades, many studies have been

conducted to provide an efficient algorithm for

solving TSP. Based on this, the local search

strategies are designed to solve the problem of TSP

in order to find the optimal solutions. For example,

Kocer et al. have used an improved artificial bee

colony (ABC) algorithm and a local search

algorithm for solving TSP [24]. Also, a lot of

research works have been conducted to solve TSP

based on heuristic algorithms and evolutionary

algorithms. Osaba et al. have used an improved

discrete BAT algorithm for solving TSP [25].

Cheng et al. have introduced a hybrid artificial fish

algorithm to solve TSP [26]. In the presented

algorithm, the genetic cross-over operator was used

to improve the efficiency of the artificial fish

algorithm. Ardalan et al. have developed a novel

Imperialist Competitive Algorithm (ICA) for TSP

[27]. In the presented algorithm, all cities were

divided into several groups and each group was

visited only once. Liao et al. have used an

improved version of PSO for solving TSP with an

evolutionary algorithm [28]. The presented

algorithm consists of two phases to solve the TSP

efficiently. The first phase consists of fuzzy

clustering, and in the second phase, the PSO

algorithm is executed based on the genetic-based

algorithm.

3. Biogeography-Based Optimization (BBO)

In this section, we describe the original BBO

algorithm and summarize its main operators,

migration operator, and mutation operator. BBO

algorithm is a new intelligence-based metaheuristic

algorithm inspired by nature based on the concept

of animal migration to find the habitat. In this

algorithm, each habitat represents a candidate

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

316

solution of the problem. The migration of species

from one habitat to another is based on the

suitability index called the habitat suitability index

(HSI). HSI actually represents the individual’s

fitness. The parameters such as rainfall,

temperature, region, and humidity affect the

excellent characteristics of biological habitats. In

the BBO algorithm, from the Simon's viewpoint,

these characteristics are called the suitability index

variables (SIVs). Simply an n-dimensional habitat,

which is a candidate solution of the problem, is

formed by n SIVs whose HSI denotes its fitness. In

the BBO algorithm, each habitat has an

immigration rate, which means that it has a desire

to accept poor habitats, and emigration rate, which

means that there is a strong tendency to migrate to

rich habitat. In BBO algorithm, in each solution,

the solution features within habitats based on the

immigration and emigration are improved. High-

HSI habitats share their good features with low-

HSI habitats, and low-HSI habitats accept the new

features of high-HSI habitats. Based on the BBO

algorithm approach, the sharing of features in good

solutions to other solutions has a high probability,

and poor solutions have high probabilities to accept

SIVs from other solutions. The emigration rate of

the habitat with a high HSI decreases to a habitat

with a low HSI so the habitat with the highest HSI

has the maximum emigration rate. The

immigration rate of the habitat with a high HSI

increases to a habitat with a low HSI, and therefore,

the habitat with the highest HSI has the maximum

immigration rate. The immigration rate λ and the

emigration μ are calculated according to the

following two formulas [1]:

 1
i

i

k
I

n

  

(2)

i

i

k
E

n
 

 
 
 

 (3)

where the immigration rate of the thi habitat is

determined by i , and i is the emigration rate

for the ith habitat. The maximum immigration rate

and the maximum emigration rate are denoted with

I and E, respectively, and N determines the size of

the population; ik stands for the fitness rank of the

thi habitat after sorting fitness of the thi habitat so

that the worst solution has ik of 1 and the best

solution has ik of N.

Migration and mutation are two principle operators

in the BBO algorithm. The migration operator is

responsible for generating a new solution in each

iteration, and is similar to the cross-over operator

in the evolutionary algorithm. The mutation

operator is randomly assigned to habitats, and is

responsible for preserving the diversity of habitats

and preventing the trapping of the algorithm in the

local optimal.

Changing the number of species from t to   t t

in the habitat with s species is equal to the 𝑃𝑠

probability, as follows:

   s s s s s-1 s-1 s+1 s+1
P t +Δt = P t (1- λ Δt -μ Δt) +P λ Δt + P μ Δt (4)

The immigration rate of a habitat with s species is

determined by .
s s

  is the emigration rate when

there are s species in the habitat [14].

For a habitat with s species at time t + Δt, one of

the following conditions should hold:

1. When in the time t there are s species in the

habitat, then in the times t and t t , there are no

immigration and emigration among the species.

2. When in the time t there are   1 s species in the

habitat, then in the times t and t t , one species

is immigrated.

3. When in the time t there are   1 s species in the

habitat, then in the times t and t t one species

is emigrated.

For simplicity, we ignore the probability of

immigration or emigration more than one species,

and consider the Δ value 0   0t  .

  
1 1

 0
S S S S S

P P S  
 

   

1 1 1 1
 () 1 1

S S S S S S S S max
P P P P s S   

   
        (5)

1 1

()
S S S S S max

P P S S  
 

   

Therefore, solutions with very high HSI as well as

low HSI solutions are rarely possible. Solutions

with a medium HSI are more possible. The

mutation rate im is as follows, where maxm denotes

a user-defined parameter, the existence probability

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

317

is determined by i
p , and

  , 1, 2, , max i sp max p i p   .

1
i

i max

max

P
m m

P
 

 
 
 

 (6)

In each solution, the mutation operator is randomly

generated, and is based on the probabilistically of

replacing SIV.

Algorithm 1 shows the pseudo-code of migration

operator, and the thi habitat is denoted by iH and

the
thj habitat is denoted by jH . Also, n is the

number of habitats and d is the dimension of a

solution.

Algorithm 1. Pseudo-code of migration operator in the

original BBO.

initialize n; // Population Size

 for i: = 1 to n do

 Select 𝐻𝑖 According to 𝜆𝑖; from Eq. (2)

 if 𝐻𝑖 is selected, then

 if rand (0,1) < 𝜆𝑖 , then

 for j: = 1 to d do // d is Dimension

 Select Habitat 𝐻𝑗 according to 𝜇𝑖; from Eq.(3)

 if 𝐻𝑗 is selected, if rand (0,1) < 𝜇𝑖 , then

 replace SIV 𝐻𝑖 with Selected SIV from 𝐻𝑗;

 end if

 end for

 end if

 end if

 end for

The mutation operator during the BBO process

changes the habitat SIVs randomly to determine

the diversity of populations based on the

probability of each habitat. It is also the duty of the

mutation operator to avoid getting caught in the

local optima. The pseudo-code of the migration

operator is shown in Algorithm 2. Also, Algorithm

3 describes the pseudo-code of the basic BBO.

Algorithm 2. Pseudo-code of mutation operator in

the original BBO.

