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Abstract 

Improving phoneme recognition has attracted the attention of many researchers due to its applications in 

various fields of speech processing. The recent research achievements show that using deep neural network 

(DNN) in speech recognition systems significantly improves the performance of these systems. There are 

two phases in the DNN-based phoneme recognition systems including training and testing. Most previous 

research works have attempted to improve training phases such as training algorithms, different types of 

network, network architecture and feature type. However, in this work, we focus on the test phase, which is 

related to the generation of phoneme sequence that is also essential to achieve a good phoneme recognition 

accuracy. Past research works have used Viterbi algorithm on hidden Markov model (HMM) to generate 

phoneme sequences. We address an important problem associated with this method. In order to deal with the 

problem of considering geometric distribution of state duration in HMM, we use real duration probability 

distribution for each phoneme with the aid of hidden semi-Markov model (HSMM). We also represent each 

phoneme with only one state to simply use phoneme duration information in HSMM. Furthermore, we 

investigate the performance of a post-processing method that corrects the phoneme sequence obtained from 

the neural network based on our knowledge about phonemes. The experimental results obtained using the 

Persian FarsDat corpus show that using the extended Viterbi algorithm on HSMM achieves phoneme 

recognition accuracy improvements of 2.68% and 0.56% over the conventional methods using Gaussian 

mixture model-hidden Markov models (GMM-HMMs) and Viterbi on HMM, respectively. The post-

processing method also increases the accuracy compared to before its application. 

 

Keywords: Phoneme Recognition, Deep Neural Network, Hidden Markov Model, Hidden Semi-Markov 

Model, Extended Viterbi Algorithm, Phoneme Duration, Persian (Farsi) Language. 

1. Introduction  
The role of a phoneme recognition system is to 

identify the phoneme sequence in the input speech 

signal. A phoneme recognizer can be used in 

many applications such as language identification, 

speech summarization, spoken term detection, 

spoken document retrieval and topic identification 

[1-4]. Therefore, the performance of these systems 

is highly related to the performance of phoneme 

recognizers.  

In the literature of speech recognition systems, 

speech recognition systems were first based on the 

Gaussian mixture model-hidden Markov model 

(GMM-HMM). Then neural network-hidden 

Markov models (NN-HMMs) were introduced to 

improve the performance of GMM-HMMs by 

predicting the posterior probabilities of states 

using observations [5-8]. NNs can model various 

speaking styles and background conditions [9]. 

The neural networks used in the NN-HMM 

models had first a few number of hidden layers 

and hidden units. However, since 2006, some 

techniques were introduced to train deep neural 

networks (DNNs), and more advances were 

achieved in computer hardware and their 

computational performance. Due to these 

advances, using neural network with multiple 

layers became more feasible. In [5, 10, 11], neural 

networks with multiple layers and a large number 

of hidden units were investigated, and the research 

works showed that deep neural networks were 

http://dx.doi.org/10.22044/jadm.2018.5742.1696


Asadolahzade Kermanshahi & Homayounpour / Journal of AI and Data Mining, Vol 7, No 1, 2019. 
 

138 

 

more suitable for speech recognition than the 

shallower ones. Also, using deep neural networks 

in phoneme recognition led to a better 

performance compared to the previous models 

such as GMM-HMM [6]. 

In this paper, we aim to use deep neural networks 

for phoneme recognition in the Persian language. 

For this language, there is a research work on a 

DNN-based speech recognition system in [12], 

where the aim was speaker adaptation for this 

task. They proposed two speaker adaptation 

methods to adapt a system with speaker 

variability. In the first method, the input feature 

vectors of each speaker are normalized non-

linearly in forward-backward passes. In the 

second one, DNN is changed to be able to adapt 

itself dynamically. Their results showed that the 

two proposed adapted DNN models improved 

phoneme recognition accuracy of the speaker-

independent model. 

The accuracy of a deep neural network-based 

phoneme recognition system depends on the 

accuracy of training neural network and using 

trained neural network in the test phase to find the 

phoneme sequence. In order to train neural 

network, a feature vector is extracted from each 

frame, and windows of frames are used as the 

input. In [11] and [5], it has been shown that the 

Mel log filter bank (FBANK) features outperform 

Mel frequency cepstral coefficients (MFCCs) 

because FBANK coefficients are less pre-

processed, whereas MFCCs reduces the 

dimensionality of the input. Adding more hidden 

layers increases the number of trainable 

parameters of network, and it makes the model 

overfit easily [11]. Authors in [6] have 

demonstrated the effectiveness of pre-training in 

DNN, which can reduce over-fitting and required 

time for fine-tuning. 

