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3.3. Pseudo code of the proposed method

For more explanation, the pseudo code of the
proposed method is given in Algorithm 1.

Algorithm 1: the proposed method

Input: Multi-label dataset D with M features, N samples and q labels

Output: selected features F
1: Transform D to q single-label datasets using BR
2:fori=1:q

3:  Filterl (i,:) = a binary vector of size M which assigns 1 to selected and 0 to deselected features defined by

FCBF method.

4: Filter2 (i,:) = a vector of size M which assigns a weight to each feature using ReliefF method
5.  Filter3 (i,:) = a vector of size M which assigns a weight to each feature using IG method

6:end

7.V, = sum the matrix Filterl columns to form a vector of size M

8. FCBF = select features corresponding to non-zero values of v,

9: ¢ = length of FCBF.

10: v, =sum the matrix Filter2 columns to form a vector of size M and sort it in descending order

11: RF = select the first ¢ features of v,

12: V5 =sum the matrix Filter3 columns to form a vector of size M and sort it in descending order

13: IG = select the first ¢ features of v,
14: F = (FCBF) or (RF) or (IG)

Table 1. Discerption of the datasets used in the experiments

Dataset N M g Type LC LD Domain
emotions 593 72 6 numeric  1.869  0.311  music
genbase 662 1185 27 nominal  1.252  0.046  biology
medical 978 1449 45  nominal 1.245 0.028 text
enron 1702 1001 53 nominal 3.378 0.064  text
image 2000 294 5 numeric  1.236  0.247  images
scene 2407 294 6 numeric 1.074 0.179 images

4. Experimental studies

This section evaluates the performance of the
proposed approach on 6 multi-label datasets from
different applications. The results are then
compared to the results of the original LIFT
algorithm, ML-kNN, and some multi-label feature
selection methods.

4.1. Datasets

In the experiments, 6 real multi-label datasets
from different applications obtained from the
Mulan repository' were used. Table 1 summarizes
the characteristics of these datasets including
dataset name (Dataset); dataset domain (Domain);
number of instances (N); number of features (M);
number of labels (q=|L|); feature type (Type);
label cardinality (LC), which is the average
number of labels associated with each instance
defined by (2) and label density (LD), which is the
cardinality normalized by |L| defined by (3).

! - http://mulan.sourceforge.net/datasets.html
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4.2. Performance evaluation criteria

To evaluate the improvement of the proposed
approaches compared to the original LIFT
algorithm, we employ several evaluation measures
popularly use in multi-label tasks, including
hamming loss, one-error, coverage, and ranking
loss. In summary, these criteria evaluate the
learning system’s performance on each test
example and then return the mean value across the

test set. Let T = {(x,¥;),i = 1,...,p} be a given
test set where ¥; € L is a correct label subset, and
Z; € L be a predicted label set corresponding to

t;. Also, let f{x,v) denotes the score assigned to
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label v for sample x. These methods are defined in
the following [38]:

Hamming loss

Hamming loss calculates the percentage of labels
which are misclassified, i.e. the instance
associated to a wrong label or a label belonging to

the true sample which is not predicted [41].
_ 1 L&|YAZ | 4
Hamming Loss(h, D) = —» =11 4
IDIF IL]

where, A is the symmetric difference between two
sets. Hamming loss computes the percentage of
labels whose relevance is not predicted correctly.
One error

This measure counts the number of times that the
top-ranked label is not relevant:

one—error(f)= |[1)|ZD|:[[arg max,., f(x,y)]eY]

i=1
(%)
Coverage
It evaluates the average number of steps to move
down in the list of ranked labels to cover all the

relevant labels of a sample.
2]

coverage(f) = Iélz max ., rank; (x;, y) -1
i=1

(6)
where, rank; (X, y) denotes the rank of y in Y

based on the descending order induced by f.

Ranking loss

Ranking loss counts the average fraction of
reversely ordered pairs; i.e. an irrelevant label is
ranked higher than a relevant label.

rloss(f) =
18 1
IDIFIY; 1Y, |

™

Average feature reduction
Another parameter which is used for comparison
is the average feature reduction, F,, to investigate
the rate of feature reduction [13].

Fo=Mor (®)

M

where, M is the total number of features and r is
the number of selected features by the FS
algorithm. The more it is close to 1, the more
features are eliminated, which leads to lower
classifier’s complexity.
Smaller values show better performance for all
criteria except average feature reduction. Also, all
measures are normalized between 0 and 1 except
for coverage.