 Population size = n;

 for i = 1 to Population do

 Select Habitat 𝐻𝑖 According to 𝑃𝑖; from Eq.(6)

 if 𝐻𝑖 is Selected, if rand (0,1) < 𝑚𝑖, then

 𝐻𝑖(𝑆𝐼𝑉) ← randomly generated SIV;

 end if

 end for

Finally, after applying the migration and mutation

operator to the relevant habitat, the comparison

between the habitat individual and the original

individual is done. In the next assessment, if the

obtained HSI value of the individual is higher than

the original value, the original HSI value is well-

replaced by the new value obtained; otherwise,

there is no change in the original HSI value. By

repeating continuous assessments and applying

operators, the algorithm obtains better individuals

and directs poor habitats to better solutions. This

process directs the algorithm to find optimal

solutions.

Algorithm 3. Pseudo-code of the original BBO algorithm.

Randomly initialize a Population of n Habitats 𝐻𝑖 ,

i = 1,…..,n;

 Initialize Max Iteration;

while (Termination Criteria) do

 Calculate Fitness (HSI) for each Habitat and

 sort Habitats according their HSI;

 for i = 1 to n do // n is Population size;

 Calculate 𝜆 and 𝜇 for each Habitat according to HSI;

 from (2, 3)

 end for

 /*Migration

 Select 𝐻𝑖 with Probability according to 𝜆𝑖; from

 Eq.(2)

 if 𝐻𝑖 is selected, then

 select 𝐻𝑗 with Probability according to 𝜇𝑖 ; from

 Eq(3)

 if 𝐻𝑗 is selected then; from Eq.(5)

 Randomly Select SIV from 𝐻𝑗;

 Replace SIV in 𝐻𝑖 with one from 𝐻𝑗 ;

 end if

 end if

/* Mutation

 Select 𝐻𝑖 with Probability according to the

 Mutation rate; from Eq. (6)

 if 𝐻𝑖(𝑆𝐼𝑉) is selected, then from Eq. (5)

 Perform Mutation;

 end if

 Evaluate the Fitness values of the Habitats;

 Perform Elitism and Update the Best Solution;

end while

return Best Solution;

4. Edge Assembly Cross-over (EAX)

In this section, EAX is explained in detail. Most of

the evolutionary algorithms use the cross-over

operator because it is an operator that generates

better solutions to the problem [4, 18]. In other

words, the cross-over operator, by combining the

parental responses, generates new off-spring in the

next iteration, where the new generation inherits

features from their parents. If this is done

continuously, then the generations will be

produced, and there is the possibility of getting

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

318

better solutions. The cross-over operator originally

belongs to GA, which is used by other evolutionary

algorithms too. In the recent years, different

models have been developed for the cross-over

operator but the edge assembly cross-over has one

of the high performances based on the two

advantages: (i) a wide variety of children can be

generated from a pair of parents because

intermediate solutions are constructed under the

relaxed condition of TSP, and (ii) children can be

constructed without introducing long edges, cross-

over with very high efficiency compared with them

EAX generates new solutions (off-spring) by

combining two solutions (parents) in a population.

Off-springs generated by EAX were totally

composed of edges of parents. The aim of EAX is

to inherit as many edges as possible from parent to

child. When two parents are selected for cross-

over, EAX combines them into an individual

solution. The two parents are determined by A and

B, respectively. The stages of the EAX operator are

as follow:

1. Selecting two parents for cross-over, called tour-

A and tour-B, respectively. 𝐺𝐴𝐵 is defined as a

graph constructed by merging tour-A and tour-B.

2. Extracting AB-cycles from GAB graph. AB-cycles

are closed loops in GAB, which are derived from the

alternate tracing of the edges of Tour-A and Tour-

B.

3. Creating E-set with an AB-cycles based on a

specific rule.

4. Applying E-set to tour-A to construct an

intermediate solution. For example, the edges of

tour-A can be removed in the E-set from tour-A and

replaced by the edges of tour-B in the E-set.

5. Intermediate solution should be modified to

create a valid tour by merging sub-tours together.

In the first step, two parents are selected for cross-

over, and the 𝐺𝐴𝐵 graph is made. Then AB-cycles

are extracted from the 𝐺𝐴𝐵 graph. When the graph

is undirected, the edge between two nodes is the

same, and AB-cycles of them are ineffective. In

other words, these types of cycles consist of only

two edges that are ineffective, and should be

eliminated. In the next step, according to the rules,

which will be described later, an E-set is

constructed by selecting different combinations of

AB-cycles. Next, by applying the E-set to the tour-

A, intermediate solution, which includes several

sub-tours, is made. In the final stage, the sub-tours

are combined in an innovative way and a valid tour

is constructed. In order to connect two sub-tours,

one edge is removed from the first sub-tour, and

one edge from the second sub-tour, and the two

new edges are added to connect them. Selecting the

edges to remove, as well as selecting the sub-tours

to connect to each other, should be intelligently

determined. Figure 1 shows the steps of EAX.

EAX Strategies

There are different approaches to construct E-

set, and hence, each E-set can be constructed

from any combination of AB-cycles. Here are

some strategies to construct an E-set.

EAX-1AB: In this strategy, a single AB-cycle

constructs a one E-set. Hence, each AB-cycle alone

is an E-set and leads to the increase in the number

of E-sets. This method makes intermediate

solutions that tend to be similar to tour-A.

EAX-Rand: Random selection of AB-cycles

constructs these types of E-sets. This method

makes intermediate solutions that tend to use the

edges of both tour-A and tour-B.

EAX-Block: First of all, a one AB-cycle that is

large enough to be selected randomly is called

center AB-cycle. Then the small AB-cycles that the

incident to the center AB-cycle are added to the E-

set.

Random selection of AB-cycles to construct E-sets

is simple and can generate a wide variety of off-

springs. Selecting single AB-cycles is also simple

and leads to use both parents. The most important

disadvantage of these two methods is that they may

be caught up in the local optimum. Since the AB-

cycle of EAX-Block method is large enough, it is

more efficient than the two methods above. A more

detailed description of these methods can be found

in [20-23].

EAX-Block algorithm steps:
1. Selecting a one AB-cycle with large size that will

be considered as the center AB-cycle.

2. Center AB-cycle applied to tour-A. Constructing

an intermediate solution, 𝑢𝑖 = (i= 1,2,…,m), i is

the ith sub-tour and m is the number of sub-tour.

3. Selecting an AB-cycle that satisfies the following

criteria.

 First condition: Connect with the vertices

in 𝑈𝑖.

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

319

 Second condition: Their size is smaller

than the center AB-cycle.

4. Creating E-set from center AB-cycle and

selecting AB-cycles in step 3.

The more advantageous EAX-Block than simple

EAX is that assembling a block of tour-A and a

block of tour-B leads to construct medium

solutions. If the size of the AB-cycle selected is

small, the number of vertices connected to tour-A

(tour-B) tends to be smaller. In this case, EAX-

block gains the most ideal feature and can satisfy

the above conditions. Given what was described

about EAX-Block, the particular conditions of this

method were applied to the proposed algorithm.

