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Abstract 

This paper addresses the trajectory tracking problem of autonomous underwater vehicles  in the horizontal 

plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some 

uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by 

unknown boundary levels. The proposed approach is based upon a dual layer adaptive law, which is 

independent from the knowledge of disturbance boundary limit and its derivative. This approach tends to 

play a significant role in reducing the chattering effect that is prevalent in the conventional sliding mode 

controllers. To guarantee the stability of the proposed control technique, the Lyapunov theory is used. The 

simulation results illustrate the validity of the proposed control scheme compared to the finite-time tracking 

control method. 
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1. Introduction 

Submarines play an important role in underwater 

exploration, mapping, scientific missions, and so 

forth. Therefore, navigation and control systems 

of Autonomous Underwater Vehicles (AUVs) 

have gained a remarkable importance in the recent 

years. Since severe conditions and deep regions of 

oceans tend to threaten the human beings’ lives, 

applying manned submarines is not 

recommended. In these situations, AUVs can be 

considered as a suitable alternative for manned 

underwater vehicles. As AUVs are unmanned 

vehicles without any remote control, they require 

autonomous motion control techniques in order to 

accomplish their missions. To solve this issue, 

various motion control approaches have been 

taken into account, and these techniques can be 

generally classified into three categories: 

 Trajectory tracking control 

 Path-following control 

 Way-point tracking control 

Trajectory tracking control is attributed to the case 

when a desired trajectory needs to be tracked from 

an initial point A to a desired point B at a desired 

time. In other words, the continuous sequence 

coincidence of each position of an AUV at any 

time with the desired time-parameterized 

trajectory is called the trajectory tracking [1]. In 

the path-following control, ‘time’ is not of 

concern but following the desired path is the 

objective [2]. The way-point tracking control 

refers to tracking a desired set of discrete points 

between the initial and the final points. In the 

way-point tracking control strategy, the AUV 

control system enforces the vehicle to find the 

optimized path between two desired sequential 

points [3]. From different viewpoints, the time-

varying trajectory is more practical than the other 

categories, and that is why it has captured more 

attention than the path-following control [4]. 

Hence, it is addressed as the main issue in this 

paper. 

The performance of AUVs is highly dependent on 

the design procedure, environmental and working 

conditions, uncertainties, and external 

disturbances. Generally, the mathematical model 

of AUVs is highly non-linear, becoming more 

complicated when the uncertainty terms and 

external disturbances such as ocean waves are 

added. To tackle this issue, many researchers have 
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proposed various simplified methods  such as 

linearizing in the neighborhood of the operating 

point. Nevertheless, these methods are not 

recommended due to the important role of the 

non-linear terms in describing the AUV systems. 

Thereupon, it is common to convert the 6-DOF 

model into two separate models on the horizontal 

and dive plane [5]. For instance, the AUV planar 

motion has been addressed in [6] and [7], and the 

depth control of AUVs has been studied in [8] and 

[9]. 

Different control methods have been applied to 

AUV systems for many years. A PID control for 

NDRE-AUV has been designed in [10], and 

thence, a non-linear approach has been added to 

the PID controller in order to improve the PID 

performance in [11]. In [12], a combination of 

genetic algorithm and PID control has been used 

to optimize the PID performance. In [13], a group 

of linear controllers have been applied to the AUV 

systems. Due to the inevitable presence of 

external disturbances in oceans and aquatic 

environments and inability in determining the 

accurate value of the hydrodynamic parameters, 

the robust control approaches were employed in 

the AUV control systems [14]. A combination of 

robust control and optimization algorithms have 

been addressed in [8] to improve the quality of 

control effort and in [15], particle swarm 

optimization algorithm was used to maximize the 

coverage of target area. Motivated by the 

aforementioned issues, the linearized model and 

control approaches could not be advisable in the 

AUV systems. Hence, the non-linear approaches 

seem more desirable. 