Oy Y < Ty (YY) €Yy <Y 3
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4.3. Justification

A series of experiments were conducted in order
to find the most effective combination of the three
filter methods. Table 2 shows the comparison of
these methods over several datasets in terms of
hamming loss criterion. Numbers written in
brackets are the ranks obtained by each algorithm
among the others. According to this table, it is
observed that the ensemble of the three methods,
output the best results. Similar experiments were
performed for other evaluation criteria, and the
results proved the superiority of the last method,
i.e. LIFT_RF_FCBF_IG over the other ones, in
average. Therefore, this method is chosen for the
feature selection. Among different aggregation
strategies  discussed in [40], two simple
aggregation methods including the AND and OR
operators were tested for combining the results of
the three filter methods. The experiments on
several evaluation criteria showed better results
for the OR operator.

The proposed system which is presented in figure
2 with the three filter approaches including IG,
FCBF and ReliefF methods in the ensemble phase
and the OR operator as the aggregation strategy is
called MLIFT, hereafter.

4.4. Results and discussion

During each experiment, 60% of samples were
chosen randomly for training. Remaining 40% of
samples were used for testing. Results are
averaged over 20 independent runs in each dataset
and by every algorithm. For implementing FCBF,
IG and ReliefF, fspackage [42] is used, which is a
package based on Weka [43] and is available to
the community at http://featureselection.asu.edu/.
LIFT [36]*> is employed with its default
parameters, and for ML-KNN the number of
nearest neighbours is set to 10.

Table 3, illustrates the results of comparing
algorithms including proposed MLIFT (LIFT- RF
-FCBF- IG), LIFT, ML-kNN, and four multi-label
feature selection methods including LP-RF, LP-
IG, BR-RF, and BR-IG presented in [15] over 6
various-sized datasets. The best result among the
comparing methods is highlighted in boldface.
According to this table, the MLIFT and LIFT
algorithms have the best results in all criteria
except for Feature reduction. Of course, it should
be noted that LIFT and ML-kNN are multi-label
classifiers which are not expected to reduce the
dimensionality of the datasets. Comparing the
LIFT and MLIFT algorithms, this table shows that

2 - http://cse.seu.edu.cn/people/zhangml/Resources.htm#data
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MLIFT obtains better results using a smaller
feature set. For example, more than 96% of
features are eliminated for genbase dataset, and
the results remain relatively unchanged compare
to the original LIFT algorithm. As mentioned
before, even if the results deteriorate slightly for
removal of a large number of features, feature
selection is still justified. Table 4 shows the
average ranks of the comparing algorithms
through Friedman 1*N statistical test for each
evaluation measure. The last column presents the
sum of the ranks for each algorithm and the
number written in brackets in the last column
shows the total rank of each method. Lower sum
of ranks for an algorithm indicates better average
results against the others.

The obtained p-values for each measure is also
written in this table that shows significant results,
as all of the p-values are less than 0.05.
According to this table, MLIFT gets the first rank,
LIFT is ranked second, ML-kNN is placed in the
third position, LP-RF gets rank number 4, both of
LP-1G and BR-IG get the fifth rank, and BR-RF is
ranked last. Moreover, Zhang [36] proved the
superiority of LIFT algorithm over four well-
established multi-label learning algorithms,
including Bsvm [2], ML_KNN [10], BP_MLL [4]
and ECC [44]. Thus, the superiority of the
proposed methods over these approaches can also
be concluded.

Table 2. The comparison of different ensembles of the three feature selection methods in terms of hamming loss