Comparing the three strategies mentioned above

shows that EAX-Block works faster than the

optimal response, which causes the speed of the

algorithm to rise. Table 1 shows the comparison of

the three strategies above.

Table 1. Comparison of the strategies of constructing E-

set.

5. Proposed BBOEAX Algorithm

In this section, a hybrid algorithm based on BBO

and EAX, called BBOEAX, for solving TSP is

proposed. In the proposed algorithm, the migration

operator had an important role in the performance

of the BBO algorithm because it was responsible

for sharing information between habitats. The

migration operator generated new solutions in each

iteration to the problem that better solutions were

replaced by the current solution. Since the EAX

operator has been one of the best cross-over

operators to produce new off-spring, it could help

the BBO’s migration operator to generate new

solutions.

The main idea of this combination was that since

the EAX operator selected the parent's edges

randomly, the habitats had a variety of SIVs, which

was one of the great weaknesses of the BBO

algorithm. In other words, the original BBO

algorithm, due to the complete replacement of rich

habitat indices with poor habitats, after repeated

repetition of the algorithm's execution, all habitats

had almost identical and repetitive SIVs that would

no longer be able to make better solutions. The

EAX operator, by randomly selecting the edges

and increasing diversity in the population, partially

solves this problem in the BBO algorithm.

Choosing two habitats as the parent for the EAX

operator and changing their variables based on the

operator's rules created new off-springs that were

highly diverse. The same variation in habitat

indices made the algorithm achieves better

solutions.

In the proposed hybrid BBOEAX algorithm, when

a poor habitat was selected based on the 𝜆

parameter, the migration operator replaced its SIV

with the SIV of rich habitats. Then this poor habitat

was selected along with another random habitat as

the EAX operator's parents. After these two steps,

the mutation operator was used to prevent the

trapping of the algorithm in the local optimal.

Figure 2 shows a flowchart of the BBOEAX. Also,

the pseudo-code of the proposed BBOEAX

algorithm has been shown in Algorithm 4.

Algorithm 4. Pseudo-code of the proposed

BBOEAX algorithm.
 Randomly initialize a Population of n Habitats 𝐻𝑖, i =

1,…..,n;

while the Termination Criteria are not Satisfied, do

Calculate Fitness (HSI) for each Habitat and sort Habitats

according their HSI;

for i = 1 to n do, where n is Population size;

 Calculate 𝜆 and 𝜇 for each Habitat Based on

 HSI; from Eq. (2, 3)

end for

/*Migration

 Select 𝐻𝑖 with Probability based on 𝜆𝑖; from

 Eq. (2)

 if 𝐻𝑖 is selected, then

 select 𝐻𝑗 with Probability based on 𝜇𝑖; from

 Eq.(3)

 if 𝐻𝑗 is selected then from Eq. (5)

 Randomly Select SIV from 𝐻𝑗;

 Replace SIV in 𝐻𝑖 with one from 𝐻𝑗;

 end if

 end if

/* EAX

 Select two habitats as a parent based on best strategy

 Execute EAX procedure

 Add the valid tours to the population

/* Mutation

 Select 𝐻𝑖 with Probability based on the Mutation rate; from

(6)

 if 𝐻𝑖(𝑆𝐼𝑉) is selected, then

 Perform Mutation; from Eq. (5)

 end if

 Evaluate the Fitness values of the Habitats;

 Perform Elitism and Update the Best Solution;

 end while

return Best Solution;

 Dataset

Strategies

Eli51 Berlin52 Kroa100 Qatar194

EAX-1AB 498 9234 23176 10126

EAX-Rand 467 7981 22895 9954

EAX-Block 431 7551 22234 9735

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

320

Figure 1. Stages of producing off-spring by combining parent edges; Figure use from [23].

6. Experimental results

In this section, we compare the proposed hybrid

BBOEAX algorithm with the basic BBO algorithm

and with different evolutionary algorithms such as

PSO, GA, SA, and DE. In order to evaluate the

performance of the proposed BBOEAX algorithm

on the standard benchmark functions and TSP,

several experiments have been conducted whose

results have been reported below. In the

experiments, various benchmark functions and

datasets of TSPLib have been used [29].

In all experiments, the size of the population was

200 and the maximum iterations of the in algorithm

was considered to be 500. In addition, for each

experiment, all algorithms were executed 30 times

independently for each problem, and the results of

the tests were presented based on the best, worst,

mean, and standard deviations. Also, all

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

321

implementations were done by the MATLAB

software (version R2016).

Figure 2. Main process of BBOEAX for solving alpha problem using offspring from parent edges combination.

Start

Set the parameters and randomly initialize a population of n habitats 𝐻𝑖

Calculate fitness (HSI) for each habitat and sort habitats according their HSI

Calculate 𝜆 and 𝜇 for each habitat based on HSI from Eq. (2, 3)

Select 𝐻𝑖 with probability based on 𝜆𝑖 , then select 𝐻𝑗 with probability based on 𝜇𝑖 from Eq. (4)

Randomly select SIV from 𝐻𝑗 , then replace SIV in 𝐻𝑖 with one from 𝐻𝑗 from Eq. (5)

Select 𝐻𝑖 as a tour-A and select random habitat as a tour-B

Generate AB-cycles from 𝐺𝐴𝐵 and then construct E-set according a given roles

Apply E-set to tour-A to construct an intermediate solution, then merge sub-tours to create a valid tour

Select 𝐻𝑖 with probability based on the mutation rate, then perform mutation from Eq. (6)

calculate the fitness for each habitat

Select best habitat and update the best solution

Termination criteria

(max Iteration) are

satisfied?

No

Yes

Return best solution

End

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

322

In the previous study, the parameter settings, like

population size impact, and mutation probability

impact of the BBO algorithm in details were

considered [30]. Also, other algorithm parameter

settings were considered. The parameters of the

GA and SA algorithms were based on [31]. The

parameters of the different evolution algorithms

were determined by [32]. In addition, the PSO

algorithm parameters were considered based on

[33]. The parameter settings of all algorithms

recommended by authors were considered and

summarized in table 2. The experiments were

performed on 12 standard test functions. Also, the

experiments were performed over 50 times running

algorithm on any benchmark functions. The list of

standard test functions used in the experiments is

represented in table 3. Additional explanations

about these test functions can be found in [13, 34].

TSPLIB, since its release, has included a collection

of different types of traveling salesman problem

instance with different sizes; it is used to compare

the results of the newly proposed algorithms. Table

4 shows the datasets used in this paper. The other

TSP instances could be found in [29, 35].

Experiment 1: This experiment is conducted to

compare the proposed algorithm with several

evolutionary algorithms like BBO [30], DE [32],

GA [5], PSO [7], and SA [5] on standard functions

with many local minima. These functions reflect

the algorithm’s ability to escape from the poor

local optima and locate a good near-global

optimum [36].