The sliding mode control is regarded as a non-

linear robust control together with simple 

implementation and common utilization in most 

research works on AUVs [3, 16]. However, this 

controller might cause the chattering phenomenon 

and instability in AUVs. Therefore, it tends to be 

combined with fuzzy, neural, and adaptive control 

scheme or disturbance estimator to improve its 

efficiency. In the fuzzy control scheme, plenty of 

rules are required to be adjusted, and the higher its 

accuracy, the greater the volume of rules and 

calculation time would be [17, 18], and a neural 

control may require an intensive calculation for 

learning and adaptation. Although adaptive 

control has been shown to be more suitable for 

systems with slow varying parameters, the 

adaptive robust control could perform superiorly 

in the trajectory tracking control issues in the 

presence of uncertainty and external disturbances 

[4]. Estimating disturbance in non-linear systems 

could also play an efficient role in the chattering 

elimination, especially in AUV systems in which 

disturbance is inevitable. In [19, 20], a finite-time 

tracker has been designed for tracking control of 

chained form non-holonomic systems using the 

recursive terminal sliding mode control and 

disturbance observer. 

According to the aforementioned premises, the 

sliding mode control in combination with the 

adaptive control scheme would be recommended. 

In [21], the parameters of the sliding mode control 

have been estimated using adaptive control in 

order to control the depth of AUVs. In [22], a 

controller consisting of two loops has been 

designed for AUVs using the sliding mode and 

adaptive control. This means that position was 

controlled in the external loop and the desired 

virtual speeds were designed in order to be used 

for speed control in the internal loop. The 

switching term of the control signal has been 

estimated using the single-layer adaptive law in 

order to reduce the chattering phenomenon. In 

[23], a control law has been designed using a 

high-order sliding mode and adaptive control, in 

which the external disturbances have been 

estimated using the adaptive law. Unlike the high-

order sliding mode method, the proposed method 

in [23] has shown no chattering phenomenon in 

the simulation results. In [24], a global adaptive 

sliding surface has been introduced to overcome 

the chattering phenomenon in linear systems with 

non-linear disturbances. In [25], the position and 

orientation of fully actuated AUVs on the 

horizontal plane have been controlled using the 

adaptive robust finite-time tracking control to 

result in robustness and accurate trajectory 

tracking. 

Since AUVs are exposed to many disturbances 

such as waves, wind, and ocean currents, and 

what happens in the ocean is difficult to predict 

and susceptible of sudden change, it is necessary 

to consider disturbances as an unknown variable 

in designing the tracking control law for AUV 

systems. Hence, based on the approach presented 

in [26], the main objective of this paper is to 

propose the adaptive robust trajectory tracking 

control of AUVs on the horizontal plane exposed 

to external bounded disturbances with unknown 

boundary values. To this objective, the boundary 

value of disturbance and its derivative are 

estimated using adaptive rules. As mentioned 

earlier, the main drawback of the sliding mode 

control is the chattering phenomenon, which is a 

result of selecting a high-gain value for the 

switching term of the sliding mode control in 

order to obtain robustness. In order to overcome 

this challenge, the estimated values for 
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disturbances are applied to the sliding mode 

control law presented in this paper. In this way, 

the amplitude of control effort will be strong and 

small enough to eliminate the disturbance effects 

and prohibit the chattering phenomenon, 

respectively. Unlike other adaptive sliding mode 

methods, presented in the literature, which 

comprise the switching and equivalent term, the 

proposed control law consists of just one control 

gain, which is calculated adaptively based on the 

sliding mode control and unknown disturbances. 

Moreover, the method can also overcome 

unstructured uncertainty, although it is not 

mentioned in the paper directly. 

The remainder of this paper is organized as what 

follows. In section 2, a 3-DOF model of AUVs on 

the horizontal plane is presented. The dual layer 

adaptive sliding mode control and its stability are 

given in Section 3. Section 4 provides the 

simulation studies, which are compared with the 

results of finite-time tracking control (FFTC) 

presented in [25], and Section 5 concludes the 

paper. 