LIFT_FCB LIFT_RF LIFT_IG_FCB LIFT_IG_R LIFT_RF_F
LIFT_RF F LIFTIG _FCBF F F CBF_IG
emotions 0.2341[4] 0.2421[6] 0.2394][5] 0.2451[7] 0.2311[2] 0.2303[1] 0.2535[3]
genbase 0.0035[6] 0.0029[2] 0.0034[5] 0.0030[3] 0.0033[4] 0.0027[1] 0.0033[4]
medical 0.0124[6] 0.0116[1] 0.0119[2] 0.0120[3] 0.0122[4] 0.0123[5] 0.0119([2]
image 0.1997[6] 0.1799[4] 0.2152[7] 0.1746[2] 0.1753[3] 0.1913[5] 0.1616[1]
scene 0.1136[5] 0.0919[4] 0.1293[7] 0.0867[3] 0.0866[2] 0.1109[6] 0.0813[1]
Table 3. Comparison of performance of the algorithms on 6 datasets.
emotions genbase medical enron image scene
MLIFT 0.2535 0.0033 0.0119 0.0467 0.1616 0.0813
LIFT 0.2622 0.0033 0.0132 0.0467 0.1603 0.0815
Hamming loss ML-kNN 0.2687 0.0054 0.0163 0.0533 0.8874 0.0905
BR-RF 0.2655 0.0056 0.0149 0.0530 0.8974 0.0933
BR-IG 0.2667 0.0057 0.0149 0.0590 0.8941 0.0915
LP-RF 0.2654 0.0058 0.0185 0.0534 0.8917 0.0929
LP-IG 0.2627 0.0051 0.0157 0.0626 0.8917 0.0927
MLIFT 0.3609 0.0007 0.1626 0.2529 0.2836 0.2030
LIFT 0.3738 0.0003 0.1820 0.2444 0.2839 0.2073
ML-kNN 0.3867 0.0124 0.2758 0.3245 0.3324 0.2380
One error BR-RF 0.3907 0.0100 0.2682 0.3190 0.3523 0.2462
BR-1G 0.3890 0.0091 0.2313 0.3951 0.3496 0.2405
LP-RF 0.3905 0.0113 0.4285 0.3214 0.3369 0.2462
LP-1G 0.3992 0.0119 0.2583 0.4647 0.3392 0.2424
MLIFT 2.1736 0.5284 2.0416 12.6290 0.8813 0.4094
LIFT 2.2179 0.5284 2.2205 12.4910 0.8736 0.4209
ML-kNN 2.3042 0.5775 3.0092 13.6460 0.9920 0.4953
Coverage BR-RF 2.2861 0.6704 3.2309 13.5775 1.0519 0.5166
BR-IG 2.2802 0.7221 4.8145 14.5877 1.0445 0.5039
LP-RF 2.2688 0.6492 3.1313 13.4831 1.0070 0.5058
LP-1G 2.1865 0.7211 3.2198 15.4910 1.0268 0.5090
MLIFT 0.2374 0.0053 0.0292 0.0830 0.1516 0.0654
LIFT 0.2453 0.0056 0.0326 0.0815 0.1514 0.0672
ML-kNN 0.2632 0.0069 0.0481 0.0963 0.1817 0.082
Ranking loss BR-RF 0.2632 0.0084 0.0523 0.0958 0.1932 0.0856
BR-IG 0.2602 0.0098 0.0857 0.1091 0.1946 0.0839
LP-RF 0.2590 0.0082 0.0502 0.0955 0.1842 0.0841
LP-1G 0.2450 0.0104 0.0514 0.1190 0.1891 0.0840
MLIFT 0.1319 0.9629 0.7696 0.7115 0.057 0.0215
LIFT 0 0 0 0 0
ML-kNN 0 0 0 0 0
Feature reduction BR-RF 0.4575 0.9601 0.8669 0.0298 0.5694 0.2274
BR-1G 0.2027 0.9789 0.9964 0.9977 0.1262 0.0264
LP-RF 0.1545 0.9681 0.9365 0.0034 0.4844 0.2277
LP-1G 0.1201 0.9763 0.9870 0.7255 0.2571 0.0219
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Table 1. Average rankings of the algorithms obtained by each evaluation measure by performing Friedman test.

. - Feature
Hamming loss One error Coverage Ranking loss .
ioti — _ _ _ reduction
Statistical Test method p-value = p-value = p-value = p-value = p-value = Sum of ranks

0.000607 0.000481 0.000278 0.000309 0.000209
MLIFT 1.3333[1] 1.3333[1] 1.4167[1] 1.3333[1] 4.3333[4] 8[1]
LIFT 1.6667[2] 1.6667[2] 1.7500[2] 1.8333[2] 6.5000[5] 13[2]
ML-kNN 4.5000(3] 4.5000[4] 4.0000[3] 3.9167[3] 6.5000[5] 18[3]
Friedman 1*N BR-RF 5.0833[5] 5.2500[5] 5.8333[5] 5.7500[6] 2.8333[2] 23[6]
BR-1G 5.2500[6] 4.3333[3] 5.8333[5] 5.8333[7] 2.0000[1] 22[5]
LP-RF 5.5833[7] 5.2500[5] 4.0000[3] 4.1667[4] 2.8333[2] 21[4]
LP-1G 4.5833[4] 5.6667[6] 5.1667[4] 5.1667[5] 3.000[3] 22[5]