In order to evaluate the efficiency of the

algorithms, the parameter Success Rate (SR) is

used. The success rate of the algorithm is to obtain

the minimum required result above the specified

accuracy value before the termination condition

expires [36, 37].

Table 5 presents the values for SR, mean value, and

standard deviation for all algorithms. From the

results, the following points can be made:

1. The results show that the proposed algorithm has

a better performance than the BBO, GA, and PSO

algorithms.

2. In some functions (like 𝑓1, 𝑓9, 𝑓10, and 𝑓12) the

proposed algorithm in terms of SR with DE and SA

algorithms is equivalent and, in some

functions, the proposed algorithm is ranked the

third.

3. In function 𝑓5, only BBOEAX has a SR, and no

algorithm has SR.

Experiment 2: This experiment is conducted to

compare the proposed algorithm with several

evolutionary algorithms on TSP instances with less

than 100 cities and more than 100 cities based on

TSPLIB. Tables 6 and 7 present the results of

comparing the proposed BBOEAX algorithm with

the original BBO algorithm and other evolutionary

algorithms based on the best, mean, worst, and

standard deviation. The results showed that the

proposed BBOEAX achieved better results than

the other algorithms and performed better. On the

other hand, by examining the results shown in table

6 and 7, it was clear that the BBOEAX algorithm

could get a better optimal result than the others.

Also figures 3 and 4 show the results of the

simulations for two datasets. Also, in all cases, the

proposed algorithm had the lowest standard

deviation than the other algorithms.

Table 2. Parameter settings of all algorithms.

Algorit

hm

Itr Pop E I MP Pc w C1 C2 Wr T T0 α q0 F CR NP SR

BBOE

AX

500 100 1 1 0.5 --- --- --- --- --- --- --- --- --- --- --- --- ---

GA 500 100 --- --- 0.5 0.2 --- --- --- --- --- --- --- --- --- --- --- ---

PSO 500 100 --- --- --- --- 1.5 1.5 1.5 0.9 --- --- --- --- --- --- --- ---

SA 500 100 --- --- --- 0.99 --- 0.8 --- --- 10000 1 0.9 --- --- --- --- ---

DE 500 100 --- --- --- --- --- --- --- --- --- --- 0.9 0.9 0.9 5 20%

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

323

Table 3. Standard functions used in experiments. Table 4. TSP instances with its details.

No. Name Dimension Optima

length

1 Oliver 30 423

2 Djibouti 38 6656
3 Eil 51 428

4 Berlin 52 7544

5 Pr 76 108159
6 Kroa 100 21285

7 Gr 137 69853

8 Ch 150 6532
9 U 159 42080

10 Qatar 194 9352

11 D 198 10557
12 Kroa 200 29368

13 Lin-Kernighan 318 42029

Experiment 3. This experiment is conducted to

compare the proposed algorithm with several

evolutionary algorithms in terms of the execution

time. We have measured the execution time using

a computer with processor Intel Core 5 with a clock

frequency of 2.53GHz, which supports Microsoft

Windows 10 Pro on 8GB, RAM. Table 8 shows the

results of this experiment.

From the results of Experiment 2 and 3, the

following can be concluded:

1. In all datasets, the proposed BBOEAX algorithm

has the best performance.

2. Due to the good performance of the proposed

algorithm, the standard deviation of the BBOEAX

algorithm is much lower than the other algorithms.

3. The proposed algorithm performs well in

terms of time complexity, and does not have

much time complexity than the basic BBO and

GA.

4. Although the proposed algorithm is hybrid, it

still performs better in terms of time complexity

than the PSO, SA, and DE algorithms.

Statistical analysis

To ensure the efficiency of the BBOEAX

algorithm, some statistical analyses were applied

on the proposed BBOEAX and other algorithms.

Based on the results of table 5, in order to ensure

the results obtained, three different statistical tests

were examined. First, in order to statistically

validate the superiority of the proposed BBOEAX,

the Friedman’s test was carried out, and the

resulting Friedman statistic has been shown in table

9.
In order to ensure the statistical results, the results

of the proposed BBOEAX algorithm were

compared using ANOVA (ANalysis of VAriance)

with five other algorithms. Table 10 presents the

ANOVA test for the proposed algorithm relative to

the five existing algorithms including BBO, GA,

PSO, SA, and DE, respectively, and in all case, the

p-value was less than 0.05.

The third test is the relative error (RE) to evaluate

the performance of the proposed BBOEAX

algorithm.

The absolute error ratio to the obtained resulting

value is called a relative error (RE). In the other

words, relative error is based on the size of

measure, which is expressed in percentages not in

a single unit, and is defined as follows:

100
B O

RE
O


  (7)

 Function D Range space Global minimum

𝑓1 Sphere d [-5.12, +5.12] 0

𝑓2 Ackley d [-32.768,
+32.768]

0

𝑓3 Griewank d [-600, +600] 0

𝑓4 Rastrigin d [-5.12, +5.12] 0

𝑓5 Zakharov d [-5, +10] 0

𝑓6 Rosenbrock d [-2.048, +2.048] 0

𝑓7 Michalewicz d [0, 𝜋] at d = 2:
-1.8013

at d = 5:

-4.687658
at d = 10:

-9.66015

𝑓8 Langermann 2 [0, 10] at d = 2:
-.1621259

at d = 5: -1.4

𝑓9 Levy d [-10, +10] 0

𝑓10 Rotated Hyper

Ellipsoid

d [-65.536,

+65.536]

0

𝑓11 Schaffer N.2 2 [-100, +100] 0

𝑓12 Matyas 2 [-10, +10] 0

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

324

Table 5. Comparison of proposed algorithm with different evolutionary algorithms.

Functions

BBO

[30]

DE

[32]

GA

[5]

PSO

[7]

SA

[5]