 

2. Problem formulation 

The planar motion of AUVs on the horizontal 

plane can be developed using the earth-fixed 

frame {E} and body-fixed frame {B}, as 

illustrated in figure 1. The dynamic and kinematic 

equations of AUVs are expressed by (1) and (2), 

assuming that roll, pitch, and heave motions are 

negligible, and buoyancy and gravitational forces 

have no effect on the horizontal motion [4]. 

   m m m m m EMv C v v D v v     
 

(1) 

  mJ v 
 

(2) 

where: 

0 0

0 0

0 0

u

v

z r

m - X
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I - N

 
 


 
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(3) 
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 (5) 

 23 uc m- X u
 

(6) 

 31 vc m-Y v
 

(7) 

 32 uc m- X u 
 

(8) 

 
11
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33
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d

D v d

d

 
 

 
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  

 

(9) 

11 u u u
d X + X u

 
(10) 

22 v v v
d Y +Y v

 
(11) 

33 r r r
d N + N r

 
(12) 

 

cos sin 0

sin cos 0

0 0 1

J

 

  

 
 


 
  

 

(13) 

where  
zI , 

uX , 
uX , 

vY , 
vY , 

rY , 
rY , 

rN , 
rN , 

,vN  and vN  are the hydrodynamic parameters. 

Vector  , ,
T

x y   represents the position 

 ,x y  and orientation    of AUVs. Vector 

 , ,
T

mv u v r  denotes linear velocities  ,u v  

and angular velocity around z axis  r . Vector 

 1 2 3, ,     describes control inputs, where 1  

and 2  are the control forces and 3  is the control 

torque. Parameter E  is an unknown bias term, 

assumed as disturbance in this paper. 

 

Figure 1. Earth-fixed frame and Body-fixed frame of 

AUVs. 

 

3. Control design  

The control objective of this paper is to design a 

robust control law that leads AUVs to track a 

desired trajectory in the presence of bounded 

disturbances with unknown boundary values. Dual 

layer adaptive and sliding mode controllers are 

used to achieve control objectives. First, it is 

essential to define the sliding surface beforehand:   

. s = e e . (14) 
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in which 
de     and matrix α  are a diagonal 

positive matrix that are determined during the 

design process. Equation (1) is changed to (15) by 

substituting 
mv  and its derivative, based on ,  

into (1) as follows [16]: 

     , ,mM C v D v       

 

 

 
 

(15) 

where: 

   1M MJ  
 

(16) 

 

       1 1

,m

m

C v

C v MJ J J

 

   



   

(17) 

     1,m mD v D v J  
 

(18) 

From (14), 

d ds      
 

(19) 

d ds      
 

(20) 

Substituting (19) and (20) into (15) yields: 

     

   

   

   

   
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, ,

, ,

, ,

d

d m m d

m m d

m m d

m m d

E

M s M M

M C v s C v

C v C v

D v s D v

D v D v

  

  

 

 

 

    

    

     

  

     

 





  

  











 

 

(21) 

In order to simplify (21), the non-linear terms and 

disturbances are considered as an unknown term 

 d t ,  which is estimated using the adaptive 

control scheme in the following. Hence, 

   cs d t u t 
 

(22) 

where: 

   

      
 

 

1

1

, ,

d d

m m

d d

E

d t

M C v D v

s

M

  



  

  

  

 





  

 

   


 

(23) 

   1

cu t M  
 

(24) 

Assuming that  d t  and its derivative  d t  are 

bounded with the boundary value of 
0d  and 

1,d  

respectively, the control law is proposed [26]: 

       sgncu t k t s t  
 

(25) 

in which 0   is a small fixed design scalar and 

 k t  is a scalar variable that is defined by the 

adaptation law. In order to ensure the finite time 

convergence to sliding manifold, the reachability 

condition should be satisfied:  

ss s 
 

(26) 

Substituting (22) into (26) yields:  

        cs t d t u t s t  
 

(27) 

Equation (27) can be re-written according to (25). 

      

    

  (

sgn

s t d t k t

s t s t





 

  
 

(28) 

The equation given in (28) can be simplified as: 

         

 

s t d t k t s t s t

s t





 

 
 (29) 

       s t d t k t s t
 

(30) 

      sgn s t d t k t
 

(31) 

from (31), 

   d t k t
 

(32) 

Hence, Equation (32) is the sufficient condition to 

maintain sliding surface on 0s  . Since during 

the sliding motion s is equivalent to zero,  cu t  is 

equal to   ,equ t  which is the average of  cu t . 