In the recent years, much work has focused on the 

training phase. Some researchers have 

investigated the effects of different types of 

network architecture [10], network depth, and 

number of hidden units [5, 11]. Others have 

focused on developing training algorithms, 

representing input by various features [9, 13, 14], 

overcoming issues related to training such as 

over-fitting [10, 15].  

However, after training the neural network, during 

the test step, generating the optimal phoneme 

sequence is an important issue on which we 

focused in this work. In the recent research works, 

the Viterbi algorithm has been used on a hidden 

Markov model to obtain phoneme sequences as 

done in [10-12]. In the current work, our goal was 

to improve the neural network performance in the 

test step and to generate more accurate phoneme 

sequences. Consequently, three methods were 

investigated and compared. We present the 

empirical evaluations of these three methods using 

the Persian FarsDat corpus and compare their 

results with the GMM-HMM baseline method. 

I. Post-processing method: We correct some 

errors caused by network after the detection of 

frame labels. This method leads to a better 

accuracy compared with the case where no post-

processing is done. In this method, we investigate 

the feasibility and performance of correction of 

network results based on our knowledge about 

phonemes. 

II. Viterbi algorithm on hidden Markov 

model: Viterbi algorithm is used to find the 

optimal phoneme sequence. Compared to the 

post-processing method, this method leads to a 

better performance. 

III.  Extended Viterbi algorithm on hidden 

semi-Markov model (HSMM): We use HSMM 

[16] to generate phoneme sequence in the test 

phase. As known, HSMM has been used 

successfully in many applications, and it is 

capable of defining a duration probability 

distribution for remaining in each state [16]. 

HMM can obtain phoneme sequence but it 

considers a geometric distribution for each state, 

which is different from the real phoneme duration 

distribution. We address this issue for DNN-based 

phoneme recognition using HSMM, which, as we 

know has not been studied previously. Our results 

show that by applying the extended Viterbi 

algorithm on HSMM, a better phoneme sequence 

can be obtained compared to HMM that has 

previously been used in the research work. This 

superiority is due to modeling of duration 

probability distribution for each phoneme by 

HSMM.  

We consider a suitable topology for the HMM and 

HSMM models, where each phoneme is presented 

by a state, and this work makes using phoneme 

duration distribution easier in HSMM. 

The rest of this paper is organized as what 

follows. Section 2 first explains phoneme 

recognition using deep neural networks and the 

two phases training and testing, and then presents 

three methods to find phoneme sequence during 

the test step including post-processing method, 

HMM and HSMM. Section 3 describes the corpus 

used in our experiments and the experimental 

setup. Section 4 shows the experimental results 

and analysis. Finally, conclusions and future work 

are presented in Section 5.  
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2. Phoneme recognition using deep neural 

networks 

Phoneme recognition using deep neural network 

has two phases including training and testing. 

These steps are explained as follow, and are 

illustrated in Figure 1. 

 

2.1. Training phase 

The aim of this phase is to train each window of 

frames and its corresponding phoneme label by 

neural network. We use a window of   successive 

frames as the input of the neural network. The 

phoneme label of each window of frames is the 

phoneme label of the central frame that was 

determined based on the label of its time slot in 

the training corpus. As mentioned earlier, our goal 

was phoneme recognition for the Persian language 

with 32 phonemes.  

 

Figure 1. Block diagram for the proposed train and test procedures. 

2.2. Testing phase 

During the test phase, to find the phoneme 

sequence for an audio file, feature vectors are 

extracted from its speech frames. Then each 

window of frames is fed to neural network as the 

input, and the trained network generates a 

phoneme label for the central frame of this 

window. This label corresponds to one of 32 

Persian phonemes. Phoneme labels for all frames 

of audio file are obtained. The frame level 

accuracy is calculated as the ratio of the number 

of correct recognized frames to the total number 

of frames. It is defined as: 

#Correct recognized frames
Frame level accuracy 100

#Frames


 

(1) 

In the next step, for each audio file, the labels of 

adjacent frames are merged, and labels of 

phoneme in each sequence are generated. In our 

experiments, the frame level accuracy was 

84.44% but a low phoneme accuracy of 29.06% 

was achieved. These results show that despite true 

detection of labels of most of frames (i.e. 

84.44%), phoneme sequence is not properly 

recognized due to the high number of insertion, 

which can greatly affect the results of phoneme 

recognition. In order to achieve a better phoneme 

recognition accuracy on the test speech files, we 

investigate three approaches including post-

processing method, Viterbi algorithm on HMM, 

and extended Viterbi algorithm on HSMM; the 

first and third methods are proposed in this work. 

In the following, we explain these three 

approaches. 