BBOEAX

 SR 0 50 0 45 50 50

𝑓1 Mean 2.98E-08 4.57E-25 1.28E-06 5.34E-08 7.81E-50 2.98E-08

 Std 2.32E-05 2.02E-24 9.06E-07 1.60E-07 3.35E-49 2.25E-08

 SR 0 50 0 0 50 0

𝑓2 Mean 5.40E-02 6.87E-14 7.37E-03 1.78E-02 2.88E-14 7.28E-04

 Std 1.43E-02 1.23E-13 1.96E-03 2.50E-02 7.28E-15 2.48E-04

 SR 0 0 0 0 0 0

𝑓3 Mean 1.11E-01 3.08E-02 3.48E-02 2.03E-01 6.59E-03 3.58E-03

 Std 2.98E-02 1.64E-02 3.00E-02 1.18E-01 7.98E-03 4.40E-03

 SR 0 0 0 0 47 10

𝑓4 Mean 3.772218 1.48E-04 3.22E-04 11.24737 2.02E-07 2.01E-04

 Std 1.159120 1.04E-03 1.72E-04 5.975528 4.94E-07 1.40E-03

 SR 0 0 0 0 0 15

𝑓5 Mean 1.53E-03 5.55E-05 1.46E-01 2.20E-01 9.230691 2.68E-07

 Std 7.08E-04 7.70E-05 9.02E-02 2.62E-01 3.953846 1.63E-07

 SR 0 0 0 0 0 0

𝑓6 Mean 3.30907 4.79E-01 6.711351 5.387153 1.056651 0.284873

 Std 1.496001 6.33E-01 1.206713 2.675939 4.39E-01 0.170509

 SR 0 0 0 0 0 0

𝑓7 Mean -9.25997 -9.6602 -9.02469 -6.08352 -9.66006 -8.74362

 Std 2.74E-01 1.07E-14 2.75E-01 1.03100 7.18E-04 0.486548

 SR 0 0 0 0 0 0

𝑓8 Mean -4.12784 -4.14734 -4.13968 -4.13526 -4.15567 -4.1276

 Std 2.81E-02 1.30E-02 2.46E-02 3.16E-02 2.53E-04 0

 SR 0 50 0 2 50 50

𝑓9 Mean 9.92E-05 1.84E-24 2.71E-06 1.18E-03 1.50E-32 3.06E-08

 Std 3.57E-05 6.51E-24 1.19E-06 2.26E-03 8.29E-48 1.53E-08

 SR 0 50 0 0 50 15

𝑓10 Mean 4.01E-02 6.00E-22 9.10E-04 6.91E-04 7.12E-41 4.60E-06

 Std 1.90E-02 2.03E-21 5.18E-04 1.60E-03 1.07E-40 4.14E-06

 SR 50 50 50 50 24 50

𝑓11 Mean 4.04E-10 0.00E+00 0.00E+00 0.00E+00 2.27E-07 0.00E+00

 Std 6.25E-10 0.00E+00 0.00E+00 0.00E+00 3.55E-07 0.00E+00

 SR 50 50 50 50 14 50

𝑓12 Mean 1.85E-09 6.98E-23 7.87E-18 7.74E-41 1.78E-06 0.00E+00

 Std 3.02E-09 2.71E-22 1.79E-17 3.31E-40 3.04E-06 0.00E+00

Table 6. Computational results for TSP instances with less than 100 cities.

Problem Algorithm Best Mean Worst Std

Oliver30 BBO [30] 426.1971 485.3531 574.4661 35.546117

GA [5] 491.3252 618.6262 699.7872 45.219135

PSO [7] 424.6353 424.6353 424.6353 00000000
SA [5] 493.4304 588.2051 660.7181 36.695123

DE [32] 489.6571 603.4635 652.5531 33.748171

BBOEAX 424.4640 424.4641 424.4641 00000000

Djibouti38 BBO 8058.335 8560.427 8976.178 234.73575
GA 9554.783 12555.41 14805.01 1232.0711

PSO 10731.38 13063.77 15714.61 1290.3118

SA 9040.522 11264.95 13439.68 877.70417
DE 10846.29 12359.65 13643.71 545.04813

BBOEAX 7835.317 8083.586 8297.894 110.12118

Eli51 BBO 508.4931 559.3012 674.0454 42.448216
GA 608.4192 659.4078 730.6268 34.618139

PSO 713.3733 779.6131 837.4869 39.669347

SA 671.6291 715.0792 761.4861 26.200874
DE 579.5692 605.0076 648.2844 18.714788

BBOEAX 431.5877 446.4324 461.3597 9.8121793

Berlin52 BBO 7982.5481 8655.9231 9438.2871 382.30432

GA 9624.1782 10611.933 11637.985 499.31688

PSO 13178.384 14323.472 15552.447 644.14576

SA 10895.756 12300.661 13543.494 734.75249
DE 8539.9484 9581.8117 10348.811 523.56614

BBOEAX 7551.6247 7816.7274 8373.5017 248.05667

Pr76 BBO 137461.27 147251.95 162164.6 6466.6002

GA 128674.51 134545.24 141685.4 3401.7594
PSO 164352.95 191527.09 216085.6 12754.771

SA 147363.88 163999.80 186892.2 11105.078

DE 124397.16 129074.27 133429.5 2169.7517

BBOEAX 115743.94 121185.88 129366.5 3245.9509

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

325

Figure 3. Comparison results of BBOEAX with the other

algorithms on Eli51.

Figure 4. Comparison results of BBOEAX with the other

algorithms on Kroa100.

Table 7. Computational results for TSP instances above 100 cities.

Problem Algorithm Best Mean Worst Std

Kroa100 BBO [30] 26397.428 31569.145 37348.299 2747.1506

GA [5] 34486.736 38500.081 43582.496 2696.6862

PSO [7] 72736.435 78566.767 83624.192 3064.2611
SA [5] 58908.485 64817.101 70260.192 3138.7088

DE [32] 46827.651 52434.201 59280.184 3054.6447

BBOEAX 22234.268 22549.539 23218.721 203.5753

Gr137 BBO 76554.967 82036.835 88248.651 2906.7115
GA 79253.674 84167.192 89793.176 3400.6297

PSO 98347.624 104046.754 112748.35 3181.8374

SA 93418.091 97932.479 106248.47 3218.0138
DE 76492.638 88030.612 93752.564 3089.0839

BBOEAX 71057.693 73950.368 79365.196 1991.7772

Ch150 BBO 796.47171 7911.7371 9421.674 1410.0441
GA 11347.647 12555.495 13428.163 432.15277

PSO 13861.273 14612.601 15293.865 383.69794

SA 12728.672 13456.060 14656.793 453.54869

DE 9426.8941 10473.475 11736.628 580.95523

BBOEAX 6751.6582 7093.4667 7433.683 173.00415

U159 BBO 49875.287 56282.732 62751.593 3186.2762
GA 68324.077 74064.228 78268.584 2366.4047

PSO 87542.724 90809.042 93372.207 1671.8518

SA 78726.698 82412.124 85208.048 1679.4464
DE 58052.709 64236.296 69317.191 3286.0455

BBOEAX 43502.289 45477.601 47441.104 1179.6131

Qatar194 BBO 10633.805 11393.943 12168.959 451.34112

GA 15169.959 16688.867 18095.085 868.58783
PSO 19394.101 23033.71 26396.321 1648.3598

SA 13346.514 14073.736 14776.197 392.79677

DE 11947.502 12690.896 13497.604 408.04494

BBOEAX 9735.741 10291.172 10895.157 319.96251

D198 BBO 16397.491 19900.069 23557.945 2063.856

GA 27144.156 33506.772 38631.578 3075.8319
PSO 43840.630 51076.161 56361.112 2562.8273

SA 38098.781 41819.347 48140.933 2127.9538

DE 17624.941 24094.804 29615.694 3147.4947

BBOEAX 12587.326 15606.778 17718.439 1319.9594

Kroa200 BBO 36369.528 42063.848 46071.994 2131.3622

GA 39486.949 46899.655 52119.066 3100.8285

PSO 57753.542 64231.523 69233.273 3187.7587
SA 66625.107 79782.986 226335.37 27882.541

DE 49627.103 56737.964 62006.027 3096.0753

BBOEAX 33206.541 34527.082 36857.621 896.22611

Lin-Kernighan318 BBO 48053.932 54926.895 61832.942 3597.9537

GA 59123.764 64088.804 71452.102 3151.3728

PSO 75673.101 82638.126 88263.931 2527.3489
SA 88703.267 96800.513 104894.44 3648.1643

DE 67263.018 74045.119 83239.693 3444.9274

BBOEAX 45109.376 46755.492 49875.865 1230.3681

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

326

Table 8. Comparison of proposed algorithm with different evolutionary algorithms in term of execution time.