As  equ t  is the solution to the algebraic equation 

  0s t  , when   0s t  , then according to (22) 

and aforementioned information:  

   equ t d t 
 

(33) 

Estimation of  equ t  can be done by passing the 

signal  cu t  through a low-pass filter [27], and 

hence: 

   
1

1
equ t u t

s


 

(34) 
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 

        
1

sgn

eq

eq

u t

k t s t u t




  
 

(35) 

In Equation (35), 0   represents a time 

constant, and if chosen sufficiently small, 

   eq equ t u t  will become small enough, and 

thus estimation of  equ t , which is  equ t , will 

be more accurate. The equivalent control is 

employed to construct   k t by the adaptive law. 

Adding the safety margin and the estimated value 

of  equ t  to condition (32) results in: 

   
1

eqk t u t


 ò

 

(36) 

where 0 1  , and 0ò  are the design 

scalars, which should be chosen in such a way  

that: 

   
1

2
eq equ t u t


 
ò

 

(37) 

Subsequently, the error variable is regarded as 

follows: 

     
1

eqt k t u t


  ò

 

(38) 

If  δ t 0 , then: 

       
1

  eq eqk t u t u t d t


   ò

  

(39) 

Consequently, the sliding mode issue can be 

transferred to the problem with the objective of 

  0t  . The  k t  adaptive law is chosen as: 

      sgnk t t t  
 

(40) 

in which  t  is a scalar variable and symbolizes 

the upper bound of disturbance derivative. Its 

equation is assumed as: 

   0 ct r r t  
 

(41) 

where 
0 0r   is a constant design scalar and  r t  

is achieved by solving a differential equation 

(second layer adaptive law) in (42). Therefore, 

there are two adaptive laws for  k t  and sc  r t . 

Rate of change  k t  is a function of    ,r t  

which is calculated using the second layer 

adaptive law in (42) in such a way that it satisfies 

   0r r t d t  , where: 

 
    0              

0                         
c

t if t
r t

otherwise

    
 
 

(42) 

in which 
0 0   is a design scalar. Besides, 

 ce t  is defined as: 

   1
c c

qd
e t r t


 

 

(43) 

where 1q   is a design safety margin scalar and 

  1  ( eq

d
u t qd

dt
 .  

The block diagram of the proposed controller is 

shown in figure 2. 

Stability condition: According to [26], the 

proposed control law (25) would lead to a stable 

sliding motion at a finite time, provided that: 

 The disturbance term was considered in such 

a way that   0d t d , and   1d t d  could 

be held. 

 Parameters 0d  and 1d  were finite but 

unknown. 

 Parameter ò  was chosen in such a way that 

Equation (44) was valid for any 0  and 1d . 

2

2 2 1
0

1 1

4

qd


 

 
   

 
ò

 

(44) 

A detailed description of the stability proof is 

provided in appendix A. 
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Figure 2. A block diagram of the proposed controller. 

 

4. Simulation results  

The essential hydrodynamic parameters of AUVs 

in the simulation studies were considered as in 

[4];  

  1  85 m kg , 70  /uX kg s  , 30 uX kg  , 

100  /
u u

X kg m  , 100  /vY kg s  , 

80 vY kg  , 200  /
v v

Y kg m  , 
250 zI kgm , 

2100 
r r

N kgm  , 
250    /rN kg m s  , 

230 rN kgm  .  

Substituting these parameter values into (3-12) 

leads to: 

215 0 0

0 265 0

0 0 80

M

 
 


 
  

 

(45) 

13 265c v 
 

(46) 

23 215c u
 

(47) 

31 265c v
 

(48) 

32 215c u 
 

(49) 

 11 70 100d u  
 

(50) 

 22 100 200d v  
 

(51) 

 33 50 100d r  
 

(52) 

The initial condition of the system was assumed to 

be  0 0 110 0  . The reference trajectory 

described in (53-55) is a circular path with a 

constant velocity and an initial condition of 

 0 0 0 0d  : 

 100sin 0.01dx t   (53) 

 100cos 0.01dy t  (54) 

 arctan /d d dy x 
 

(55) 

The design parameters in the control strategy were 

400  , 5ò , 
0 0.7  , 0.99  , 0.5  , 

0 0.35r  ,  2,2,2diag  , and disturbance 

was considered as: 

 

 

 

150sin 0.13

150sin 0.13 ,   200 400

150sin 0.13

E

t

t t

t



 



 
 

   
 
 

 

(56) 

Figures 3-8 illustrates the simulation results of the 

proposed controller. The results of the finite-time 

tracking control method [25] is presented in 

figures 9-12. Ultimately, to verify the 

effectiveness of the method, these two strategies 

were compared. 