  

2.2.1. Generating phoneme sequence using 

post-processing method 

We propose a post-processing method to generate 

a true phoneme sequence. In this method, each 

window of frames corresponding to the audio file 

is fed to neural network as the input and is labeled 

by neural network. Then the post-processing steps 

are performed on these results. In fact, by post-

processing, we correct some errors of frame labels 

that significantly improve the phoneme 

recognition accuracy. Detection and correction of 

these errors are done using our knowledge about 

phonemes and syllable structures in the Persian 

language. In the following, we will introduce 

these errors and explain how to correct them. We 

show these errors in Figure 2. 

Error type 1: During the experiments, sometimes 

it was observed that a phoneme label was assigned 

to some consecutive speech frames but a single 
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frame among them had a different label. Some 

examples of this kind of error are shown in cases 

(1), (2), and (3) in Figure 2. Duration of a 

phoneme is usually longer than the duration of 

one frame, and it is likely that the intermediate 

frame has received a wrong label. To correct this 

error, the label of intermediate frame is changed 

to the label of its adjacent frames. In the case (3) 

in Figure 2, we can change phoneme b to 

phoneme a or c. Both of these changes generate 

the phoneme sequence 'ac'. 

Error type 2: Sometimes errors like the cases (4), 

(5), (8), (9), and (10) in Figure 2 may occur. We 

explain how to correct these types of errors for 

case (4); the explanation for other cases is similar. 

In the case (4), b and c phonemes have only one 

frame duration, and they are probably wrong. In 

order to correct this error, one of the phoneme 

sequences 'abd', 'acd' or 'ad' can be selected, 

shown in Figure 2 with three cases A, B, and C, 

respectively.  

To select among three cases A, B, and C, the case 

with the highest probability of phoneme sequence 

is selected. Here, the probability of a phoneme 

sequence is calculated by multiplication of 

phoneme bigram probabilities, which is calculated 

by the HTK toolkit [17]. For example, if the 

probability of 'abd' phoneme sequence (i.e. the A 

case) is greater than the other sequences (e.g. B 

and C in Figure 2), then the A case (i.e. phoneme 

sequence 'abd') is selected. In the Figure 2, the 

value for  P b|a shows the probability of the 'ab' 

sequence. 

Error type 3: We know that two vowels never 

occur successively but sometimes this kind of 

error occurs in the output phoneme sequence. 

Cases (6) and (11) in Figure 2 show this kind of 

error; here, both 1v and 2v are vowels. In case (6), 

another vowel has occurred between two vowels. 

In order to correct this error, two central frames 

that correspond to one vowel are changed to 

phoneme labels of adjacent frames. In case (11), 

we should change one of the vowels into another 

one.  

The value for  1act v ,fr is an activation value for 

the frame fr and the vowel 1v that is generated by 

the network. Starting from the first frame of first 

vowel to the frame where the second vowel ends 

(i.e. from i'th frame to l'th frame), the activation 

values of each vowel from its i'th frame to l'th 

frame are multiplied, and the greater one is 

selected to decide on the final vowel since its 

activation value is greater for all of these frames. 

Error type 4: Sometimes there are two frames 

with non-silence frames among them since silence 

duration is usually long and the silence phoneme 

lasts some frames. It is impossible that two non-

silence phonemes occur in this long period. Thus 

we change these non-silence phonemes to silence. 

This case is depicted in case (7) in Figure 2.

 

 

Figure 2. Steps of post-processing method: error codes, error types, and error correction methods. 

 

This method is language-independent and can be 

used for any language. All of these cases are 

possible to occur in any language.  

The symbol a, b, c or d does not show a specific 

phoneme, so these errors can happen for any 

phonemes. There may be doubt about cases (6) 

and (11). It is worthy to mention that the cases (6) 

and (11) may occur in English too since two 

vowels cannot follow each other in English. 
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2.2.2. Generating phoneme sequence using 

HMM 

In this method, we use a HMM with 32 states, as 

shown in Figure 3, where each state represents 

one phoneme. Then Viterbi algorithm is used to 

generate phoneme sequence. Using the Viterbi 

algorithm, sequence of optimal states for 

sequences of windows of frames (observations) 

are obtained. 

 

Figure 3. Performing Viterbi algorithm on HMM to find 

optimal phoneme sequence for a spoken document. 

 

As shown in Figure 3, the HMM model is 

Ergodic. This model has the ability to produce any 

phoneme sequence. Therefore, each state that 

shows a phoneme should be connected to other 

states to generate any possible phoneme sequence. 

The three elements of HMM (B,A,π)  are defined 

as follow: 

Observation probability distribution (B): 
During the test step, for each window of frames as 

input to the network, each of the 32 output 

neurons (phoneme classes) has an activation value 

that shows the probability that the input belongs to 

phoneme classes. Therefore, probability 

distribution for window of frames (observation) is 

obtained for each state of HMM using these 32 

values. 