The obtained p-values for each measure is also
written in this table that shows significant results,
as all of the p-values are less than 0.05.
According to this table, MLIFT gets the first rank,
LIFT is ranked second, ML-kNN is placed in the
third position, LP-RF gets rank number 4, both of
LP-1G and BR-IG get the fifth rank, and BR-RF is
ranked last. Moreover, Zhang [36] proved the
superiority of LIFT algorithm over four well-
established multi-label learning algorithms,
including Bsvm [2], ML_KNN [10], BP_MLL [4]
and ECC [44]. Thus, the superiority of the
proposed methods over these approaches can also
be concluded.

5. Conclusion

This paper proposes a modification to LIFT [36]
algorithm which is a multi-label learning strategy
via label-specific features. More precisely, LIFT
reduces the dimension of samples using the
information of their labels. However, to construct
the new features, the original features of each
sample are needed. Therefore, the problems
related to costly, irrelevant and redundant features
still remain. To overcome this challenge, we
suggest to remove irrelevant and redundant
features before the LIFT algorithm. To do so, the
ensemble strategy which is one of the promising
techniques in single-label feature selection is
employed to select the most salient features in
multi-label data. Firstly, the multi-label data is
transform into single-label data using the BR
method. Then, the ensemble of three well-known
single-label filter approaches, including IG,
ReliefF and FCBF are employed and the results
are aggregated using the OR operator. The
experimental results show that in spite of
eliminating a significant number of features, the
proposed method has better performance
compared to the LIFT algorithm and other
comparing methods.

References

[1] Yang, J., Jiang, Y.-G., Hauptmann, A. G. & Ngo,
C.-W. (2007). Evaluating  bag-of-visual-words
representations in scene classification, In Proceedings

of the international workshop on Workshop on
multimedia information retrieval, pp. 197-206.

[2] Boutell, M. R., Luo, J., Shen, X. & Brown, C. M.
(2004). Learning multi-label scene classification,
Pattern recognition, vol. 37, pp. 1757-1771.

[3] Diplaris, S., Tsoumakas, G., Mitkas, P. A., &
Vlahavas, I. (2005). Protein classification with multiple
algorithms, In Panhellenic Conference on Informatics,
2005, pp. 448-456.

[4] Zhang, M.-L., & Zhou, Z.-H. (2006). Multilabel
neural networks with applications to functional
genomics and text categorization. IEEE transactions on
Knowledge and Data Engineering, vol. 18, pp. 1338-
1351,

[5] Luo, Q., Chen, E., & Xiong, H. (2011). A semantic
term weighting scheme for text categorization. Expert
Systems with Applications, vol. 38, pp. 12708-12716.

[6] Trohidis, K., Tsoumakas, G., Kalliris, G., &
Vlahavas, I. P. (2008). Multi-Label Classification of
Music into Emotions. In ISMIR, pp. 325-330.

[7] Spoladr, N., Cherman, E. A., Monard, M. C., &
Lee, H. D. (2012). Filter approach feature selection
methods to support multi-label learning based on relieff
and information gain. In Advances in Atrtificial
Intelligence-SBIA 2012, ed: Springer, 2012, pp. 72-81.

[8] Cherman, E. A., Monard, M. C., & Metz, J. (2011).
Multi-label problem transformation methods: a case
study. CLEI Electronic Journal, vol. 14, pp. 4-4.

[9] Zhang, M.-L., Pefia, J. M., & Robles, V. (2009).
Feature selection for multi-label naive Bayes
classification. Information Sciences, vol. 179, pp.
3218-3229.

[10] Zhang, M.-L., & Zhou, Z.-H. (2007). ML-KNN: A
lazy learning approach to multi-label learning. Pattern
recognition, vol. 40, pp. 2038-2048.

[11] De Comité, F., Gilleron, R., & Tommasi, M.
(2003). Learning multi-label alternating decision trees
from texts and data. In International Workshop on
Machine Learning and Data Mining in Pattern
Recognition, 2003, pp. 35-49.