 Table 9. Ranking of algorithms based on Friedman’s test. Table 11. Results of the relative error.

Table 10. ANOVA test for BBOEAX vs. BBO, GA, PSO, SA, and DE at the 0.05 significant level.

No. BBOEAX vs. BBO BBOEAX vs. GA BBOEAX vs. PSO BBOEAX vs. SA BBOEAX vs. DE

 𝑥 − 𝑦(%) 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑥 − 𝑦(%) 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑥 − 𝑦(%) 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑥 − 𝑦(%) 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑥 − 𝑦(%) 𝑝 − 𝑣𝑎𝑙𝑢𝑒

1 -68.9483 1.16E-19 -189.256 8.17E-67 -0.17110 0.97968 -157.520 8.04E-56 -182.9 1.01E-64

2 -498.973 0.022582 -4598.39 4.16E-50 -5317.79 2.38E-58 -3135.12 1.25E-31 -4273.0 3.49E-46

3 -112.868 8.14E-31 -212.974 1.54E-63 -333.176 9.80E-93 -268.646 2.98E-78 -158.57 9.74E-47

4 -839.198 5.677E-9 -2795.20 4.45E-48 -6506.74 1.2E-101 -4483.92 2.46E-76 -1765.0 3.87E-27

5 -26066.0 8.15E-28 -13359.3 2.36E-10 -70341.2 1.70E-81 -42813.9 4.86E-51 -7888.3 0.000103

6 -9019.61 2.16E-27 -15950.5 1.51E-54 -56017.2 9.5E-140 -42267.5 3.3E-119 -29884.6 1.19E-94

7 -8086.45 4.06E-20 -10216.8 5.53E-28 -30096.3 1.12E-87 -23982.1 1.10E-72 -14080.2 4.54E-42

8 -818.270 0.000010 -5462.02 1.25E-71 -7519.13 7.20E-93 -6362.59 1.44E-81 -3380.00 6.99E-44

9 -10805.1 9.52E-41 -28586.6 1.5E-100 -45331.4 1.1E-133 -36934.5 9.0E-119 -18758.6 3.45E-72

10 -1102.76 6.451E-7 -6397.69 1.23E-70 -12742.5 7.6E-118 -3782.56 7.88E-41 -2399.72 2.12E-22

11 -4293.29 2.17E-10 -17899.9 1.27E-66 -35469.3 7.0E-113 -26212.5 1.21E-91 -8488.02 2.11E-28

12 -7536.76 0.013024 -12372.5 0.000059 -29704.4 1.41E-18 -45255.9 2.29E-33 -22210.8 5.76E-12

13 -8171.40 6.65E-20 -17333.3 4.28E-52 -35882.6 1.48E-98 -50045.0 2.9E-122 -27289.6 6.19E-80

Also figure 5 and figure 6 show the stability of the

ompared algorithms in achieving coverage, that all

algorithms were executed 30 times independently

(the algorithms were executed 30 times per TSP

Algorithms

Dataset

BBO

[30]

GA

[5]

PSO

[7]

SA

[5]

DE

[32]
BBOEAX

Oliver 10.98 11.58 13.42 12.67 15.29 11.28

Djibouti 13.61 14.2 17.84 15.93 17.81 14.67

Eli51 20.32 22.64 25.62 27.94 29.41 23.83

Berlin 20.46 23.88 27.64 28.61 30.87 26.23

Pr76 36.64 37.89 38.73 37.45 39.54 38.2

Kroa100 57.05 60.52 63.82 61.42 66.87 63.48

Gr137 96.11 99.73 103.47 98.8 108.62 101.73

Ch150 112.19 118.34 126.94 117.28 128.12 116.72

U150 124.96 128.18 135.76 126.44 132.71 128.27

Qatar194 177.63 182.75 192.78 180.49 189.16 184.67

D198 185.4 188.72 193.24 187.32 197.21 189.49

Kr200 193.52 201.38 208.91 198.27 215.73 203.42

LK318 469.41 498.24 516.81 548.62 586.46 482.08

Algorithm Average ranking Final rank

BBO

2.23

2

GA

3.92 4

PSO

5.54 6

SA

4.85 5

DE

3.46 3

BBOEAX

1.00 1

Problem BBO GA PSO SA DE BBOEAX

Oliver30 14.74 46.24 0.386 39.05 42.66 0.346
Djibouti38 28.61 88.63 96.27 69.24 85.69 21.44

Eli51 30.41 53.75 81.78 66.73 41.07 4.095

Berlin52 14.73 40.71 89.85 63.04 27.00 3.670
Pr76 36.14 24.39 77.07 51.62 19.33 12.04

Kroa100 48.31 80.87 269.1 204.5 146.3 5.938

Gr137 17.44 20.49 48.95 40.19 26.02 5.865
Ch150 21.11 92.20 123.6 105.9 60.33 8.590

U159 33.75 76.00 115.8 95.84 52.65 8.074

Qatar194 21.83 78.45 146.2 50.48 35.70 10.04
D198 88.50 217.3 383.8 296.1 128.2 47.83

Kroa200 43.23 59.69 118.7 171.6 93.19 17.56

L-K318 30.68 52.48 96.62 130.3 76.17 11.24

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

327

instances for each number of individuals defined in

table 5, i.e. in total, 180 runs per TSP instances).

According to figure 5, the proposed BBOEAX had

a good performance to stablish full coverage. The

optimum tour length was determined by O, and the

obtained result via the proposed algorithm was

determined by B. The relative error results have

been shown in table 11. Figure 7 also shows the

obtained REs of algorithms. (the mean value was

considered.(

Figure 5. Stability analysis on the branch coverage Figure 6. Stability analysis on the branch coverage

 on Eli51. on Oliver30.

Figure 7. RE comparisons of the all algorithms on TSP dataset.