State transition probability distribution (A): 
Transition matrix between states has 32x32 

dimensions. These transition probability values 

are obtained by calculation of the probability of 

transition between labels of two windows of 

consecutive frames in the training set. In other 

words, transition probability between states i and j 

is the number of transitions between two 

consecutive windows of frames from phoneme i 

to phoneme j divided by the number of transitions 

from phoneme   to other phonemes. 

Initial state probability distribution (π) : In 

order to define the initial state probability for 

HMM, we set the initial probability of the state 

that corresponds to silence phoneme to be one and 

other states to zero because the spoken files in the 

train and test sets begin with silence. 

 

2.2.3. Generating phoneme sequence using 

HSMM 

In this section, we first discuss a problem 

associated with HMM for DNN-based phoneme 

recognition task, and then explain how to solve 

this problem using HSMM. 

Problem: An important weakness of HMM is that 

it cannot explicitly model the state duration. The 

state duration in HMM follows a geometric 

distribution [18] because the probability of 

observing   consecutive observations in state   
conditioned on start from state   is: 

d 1
iii ii

P (d) (1- a )a   (2) 

 

where,     is the self-transition probability of state 

i. 

In phoneme recognition, our preliminary 

experiments show that the duration probability 

distribution of phonemes does not obey geometric 

distribution. Here, for example, duration 

probability distributions for vowel / a / and 

consonant /b/ are depicted in Figure 4 and Figure 

5 respectively.  

Duration probability distribution of each phoneme 

is calculated based on the number of frames. In 

this experiment, the frame length is 25 ms and the 

frame shift is 10 ms. The horizontal axis indicates 

the number of frames elapsed for phoneme and 

the vertical axis indicates its duration probability. 

Based on these figures, duration probability 

distribution of phonemes has a non-geometric 

distribution, whereas HMM considers a geometric 

distribution. 

 

 

Figure 4. Duration probability distribution for vowel / a / . 

 

Figure 5. Duration probability distribution for consonant 
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In order to use the real duration probability of 

each phoneme for finding the phoneme sequence, 

as shown in the above figures, we use HSMM 

instead of HMM. A HSMM in an extension of 

HMM. HSMM is capable of explicitly defining a 

desired duration probability distribution to stay in 

each state. This model is known as semi-Markov 

since predicting the next state depends not only on 

the previous but also on the elapsed time in the 

states [18, 19]. It should be noted that in HMM 

used in Section 2.2.2, each state represents a 

phoneme; therefore, it would be easy to model the 

duration of each state, which is equivalent to the 

duration of each phoneme. HSMMs have different 

types depending on the considered assumptions. 

One kind of HSMM is the explicit-duration 

hidden Markov model, which is one of the 

simplest models among HSMM models due to 

considering some independency assumptions. 

Therefore, it is the most popular and applicable 

HSMM model [16, 20]. We explain this model in 

the following sub-section. 

 

Explicit-duration hidden Markov model: The 

complete parameter set of this model is indicated 

by           mn m m k mλ a , π , b v , p d .In addition 

to three parameters of HMM, this model has a 

probability distribution for the time remaining in 

states (i.e.  mp d )  [16, 20]. 

Assume that the model has M states denoted with 

M1 2s ,s ,...,s and tq shows the state at time t. to is 

the observable output at time t, where t 1,2,...,T

. The four elements of the model 

   mn m m mk{a ,π ,b v ,p d }  are defined as follow: 

I. State transition probability from state ms to 

state    is denoted by mn (m,n 1,2,...,M)a  . 

II. The initial state distribution is defined by m{π }   

III. The conditional probability distribution is 

denoted with  m mt t tb o Pr[o |q s ]   and by 

considering "conditional independency" of 

outputs given states, we have:  

 
bb

a mt=am tPr[o |s ] b o  (3) 

where, b
a to {o ;a t b]   . 

IV.The duration of a given state is a discrete 

random variable, and is defined by the 

probability  mp d , where d {1,2,...D} . The 

integer value of D is the possible maximum 

duration to remain in any state. In the case of 

our task, duration probability of each phoneme 

is calculated based on the number of elapsed 

frames for that phoneme, and is calculated 

using the training set.  

 

Suppose that tτ shows the required remaining time 

to stay in the current state tq . If mt tq , (s ,d)( )  , 

model stays in the current state ms until, then goes 

to another state at time t d (where d 1 ).  
The Extended Viterbi algorithm is used to find the 

optimal state sequence in HSMM [16, 20]. We 

explain this algorithm in the following sub-

section. 