[12] Lin, Y., Hu, Q., Liu, J., & Duan, J. (2015). Multi-
label feature selection based on max-dependency and
min-redundancy. Neurocomputing, vol. 168, pp. 92-
103.

363



Kashef & Nezamabadi-pour/ Journal of Al and Data Mining, Vol 7, No 3, 2019.

[13] Kashef, S., & Nezamabadi-pour, H. (2015). An
advanced ACO algorithm for feature subset selection.
Neurocomputing, vol. 147, pp. 271-279.

[14] Kashef, S., & Nezamabadi-pour, H. (2013). A new
feature selection algorithm based on binary ant colony
optimization. In Information and Knowledge
Technology (IKT), 2013 5th Conference on, 2013, pp.
50-54.

[15] Spola6R, N., Cherman, E. A., Monard, M. C., &
Lee, H. D. (2013). A comparison of multi-label feature
selection methods using the problem transformation
approach. Electronic Notes in Theoretical Computer
Science, vol. 292, pp. 135-151.

[16] Ding, S. (2009). Feature selection based F-score
and ACO algorithm in support vector machine. In
Knowledge Acquisition and Modeling, 2009. KAM'09.
Second International Symposium on, 2009, pp. 19-23.

[17] Kira, K., & Rendell, L. A. (1992). A practical
approach to feature selection. In Proceedings of the
ninth international workshop on Machine learning,
1992, pp. 249-256.

[18] Yu, L., & Liu, H. (2003). Feature selection for
high-dimensional data: A fast correlation-based filter
solution. In Proceedings of the 20th international
conference on machine learning (ICML-03), 2003, pp.
856-863.

[19] Rouhi, A., & Nezamabadi-pour, H. (2016). A
hybrid method for dimensionality reduction in
microarray data based on advanced binary ant colony
algorithm. In 2016 1st Conference on Swarm
Intelligence and Evolutionary Computation (CSIEC),
2016, pp. 70-75.

[20] Lee, J., & Kim, D.-W. (2013). Feature selection
for multi-label classification using multivariate mutual
information. Pattern Recognition Letters, vol. 34, pp.
349-357.

[21] Lee, J., & Kim, D.-W. (2015). Mutual
information-based multi-label feature selection using
interaction information.  Expert Systems  with
Applications, vol. 42, pp. 2013-2025.

[22] Reyes, O., Morell, C., & Ventura, S. (2015).
Scalable extensions of the ReliefF algorithm for
weighting and selecting features on the multi-label
learning context. Neurocomputing, vol. 161, pp. 168-
182.

[23] Gharroudi, O., Elghazel, H., & Aussem, A.
(2014). A comparison of multi-label feature selection
methods using the random forest paradigm. In
Canadian Conference on Atrtificial Intelligence, 2014,
pp. 95-106.

[24] Cheng, H., Deng, W., Fu, C., Wang, Y., & Qin, Z.
(2011). Graph-based semi-supervised feature selection
with  application to automatic spam image
identification. Computer Science for Environmental
Engineering and Ecolnformatics, pp. 259-264.

364

[25] Lee, J., & Kim, D.-W. (2015). Memetic feature
selection algorithm for multi-label classification.
Information Sciences, vol. 293, pp. 80-96.

[26] Chen, W., Yan, J., Zhang, B., Chen, Z., & Yang,
Q. (2007). Document transformation for multi-label
feature selection in text categorization. In Data Mining,
2007. ICDM 2007. Seventh IEEE International
Conference on, 2007, pp. 451-456.

[27] Yan, J., Liu, N., Zhang, B., Yan, S., Chen, Z. &
Cheng, Q. et al. (2005). OCFS: optimal orthogonal
centroid feature selection for text categorization. In
Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in
information retrieval, 2005, pp. 122-129.

[28] Doquire, G., & Verleysen, M. (2011). Feature
selection for multi-label classification problems. In
International Work-Conference on Artificial Neural
Networks, 2011, pp. 9-16.

[29] Read, J., Pfahringer, B., & Holmes, G. (2008).
Multi-label classification using ensembles of pruned
sets. In 2008 Eighth IEEE International Conference on
Data Mining, 2008, pp. 995-1000.

[30] Reyes, O., Morell, C., & Ventura, S. (2013).
ReliefF-ML: an extension of reliefF algorithm to multi-
label learning. In Iberoamerican Congress on Pattern
Recognition, 2013, pp. 528-535.