0

50

100

150

200

250

300

350

400
Oliver30

Djibouti38

Eli51

Berlin52

Pr76

Kroa100

Gr137Ch150

U159

Qarar194

D198

Kroa200

L-D318

BBO

GA

PSO

SA

DE

BBOEAX

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

328

7. Conclusion

In this work proposed a new hybrid BBO with

EAX for solving optimization problems including

the traveling salesman problem. In this research

work, using the capabilities of the EAX operator,

the proposed BBOEAX algorithm eliminated the

weaknesses of the original BBO algorithm, and it

obtained better solutions, and performed better

than the original version of BBO and other

evolutionary algorithms. The EAX operator had

different strategies that was chosen in the proposed

algorithm after examining the best possible

strategy. The performance of the EAX operator

was that with random choices, the diversity was

increased in the population, which would provide

better solutions to the algorithm. The BBO

algorithm alone had a high performance, and its

combination with the EAX operator increased its

efficiency. The efficiency of the proposed

BBOEAX algorithm was compared with the

original version of BBO and other evolutionary

algorithms, and the results obtained showed that

the proposed BBOEAX algorithm had a high

efficiency in obtaining quadratic solutions.

References
[1] Simon, D. (2008). Biogeography-based

optimization. IEEE Transactions on Evolutionary

Computation, vol. 12, no. 6, pp. 702–713.

[2] Matai, R., Singh, S., & Lal, M. (2010). Traveling

salesman problem: an overview of applications,

formulations, and solution approaches, in: Traveling

Salesman Problem, Theory and Applications, In Tech,

pp. 1–24.

[3] Yang, X.S. (2014). Firefly algorithms, in: Nature-

Inspired Optimization Algorithms, Elsevier, 2014, pp.

111–127.

[4] Nagata, Y. & Kobayashi, S. (1997). Edge Assembly

Crossover: A High-power Genetic Algorithm for the

Traveling Salesman Problem. In PROCEEDINGS OF

THE INTERNATIONAL CONFERENCE ON

GENETIC ALGORITHMS, pp. 450-457.

[5] Goldberg, D. E., (1989). Genetic Algorithms in

Search, Optimization and Machine Learning, Addison-

Wesley Longman Publishing Co., Inc., Boston, MA,

1989.

[6] Safaee, B. & Kamaleddin Mousavi Mashhadi, S.

(2017). Optimization of fuzzy membership functions via

PSO and GA with application to quad rotor, Journal of

AI and Data Mining (JAIDM), vol. 5, no. 1, 2017, pp. 1-

10.

[7] Kennedy, J., & Eberhart, R. (1995). Particle swarm

optimization, Proc. IEEE Int. Conf. Neural Network,

vol. 4, pp. 1942-1948, 1995.

[8] Zhang, X., Kang, Q., Cheng, J. & Wang, X. (2018).

A Novel Hybrid Algorithm Based on Biogeography-

Based Optimization and Grey Wolf Optimizer. Applied

Soft Computing, Elsevier, vol. 67, pp. 197-214, 2018.

[9] Yang, J. & Li, L. (2017). Improved Biogeography-

Based Optimization Algorithm for Mobile Robot Path

Planning. Proceedings of 2017 Chinese Intelligent

Systems Conference, Lecture Notes in Electrical

Engineering 460, pp. 219-229.

[10] Bansal, J.C. (2016). Modified Blended Migration

and Polynomial Mutation in

Biogeography-Based Optimization. Harmony Search

Algorithm, Advances in Intelligent Systems and

Computing 382, pp. 217-225.

[11] Farswan, P., Bansal, J.C. & Deep, K. (2016). A

Modified Biogeography Based Optimization. Harmony

Search Algorithm, Advances in: Intelligent Systems and

Computing 382, pp. 227-238.

[12] Al-Roomi, A.R. & El-Hawary, M.E. (2016).

Metropolis biogeography- based optimization.

Information Sciences, vol. 360, pp. 73-95.

[13] Chen, X., Tianfield, H., Du, W. & Liu, G. (2016).

Biogeography-based optimization with covariance

matrix-based Migration. Applied Soft Computing, vol.

45, pp. 71-85.

[14] Fan, H., Zhong, Y. & Zeng, G. (2017). Overlapping

community detection based on discrete biogeography

optimization. Appl Intell, vol. 48, pp. 1314–1326.

[15] Khishe, M., Mosavi, M.R. & Kaveh, M. (2017).

Improved migration models of biogeography-based

optimization for sonar dataset classification by using

neural network. Applied Acoustics, vol. 118, pp. 15-29.

[16] Paraskevopoulos, A., Dallas, P.I., Siakavara, K. &

Goudos, S.K. (2017). Cognitive Radio Engine Design

for IoT Using Real-Coded Biogeography-Based

Optimization and Fuzzy Decision Making. Wireless

Pers Commun, vol. 97, pp. 1813-1833.

[17] Feng, Q., Liu, S., Zhang, J., Yang, G. & Yong, L.

(2017). Improved biogeography-based optimization

with random ring topology and Powell’s method.

Applied Mathematical Modelling, vol. 41, pp. 630-649.

[18] Lohokare, M. R., Pattnaik, S. S., Panigrahi, B. K.

& Das, S. (2013). Accelerated biogeography-based

optimization with neighborhood search for

optimization. Applied Soft Computing, vol. 13, pp.

2318-2342.

[19] Nagata, Y. & Kobayashi, S. (2006). An analysis of

Edge Assembly Crossover for the Traveling Salesman

Problem. 0-7803-5731-0/99/$10.00 01999 IEEE.

[20] Nagata, Y. (2007). Edge Assembly Crossover for

the Capacitated Vehicle Routing Problem. EvoCOP

2007, LNCS 4446, pp. 142–153.

[21] Haque, M. J. & Magld, K. W. (2012). Improving

the Solution of Traveling Salesman Problem Using

Genetic, Memetic Algorithm and Edge assembly

https://www.tib.eu/en/search/?tx_tibsearch_search%5Bquery%5D=journal%3A%28PROCEEDINGS%20OF%20THE%20INTERNATIONAL%20CONFERENCE%20ON%20GENETIC%20ALGORITHMS%29
https://www.tib.eu/en/search/?tx_tibsearch_search%5Bquery%5D=journal%3A%28PROCEEDINGS%20OF%20THE%20INTERNATIONAL%20CONFERENCE%20ON%20GENETIC%20ALGORITHMS%29
https://www.tib.eu/en/search/?tx_tibsearch_search%5Bquery%5D=journal%3A%28PROCEEDINGS%20OF%20THE%20INTERNATIONAL%20CONFERENCE%20ON%20GENETIC%20ALGORITHMS%29
https://dl.acm.org/citation.cfm?id=534133
https://dl.acm.org/citation.cfm?id=534133
https://dl.acm.org/citation.cfm?id=534133
https://dl.acm.org/citation.cfm?id=534133

Masoumi & Salehi/ Journal of AI and Data Mining, Vol 8, No 3, 2020.