 
Figure 3. Trajectory tracking of AUVs using the proposed 

adaptive controller. 

The trajectory tracking of AUVs using the pposed 

controller is shown in figure 3, and the tracked 

trajectory coincides with the desired trajectory.  
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Figure 4. Position and direction errors of AUVs using the 

proposed controller. 

Errors of position and orientation are shown in 

figure 4. At the beginning, because of the initial 

conditions and adaptation time, errors have higher 

values but they converge to zero in the steady-

state response. At the time interval of applying the 

external disturbances, the error variables increase 

but they have small acceptable amplitudes.   

 
Figure 5. Sliding surfaces of the proposed controller. 

The sliding surfaces of the proposed controller are 

shown in figure 5, and as expected, the 

convergence of sliding surfaces to zero can be 

confirmed.  

 
Figure 6. Linear and angular velocities of AUVs using the 

proposed controller. 

Figure 6 depicts the linear velocities of surge and 

sway, and angular velocity of yaw motion. The 

velocities have converged constant values.  

 

Figure 7. Gain  k t  and unknown terms d(t). 

The gain of the proposed controller was estimated 

regarding the unknown terms and external 

disturbances, and as it can be seen in figure 7, the 

estimated gain  k t  satisfies    k t d t . 

 
Figure 8. Control efforts of the proposed controller. 

Control efforts of the proposed controller are 

shown in figure 8. When the external disturbances 

are applied to the system, the control signals vary 

to eliminate the disturbance effects regarding the 

disturbance amplitude. 

 
Figure 9. Trajectory tracking of AUVs using the FFTC 

method.  
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Figure 9 illustrates the desired and tracked 

trajectory using the finite-time tracking control 

presented in [25]. As it can be observed, 

analogous to figure 3, the tracked trajectory 

coincides with the desired trajectory but for a 

more accurate evaluation, the error figure should 

be assessed. 

 
Figure 10. Position and orientation errors of AUVs using 

the FFTC method. 

The error variables of AUV using FFTC are 

shown in figure 10. As it can be seen, the error 

amplitude is considerably larger than that in figure 

4, which shows the error variables of AUVs using 

the proposed controller.  

 
Figure 11. Linear and angular velocities of AUVs using 

the FFTC method. 

The linear and angular velocities of AUVs 

using FFTC are shown in figure 11, and all 

velocities converge to constant values out of the 

disturbance interval. 

 
Figure 12. Control efforts of finite-time tracking control 

system. 

The control efforts of finite-time tracking 

controller are shown in figure 12.  Although the 

figure indicates no chattering in control efforts, a 

large initial amplitude of forces and torque in the 

transient response is not acceptable. 

All in all, as shown in figures 3 and 9, the circular 

trajectory is tracked appropriately in both control 

applications. Although errors converge to zero in 

the proposed method, it oscillates with large a 

amplitude around zero in the FFTC scheme, 

which is quite observable in figure 10. Comparing 

the magnifications of errors in table 1, it was 

found that the error amplitude shows a much 

smaller value using a proposed controller than the 

FFTC method. This confirms that the proposed 

approach is capable of performing superiorly in 

the presence of defined disturbances; thus the 

trajectory tracking was carried out more 

accurately. 

Table 1. Comparison of tracking errors between the 

proposed and FFTC methods after 30 s.  