Extended Viterbi algorithm: In this algorithm, 

we need to define the quantity named t (mδ ,d) , 

which is defined as:  
t 1 t

t t t m1 1
qt 1
1

δ (m,d) max Pr[q ,o , | ]q , (s ,d)( ) 


   (4) 

 

When the current state is ms and residual time to 

remain in this state equals d, this quantity gives 

the best score (the highest probability) for state 

sequence and observation sequence at time t.  

There are M possible paths to transit

mt tq , (s ,d)( )  , which are shown in Error! 

Reference source not found..  

Transition into state mt tq , (s ,d)( )  can occur 

within one of these two conditions: 

1. From mt 1 t 1q , (s ,d 1)( )    : In this case, the 

semi-Markov chain was in state ms at time 

    (i.e. at the previous time) and should remain 

for     time units in that state. Path m in Error! 

Reference source not found. shows this case. 

2. From nt 1 t 1 ,q , (s 1)( )   , where n m : In this 

case, the semi-Markov chain was in state    

(   ) at the previous time, and after remaining 

in state    for one time unit, model transits to 

another state   .  
 

 

Figure 6. Illustration of performing Extended Viterbi 

algorithm on HSMM. 

 

In Error! Reference source not found., path 1 to 

M except m is a kind of these paths.  
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According to these M possible paths, we can 

induce the following recursion formula to find 

t (mδ ,d) : 

 

   

m t

nm m t m

t t 1

t 1
n {1,2,...M}|n m

(m,d (m,d 1 o

(n,1 ]. o .

δ ) max{δ ).b ,

max [δ )a b p d }




 


 (5) 

 

In order to record the state sequence and the 

duration of each state of optimal path, the variable 

t (mψ ,d) is used. Finally, the procedure of finding 

optimal path of state sequence is stated as follows: 

  

I. Initialization: Initial condition for each state 

ms where m {1,2,...M} and duration 

d {1,2,...D} is defined as:  

   m m m11(m . o .δ ,d) π b p d  (6) 

1(m (0)ψ ,d)   (7) 

II. Recursion: In this step, the values for t (mδ ,d)  

and t (mψ ,d) for each time 2 t T  and state 

ms where m {1,2,...M} and duration 

d {1,2,...D} are calculated by: 

   nm m t mt 1
n {1,2,...M}|n m

(n,1 ]. o .v max [δ )a b p d
 



 

(8) 

nmt 1
n {1,2,...M}|n m

(n,1 ]i arg max [δ ).a
 

  (9) 

 m tt t 1(m (m oδ ,d) max{δ ,d 1).b ,v}   (10) 

 m tt 1
t

(m o
(m

i, δ ,d 1).b v
ψ ,d)

m, else

  
 


 (11) 

III. Termination:  
* *

T T T
m {1,2,...M}
d {1,2,...D}

(m,d(q ,d ) arg max δ )



  
(12) 

IV. Backtracking (finding optimal path): 

* * * *

t t t 1 t+1 t+1(q ,d ) ψ (q ,d ), t T-1, T-2, ...,1 

 

(13) 

3. Experimental setup 

In this section, we explain the detail of simulation 

for the neural network, and then introduce the 

dataset used for the experiments. After that, we 

present evaluation of a phoneme recognition 

system.  

 

3.1. Detail of simulation 

We will explain the detail of training neural 

network including its input and output, its 

architecture, and the training procedure: 

Input and output of neural network: In our 

experiments, the input of the neural network 

comprises a window of 17 consecutive frames. In 

[11], the best choice for the number of 

consecutive frames is 11, 17 or 27 frames. A 

window of 17 frames is neither too short nor too 

long, and it contains 170 ms of speech signal and 

can provide enough information about the context 

around a phoneme. We used 25 ms frame 

windows, which spanned every 10 ms. We 

extracted 40 FBANK features from each frame 

due to the better performance of FBANK 

compared to MFCC for the phoneme recognition 

task [5, 6, 11]. The frame shift between two 

consecutive windows equals one frame. Thus the 

number of neurons in the input layer is the 

number of frames in a window multiplied by the 

dimension of the feature vector. The feature 

vectors at the input of the network were 

normalized to have zero mean and unit variance 

using the following equation: 

m m
m

m

x -μ
x̂ =

σ
 (14) 

where, mμ  and m  are, respectively, the mean 

and standard deviation of the feature mx estimated 

using the training set. 

There are 31 phonemes in the Persian language 

including two phonemes for two different sounds 

of /k/ and /g/. Silence is considered as the 32th 

phoneme. Therefore, there will be 32 neurons in 

the network output layer corresponding to 32 

Persian phonemes [21].   