329

Crossover. (IJACSA) International Journal of Advanced

Computer Science and Applications, vol. 3, no. 7, pp.

108-111.

[22] Błocho, M. & Czech, Z. J. (2012). A parallel EAX-

based algorithm for minimizing the number of routes in

the vehicle routing problem with time windows.

Proceedings of the 2012 IEEE 14th International

Conference on High Performance Computing and

Communication & 2012 IEEE 9th International

Conference on Embedded Software and Systems, pp.

255-265.

[23] Nagata, Y. (2006). Fast EAX Algorithm

Considering Population Diversity for Traveling

Salesman Problems. EvoCOP 2006, LNCS 3906, pp.

171–182.

[24] Kocer, H. E. & Akca, M. R. (2014). An Improved

Artificial Bee Colony Algorithm with Local Search for

Traveling Salesman Problem. Cybernetics and Systems:

An International Journal, vol. 45, pp. 635–649, Taylor

& Francis Group.

[25] Osaba, E., Yang, X. S., Diaz, F. & Garcia, P. L.

(2016). An improved discrete bat algorithm for

symmetric and asymmetric Traveling Salesman

Problems. Engineering Applications of Artificial

Intelligence, vol. 48, pp. 59-71.

[26] Cheng, C. Y., Li. H. F. & Bao, C. H. (2015).

Hybrid Artificial Fish Algorithm to Solve TSP Problem.

Proceedings of the 6th International Asia Conference on

Industrial Engineering and Management Innovation.

[27] Ardalan, Z., Karimi, S., Poursabzi, O. & Naderi, B.

(2014). A novel imperialist competitive algorithm for

generalized traveling salesman problems. Applied Soft

Computing, vol. 26, pp. 546-555.

[28] Liao, Y. F., Yau, D. H. & Chen, C.L. (2012).

Evolutionary algorithm to traveling salesman problems.

Computers and Mathematics with Applications, vol. 64,

pp. 788-797.

[29] http://elib.zib.de/pub/mp-

testdata/tsp/tsplib/tsplib.html/ Accessed 5 April 2018.

[30] Salehi, A. & Masoumi, B. (2019), Participative

Biogeography-Based Optimization. Journal of

Optimization in Industrial Engineering, vol. 12, no. 1,

pp. 79- 91.

[31] Chen, Y. & Jia, Y. (2015). Research on Traveling

Salesman Problem Based on the Ant Colony

Optimization Algorithm and Genetic Algorithm. The

Open Automation and Control Systems Journal, vol. 7,

pp. 1329-1334

[32] Wei, H., Hao, Z., Huang, H., Li, G. & Chen, Q.

(2016). A Real Adjacency Matrix-Coded Differential

Evolution Algorithm for Traveling Salesman Problems.

BIC-TA 2016, Part II, CCIS 682, pp. 135–140.

[33] Liu, Z. G., Ji, X. H. & Liu, Y. X. (2018). Hybrid

non-parametric particle swarm optimization and its

stability analysis. Expert Systems with Applications,

vol. 92, pp. 256-275.

[34] Guo, W., Wang, L. Si, C. Zhang, Y. & Tian, H.

(2016). Novel migration operators of biogeography-

based optimization and Markov analysis. Soft Comput,

Springer-Verlag Berlin Heidelberg, 21, vol. 22, pp.

6605-6632.

[35] http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/ Accessed 5 April

2018.

[36] Brest, S. Greiner, B. Boškovic, et al. (2006). Self-

adapting control parameters in differential evolution: a

comparative study on numerical benchmark problems,

IEEE Transactions on Evolutionary Computation, vol.

10, pp. 646–657.

[37] Ranjini, S. & Murugan, S. (2018). Memory based

Hybrid Dragonfly Algorithm for Numerical

Optimization Problems. Expert Systems with

Applications,vol. 83, pp. 63-78.

[38] Gong, W., Cai, Z. & Ling, C.X. (2010). DE/BBO:

a hybrid differential evolution with biogeography-based

optimization for global numerical optimization. Soft

Comput, Springer-Verlag, vol. 15, no. 4, pp. 645-665.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

 نشریه هوش مصنوعی و داده کاوی

 سازی جغرافیای زیستی و اسمبلی مجدد لبهوره گرد مبتنی بر الگوریتم بهینهحل مسئله فروشنده د

 *عباس صالحی و بهروز معصومی

 دانشکده مهندسی کامپیوتر و فناوری اطلاعات، دانشگاه آزاد اسلامی واحد قزوین، قزوین،

 08/02/2020 پذیرش ؛23/12/2019بازنگری ؛ 27/12/2018 ارسال

 چکیده:

اخیراً به دلیل سادگی در اجرای، کارآیی و تعداد کم پارامترها مورد توجه محققان قرار گرفته (BBO)سازی مبتنی بر جغرافیای زیستی الگوریتم بهینه

های جدیدی است که بر اساس مفهوم جغرافیایی ارائه شده است. این الگوریتم از ایده سازی یکی از الگوریتمسائل بهینهدر م BBOاست. الگوریتم

های دارای سه عملگر اصلی به نام BBOکند. الگوریتم سازی استفاده میمناسب برای حل مسائل بهینه هایمهاجرت حیوانات برای یافتن زیستگاه

کند. های کاندید ایفا می، جهش و انتخاب نخبگان است. اپراتور مهاجرت نقش بسیار مهمی در به اشتراک گذاری اطلاعات در بین زیستگاهمهاجرت

یکی (EAX)آورد. از طرف دیگر، اسمبلی مجدد لبه شناسایی ضعیف، گاهی اوقات نتایج مطلوبی را بدست نمی ، به دلیل اکتشاف وBBOالگوریتم اصلی

تواند می EAXو BBOشود. ترکیبی از الگوریتم ترین عملگرهای متقاطع برای دستیابی به فرزندان بوده است و این باعث افزایش تنوع جمعیت میاز قوی

داشته باشد. در این مقاله، ما ترکیبی از این رویکردها را برای حل (TSP)سازی از جمله مسئله فروشنده دوره گرد ئل بهینهاراندمان بالایی در حل مس

بررسی شده است. در آزمایشات، TSPLIBدر TSPهای استاندارد برای کنیم. رویکرد ترکیبی جدید با مجموعه دادهمسئله فروشنده دوره گرد پیشنهاد می

 و چهار الگوریتم فراابتکاری پرکاربرد دیگر است. BBOالگوریتم پیشنهادی بهتر از الگوریتم اصلی عملکرد

 های تکاملی، اسمبلی مجدد لبه، الگوریتم ژنتیک، مسئله فروشنده دوره گرد.تنی بر جغرافیای زیستی، الگوریتمسازی مببهینه :کلمات کلیدی