 
Proposed controller FFTC method 

 Norm Mean Max Norm Mean Max 
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y

 

36.0943 0.0447 0.1101 559.4084 0.6876 1.0000 

 

e
ψ

 

47.2898 0.0336 0.1546 32.5653 0.0230 0.1030 

 

e  
52.4064 0.0387 - 756.2615 0.4372 - 

Linear velocities along x and y axes and angular 

velocity around z axis, employing the proposed 
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and FFTC method, converge to approximately 

constant values. Control efforts of the finite-time 

tracking controller, presented in figure 12, in 

comparison with the proposed controller in figure 

8, indicates considerable large initial values. Table 

2 outlines the comparison results between the 

proposed and FFTC methods regarding the total 

harmonic distortion (THD), which is a qualitative 

parameter indicating a measure of distortion in 

control signals. As it can be observed in table 2, 

the proposed controller performs superiorly owing 

to the lower values of THD, in comparison with 

the FFTC method. 

Table 2. Comparison of Total Harmonic Distortion 

(THD) between the proposed and FFTC methods. 

 
Proposed controller (%) FFTC method (%) 

 

1τ
 

724.19 2640.35 

 

2τ
 

408.39 3307.98 

 

3τ
 

564.11 3399.21 

 

5. Conclusion 

The main concern of this paper is the trajectory 

tracking control of AUVs on the horizontal plane 

in the presence of bounded disturbances with 

unknown boundary values. A two-layer adaptive 

control law based on the conventional sliding 

mode control was proposed in order to overcome 

the uncertainty problem.  

The suggested control law not only showed 

robustness against system uncertainty but, unlike 

the conventional sliding mode controllers, the 

adaptive-robust method could also successfully 

eliminate chattering, and be designed without 

having information about boundary values of 

disturbance and its derivative, which is of great 

importance in AUVs operating in oceans as rare 

information is available about disturbances in 

aquatic environments. In line with the Lyapunov’s 

second method, stability of the AUV motion in 

the presence of disturbances was guaranteed using 

the proposed controller. Ultimately, the simulation 

results demonstrated the adequacy and suitable 

performance of the proposed controller in terms of 

control effort and accuracy in comparison with the 

finite-time tracking control.  

 

 

6. Recommendation 

The final recommendation for future work could 

be employing a state observer for position 

estimation since it is difficult to directly measure 

position states in the real world. 
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Appendix A 

Proof of stability condition in (44) based on the 

Lyapunov’s theory is given as what follows [22]. 

The Lyapunnov function candidate is considered 

as:  

2 21 1

2 2
cV e


 

 

(A-1) 

Differentiating (38) leads to:  

        
˙1

   sgneq eqt k t u t u t


 

 

(A-2) 

By substituting (41) into (40),  k t  is obtained 

as:  

       0 sgnc ck t r r t t  
 

(A-3) 

According to (43), it can be written that: 

   1
c c

qd
r t e t


 

 

(A-4) 

Substituting (A-4) into (A-3) gives:  
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      1
0 sgnc

qd
k t r e t t



 
    

  

(A-5) 

Therefore,  t  is achieved as: 

      

    

1
0  sgn

1
sgn

c

eq

qd
t r e t t

t u t

 





 
    

 



 

(A-6) 

where      eq

d
t u t

dt
  and   1t qd  . 

Differentiating (43) results in: 

   c ce t r t 
 

(A-7) 

Equation (A-8) is written using (A-6). 

      

    

      

1

0

    sgn

sgn

1
sgn

c

eq

qd
e t t t

r t t

t t u t

  


 

 


 
  
 





 

(A-8) 

It is known that: 

    11 1 qd
t t 

  
 

 

(A-9) 

   t t 
 

(A-10) 

Equation (A-10) leads to: 

      
 11

sgn eq

qd t
t t u t


 

 


 

(A-11) 

Equation (A-8) is re-written using (A-11). 

     

 

1
0

1

c

qd
r t e t t

qd
t

  





 
    

 



 

(A-12) 

Ultimately, (A-12) is re-written as: 

     0 cr t e t t    
 

(A-13) 

Differentiating (A-1) leads to: 

       
˙1

c cV t t e t e t 


 

 

(A-14) 

From (A-13) and (A-14), it can be concluded that:  

     

   

0

1

c

c c

V r t e t t

e t e t

 



  



 

(A-15) 

According to (42), it can be realized that   0cr t    

holds for all time, assuming that  0 0cr  . Thus it 

can be written from (43) that: 

  1
c

qd
e t




 

(A-16) 

Hence, stability of the indicated areas shown in 

“Figure 14” is only investigated.  