Neural network architecture: In many recent 

research works [11], it has been shown that the 

deep neural networks outperform the shallow 

ones. Therefore, in this research work, a deep 

neural network with the parameters mentioned in 

Table 1 was configured and used in our 

experiments. The structure of this network is 

depicted in Figure 7. 

Training neural network: In order to train the 

phoneme recognition system, we used the 

DeeBNet MATLAB toolbox [22] which provides 

tools for training Deep Belief Networks (DBNs). 

The network was first pre-trained, and was then 

fine-tuned by the back-propagation technique. 
 

Table 1. Configuration of deep neural network. 

FBANK Feature type   

17 Number of frames in each window 

4 Number of hidden layers 

1024 Number of hidden neurons in each layer 

40 Frame feature vector dimension 
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Figure 7. Neural network architecture for phoneme 

recognition task. The network input comprises a window 

of 17 consecutive frames including 40 dimensional 

FBANK features. The output label is the phoneme label of 

central frame (i.e. 9th frame). 

 

3.2. FarsDat Corpus 

We used FarsDat [23] to train a phoneme 

recognition system for the Persian language, 

which contains the utterances of 304 female and 

male speakers from 10 dialect regions in Iran. 

FarsDat is tagged in phoneme level, and it is 

similar to TIMIT used for English phoneme 

recognition. Each speaker uttered 20 sentences in 

two sessions. The utterances of first 250 speakers 

were used as the training set and utterances of the 

remaining 54 speakers were used as the test set. 

Our method is speaker-independent because the 

speakers in the training set are different from 

those in the test set. In FarsDat, each speaker 

utters 18 sentences extracted randomly from a set 

of 384 phonetically balanced sentences, so there 

may be similar sentences in the training and test 

sets. There are also two sentences uttered by all 

speakers. Therefore, some context dependency 

may exist in our experiments.  

 

3.3. Evaluation of a phoneme recognizer 

In order to evaluate a phoneme recognizer, the 

recognized and reference phoneme label sequence 

should be compared. The tool HResults in HTK 

[17] compares two strings by matching using 

dynamic programming. Considering the number 

of substitution errors, deletion errors and insertion 

errors shown as S, D, and I, respectively, the 

phoneme recognition accuracy is defined as:  

N-S-D-I
Accuracy 100%

N
   

 
(15) 

 

where,   is the total number of labels in the 

reference label [17].  

 

4. Results and discussion 

In this section, we first present the results of the 

GMM-HMM baseline method. Then we 

investigate the results of three methods including 

post-processing, HMM and HSMM in the DNN-

based phoneme recognizer. 

 

4.1. Results of GMM-HMM baseline 

We used 25 ms frame windows with 10-ms frame 

shifts. We extracted 12th-order Mel frequency 

cepstral coefficients (MFCCs) and energy along 

with their first and second temporal derivatives 

from each frame. Each phoneme was modelled by 

a 3-state left to right HMM with 2, 4, 8, and 16 

mixtures of Gaussian per state.  

We used the bigram language model (LM) to 

obtain the best result of the baseline GMM-HMM, 

and compared it with our proposed method. 

Phoneme language models estimate the 

probability of a phoneme sequence, and they are 

built using a training text. A phoneme n-gram LM 

is used to predict each phoneme in the sequence 

given its n-1predecessors [17].  

Using the bigram language model in Viterbi 

decoder is a very common method that is widely 

used in different research works like [5, 11] for 

the English and [12, 21] Persian languages. 

Besides, Bigram LM is commonly used in the 

research works due to its facility and simplicity 

compared with trigram in decoding time for real 

time applications. 

The results for different number of mixtures of 

Gaussian per state are shown in Figure 8, and the 

effect of bigram LM is also investigated. 
 

 

Figure 8. Phoneme recognition accuracy using GMM-

HMM baseline method. 

 

It can be seen that increasing the number of 

mixtures of Gaussian improves the performance. 

However, this increase can improve the accuracy 

to some extent. In [21], 16 mixtures of Gaussian 

per state were a proper value; therefore, it was 

selected for this work. Finally, the results 

demonstrate that the best performance is 75.83% 

using the GMM-HMM method. 

 

4.2. Results of phoneme recognition using DNN 

In this section, we aim to compare three methods 

for generating phoneme sequence including post-

processing, HMM, and HSMM. Firstly, we show 

the result of each step of the post-processing 

method. Then we compare the results of the three 

methods and the GMM-HMM baseline method. 
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4.2.1. Results of generating phoneme sequence 

using post-processing method 

The results of applying post-processing method on 

the output of neural network are shown in Table 2. 

Each error code corresponds to one of the codes 

of the post-processing method in Figure 2. Here, 

code (0) shows the results before applying the 

post-processing steps. We see from the results that 

before applying post-processing steps (i.e. in step 

(0)), all kinds of errors, especially insertion error, 

are very high, and after applying correction steps, 

many insertion errors decrease; therefore, 

phoneme recognition accuracy increases, because 

in these cases, sometimes only one inserted 

phoneme in many times can increase the number 

of insertion error.  

All these 11 correction steps helped to decrease 

insertion error, and the best phoneme recognition 

accuracy is achieved in the last step. The frame 

level accuracy also improves until step 10 but it 

suddenly decreases in step 11, whereas phoneme 

recognition accuracy increases in this step. The 

reason is that in order to correct the error (11), 

which was discussed in the Section 2.2.1, one of 

the vowels    or    was selected, and all the 

frames were replaced by the selected vowel from 

the frame that the first vowel started, to the frame 

that second vowel ended. However, if the selected 

vowel has been recognized wrong, it causes the 

low error in the phoneme sequence because only 

one phoneme is recognized to be false, whereas 

many frames are damaged in the frame level. 

 

Table 2. Results of applying each step of post-processing method to generate phoneme sequence. 

#Recognized 

phonemes 
#Substitutions #Deletions #Insertions 

Phoneme recognition 

accuracy (%) 

Frame level 

accuracy (%) 
Error code 

30202 2366 505 20590 29.06 84.44 0 

29972 2445 656 15793 42.87 84.66 1 

29909 2467 697 14530 46.50 84.71 2 

29392 2734 947 10299 57.73 84.86 3 

29259 2801 1013 9142 60.83 84.91 4 

29238 2803 1032 9007 61.17 84.92 5 

29201 2812 1060 8406 62.88 84.98 6 

29189 2806 1078 8364 62.97 84.99 7 

29164 2815 1094 8202 63.38 84.99 8 

29143 2831 1099 7973 64.01 84.99 9 

29139 2835 1099 7942 64.09 84.99 10 

27974 3675 1424 5473  68.03  83.73 11 

 

4.2.2. Comparison of results of generating 

phoneme sequence using post-processing, 

HMM and HSMM methods 

The results of the three methods to generate 

phoneme sequence in DNN-based phoneme 

recognition system including post-processing, 

HMM and HSMM are presented in figure 9 

 

 

Figure 9. Results of phoneme recognition accuracy using 

three methods to generate phoneme sequence (post-

processing, HMM and HSMM) in DNN-based phoneme 

recognition, and comparing their results with GMM-

HMM baseline method. 

 

The results of the GMM-HMM baseline method 

are also shown in the figure for a comparison. In 

this figure, "DNN without Post-processing" shows 

the performance before applying one of the three 

methods (i.e. post-processing, HMM and 

HSMM). 

We observe from Error! Reference source not 

found. that before applying the three methods, the 

accuracy is very low, and it increases by using all 

the three methods. The post-processing method 

highly increases the accuracy compared to before 

its application, so it is possible to improve the 

results obtained from neural network. Applying 

Viterbi algorithm on the output activation of the 

neural network can find the optimal phoneme 

sequence but the post-processing method causes 

the local optimization in consecutive phonemes, 

whereas Viterbi algorithm finds the optimal 

phoneme sequence over all frames. The post-

processing method can detect some wrong outputs 
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of network and correct them, while Viterbi 

algorithm can automatically correct many errors. 

Using both HMM and HSMM within neural 

network could result in significant improvement 

compared to the GMM-HMM baseline method. 

As expected, HSMM outperforms the other 

methods, especially HMM. This is consistent with 

our expectation in Section 2.2.3 that HSMM is 

better than HMM because we used real phoneme 

duration distribution for decoding in HSMM, 

while HMM considers a pre-defined geometric 

distribution for duration of phonemes, which is 

different from real distribution. Next, for a better 

comparison between HMM and HSMM, we show 

the results of the number of insertions, deletions, 

and substitutions for these methods in Figure 10. 

We observe that using HSMM helps to decrease 

in the insertion and deletion errors, whereas for 

substitution errors, there is less increasing. Thus 

using information on phonemes duration for 

decoding in HSMM can prevent the extra 

insertion or deletion of phonemes, and it can 

result in a better phoneme recognition accuracy. 

  

 

Figure 10. Number of insertions, deletions, and 

substitutions for HMM and HSMM methods. 

 

It is worthy to note that by considering deep 

architecture for neural network, better recognition 

performance can be achieved using rich features, 

the suitable number of input frames, etc., and 

these improvements are related to the training 

phase. However, in order to increase the accuracy 

in the test phase, we should improve generating 

phoneme sequence, so we used HSMM. The 

improvement using HSMM is independent from 

the methods used in the training phase, and in the 

case of availability of the best trained network, the 

optimal phoneme sequence can be achieved using 

HSMM, while it has a better efficacy than both 

the HMM and GMM-HMM baseline methods. 