δ 

e

δ0

qd
1/

µ
 

ε/2

3 1

2

 

Figure 13. Lyapunov function in term of δ  and 
c

e . 

In region 1, where   0t   and   1
c

qd
e t


 , it 

can be written according to definition of  ce t  

and  cr t  in (43) and (42):  

     c ce t r t t    
 

(A-17) 

Substituting (A-17) into (A-15) results in: 

 0V r t 
 

(A-18) 

Thus stability of region 1 is guaranteed. In region 

2, where   0t   and   0ce t  , substituting 

(42) into (A-15) results in: 

     0 cV r t e t t   
 

(A-19) 

According to the assumption given for this region, 

i.e. e (t) < 0, it can be concluded from (A-19) that  

 0V r t   stability of region 2 is also 

guaranteed. Region 3 is defined as: 

  1
0{  , :  , 0  }c c

qd
e e  


   F

 

(A-20) 
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Consider v  as the smallest ellipse centered at the 

origin that surrounds the rectangle of region 3, 

and is defined as: 

      , : ,    ,  0c cv e V e r r   
 

(A-21) 

By substituting 1
0 ,

qd




 
 
 

 into ellipse equation, r  

can be obtained as: 

2

2 1
0

1 1

2 2

qd
r 

 

 
   

  

(A-22) 

Since F v , and  0V r t   has been 

proved for the outside regions of ellipse, i.e. 

region 1 and 2, v  is an invariant set. Thus if the 

solution     , ct e t  enters v  in finite time, 

then it cannot leave v , and according to (44) and 

(A-20),   δ t
2


ò

.  Otherwise, if the solution 

    , ct e t  does not enter v , then 

 0V r t  , and:  

   0

0 0

V t dt r t dt
 

  
 

(A-23) 

     0

0

0V V r t dt


   
 

(A-24) 

Since the slope of the curve V  is negative and V  

is always non-negative, its value reaches zero in 

infinity: 

   0

0

0V r t dt


 
 

(A-25) 

According to (A-25), since  , cV e  is bounded 

for all time,    t  and  ce t  are bounded, and 

consequently,  t  and  ce t  are bounded. Thus 

 t  and    t are uniformly continuous. Using 

the Barbalat’s lemma [28], and (A-25), it can be 

written that: 

 lim 0
t

t



 

(A-26) 

Hence, there is a finite time 0t  such that for 

0t t ,  
2

t 
ò

  holds. Thus regardless of 

whether   t  and  ce t  enter v  or not, 

 
2

t 
ò

  is satisfied in a finite time. (A-27) can 

be obtained using (38). 
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(A-27) 

Therefore, 
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(A-28) 

and from (37), 
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(A-29) 

According to (A-29), the condition for 

maintaining the sliding surface on 0s   is held. 

Hence, stability of the controller is guaranteed. 
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 چکیده:

شیدد  با فر  اینهه اتتایاش م مایتن کن کران ار با کران نامم دا باشن ، ی افقی بران میدر این مقاله، کنترل ردیابی مسیرر ربا  زیردریایی در فیه ه

اتتایاشیا  امداد دریا مقاما اسیه  رمش پرایندادی بر اسان ناندن طبیرن دملایه     ها م ناممرنیکنترل م لغزشیی طبیرقی پرایندادی، نسییه به 

ینگ ی چترنقش مد ی در کاهش پ ی ه ی پرانداد ش ه در این مقاله،کنن هکنترلباشی   نراز از اط ا ا  کران اتتایاش م مایتن کن میکن  که بیمی

نتایج  دد مشی پرایندادی با استهاده از طودری لراپاند  ابیا  میکنن هاسیه  پای اری کنترل های م  لغزشیی ک اسیرم مت املکنن هدارد که در کنترل

 کن  م  مد، طأیر  می-ی پراندادی را نسیه به کنترل ردیابی زمانکنن هسازی    هرد کنترلشیره

 .ربا  زیردریایی، ردیابی مسرر، کنترل طبیرقی، کنترل م  لغزشی :کلمات کلیدی

 