 

5. Conclusion and future work 

In this work, we presented our work on phoneme 

recognition using deep neural network, which has 

two phases including training and testing. Most of 

the previous research works have focused on 

improving the training phase and they have used 

HMM to find the phoneme sequence during the 

test phase. However, HMM uses a geometric 

distribution for phoneme duration, whereas real 

phoneme duration distribution does not follow it. 

To address this problem, in this work we used 

HSMM with a suitable topology, where each state 

equals to one phoneme. Our experimental results 

on the FarsDat corpus showed that using HSMM 

can improve phoneme recognition accuracy 

compared to the HSMM and GMM-HMM 

baseline methods. This gain is from the use of 

duration probability distribution for each 

phoneme, estimated from the training set, in 

HSMM. We also proposed a post-processing 

method, which can correct some errors from the 

neural network, based on our knowledge about 

phonemes. Although our experiments showed that 

the accuracy of the post-processing method was 

lower than the GMM-HMM method, the 

correction steps of this method could improve 

phoneme sequence compared to before its 

application. Thus in our future work, we plan to 

explore more rules for this method and also 

combine rules of post-processing with the HSMM 

method to generate a more accurate phoneme 

sequence in the test phase. 
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 نشریه هوش مصنوعی و داده کاوی

 

 

 

 DNN-HSMMدر  اطلاعات زمانی واجبا استفاده از  بهبود بازشناسی دنباله واج

 

 

 *محمد مهدی همایونپورو  سداله زاده کرمانشاهیم امری

 .ایران، امیرکبیر، تهراندانشگاه صنعتی ، مهندسی کامپیوتر و فناوری اطلاعات دانشکده

 71/80/7870 پذیرش؛ 72/87/7870 بازنگری؛ 71/80/7871 ارسال

 چکیده:

را به خود جلب کررد  اسر ت تیقیقراخ اخیرر بیرانگر ایر   پردازش گفتار توجه بسیاری از پزوهشگرانبه دلیل کاربردهای متنوع در  بهبود بازشناسی واج

های بازشناسری واج ت سیسرت دهر افرزای  می چشرمگیریبره رررز  کارایی را در بازشناسی گفتار (DNN) های عصبی عمیقاس  که استفاد  از شبکه

مربرو  اسر  تمرکرز  به ایجاد دنباله واجیی آزمای  که بهبود مرحلهروی  ،در ای  مقاله تهستن  آزمای ی آموزش و مرحله شامل دو ،DNNمبتنی بر 

گرا   و تتت هراویژگینوع شبکه، معماری شبکه، های آموزش، الگوریت  شامل ی آموزشاکثر تیقیقاخ در جه  بهبود مرحله ای  درحالیس  کهش   اس ت 

می ودیتی کره د  ش   اس ت استفا (HMM) مارکف م ل مخفیوریت  ویتربی روی گال اجرای تولی  دنباله واجی از برای تیقیقاخ گذشتهدر  ان تبرداشته

، برا کمرم مر ل مخفری شربه ر تیقیق حاضر برای حل ای  مسرللهها اس ت دوجود دارد درنظرگرفت  توزیع هن سی برای حال  ای  م لدر استفاد  از 

ها، هر واج با اسرتفاد  از یرم حالر  به منظور سهول  استفاد  از ارلاعاخ زمانی واج و دوشمیها استفاد  از توزیع احتمال زمانی واج (HSMM) مارکف

 DNNدنبالره واجری حالارل از سرعی در الارلا   واجیبا کمم دان  اس  که   ارایه ش پردازش همچنی  روشی به نا  روش پس شودتداد  مینمای  

در مقایسه برا روش مرسرو  مر ل  HSMMروی  یافتهده  که استفاد  از الگوریت  ویتربی گسترشداخ نشان میپیکر  فارس رویداردت نتایج آزمایشاخ 

 %/ت08و  %80/7موجرب بهبرود کرارایی بره میرزان به ترتیب  HMMو روش اجرای ویتربی روی  (GMM-HMM) م ل مخفی مارکف -سیمخلو  گاو

 ده تچشمگیری را نشان می نتایجنسب  به قبل از اعمال آن  نیز پردازشروش پس ش   اس ت

واج، زبران دیررش الگوریت  ویتربی گسترش یافتره، بازشناسی واج، شبکه عصبی عمیق، م ل مخفی مارکف، م ل مخفی شبه مارکف،  :کلمات کلیدی

 فارسیت

 