[31] SpoladR, N., Cherman, E. A., Monard, M. C., &
Lee, H. D. (2013). Relief for multi-label feature
selection. IEEE Brazilian Conference on Intelligent
Systems (BRACIS), pp. 6-11, 2013.

[32] Lastra, G., Luaces, O., Quevedo, J. R, &
Bahamonde, A. (2011). Graphical feature selection for
multilabel  classification tasks. In International
Symposium on Intelligent Data Analysis, 2011, pp.
246-257.

[33] Kashef, S., & Nezamabadi-pour, H. (2017). An
effective method of multi-label feature selection
employing evolutionary algorithms. In  Swarm
Intelligence and Evolutionary Computation (CSIEC),
2017 2nd Conference on, 2017, pp. 21-25.

[34] Lin, Y., Hu, Q., Liu, J., Chen, J., & Duan, J.
(2016). Multi-label feature selection based on
neighborhood mutual information. Applied Soft
Computing, vol. 38, pp. 244-256.

[35] Kashef, S., Nezamabadi-pour, H., & Nikpour, B.
"Multi-label feature selection: a comprehensive review
and guiding experiments. Accepted for Publication in
WIREs Data Mining and Knowledge Discovery, 28
Nov. 2017.

[36] Zhang, M.-L., & Wu, L. (2015). LIFT: Multi-label
learning with label-specific features. IEEE transactions
on pattern analysis and machine intelligence, vol. 37,
pp. 107-120.

[37] Spoladr, N., Monard, M. C., Tsoumakas, G., &
Lee, H. D. (2016). A systematic review of multi-label



Kashef & Nezamabadi-pour/ Journal of Al and Data Mining, Vol 7, No 3, 2019.

feature selection and a new method based on label
construction. Neurocomputing, vol. 180, pp. 3-15.

[38] Zhang, L., Hu, Q., Duan, J., & Wang, X. (2014).
Multi-label feature selection with fuzzy rough sets. In
International Conference on Rough Sets and
Knowledge Technology, 2014, pp. 121-128.

[39] Bolén-Canedo, V., Séanchez-Marofio, N., &
Alonso-Betanzos, A. (2012). An ensemble of filters
and classifiers for microarray data classification.
Pattern Recognition, vol. 45, pp. 531-539.

[40] Mousavi, R., & Eftekhari, M. (2015). A new
ensemble learning methodology based on hybridization
of classifier ensemble selection approaches. Applied
Soft Computing, vol. 37, pp. 652-666.

365

[41] Cherman, E. A., Spoladr, N., Valverde-Rebaza, J.,
& Monard, M. C. (2015). Lazy multi-label learning
algorithms based on mutuality strategies. Journal of
Intelligent & Robotic Systems, vol. 80, pp. 261-276.

[42] Liu, H. (2010). Feature Selection at Arizona State
University, Data Mining and Machine Learning
Laboratory, Last access: October, 2010.

[43] Hall, M., Witten, I., & Frank, E. (2011). Data
mining: Practical machine learning tools and
techniques, Kaufmann, Burlington, 2011.

[44] Read, J., Pfahringer, B., Holmes, G., & Frank, E.
(2011). Classifier chains for multi-label classification.
Machine learning, vol. 85, p. 333.



U’;b/u’vu’ o J;j,/“/

. :‘_}"";Ef'f’u

235 S QLI b sy p wiay waainb oW, :MLIFT

29260 T Pl (s g "Bl Loy

b yS bl dugels oKD (3 1 (oo sy (IDPL) 0515 wioign (50318 1 ol bo3T

YOVA S0 Sipdy YAV (6 S50 oY V5T Lol

RN

055 4 | Hlide 3l (6 s dx gl iz B (gaan b ( wz p wiz Gosls 4y bgi e dua slao S ald dda g 4 Sl sla JLu o
iz andab S LIFT.coul oo &l p— Y A gananb Al Slp oo sl g, (Dliass cpl olisS e r‘,.c)sl.c sl 00,5 >
iz gl Fhg S oo oolaiwl ez diz (6 50L Gl waz 8l Sl iz At slo Sy ool I b aS cul oz
2 plead Gl cp i a5 e Sy s Sl esliiul bg o)ls ) 555 4y pgaste Slastiv canz ;2 a5 Glws dee (3 e
2 sl LIFT (5585 jebo 4 .0uS o ool wl ools (plss oS (sl (gomaigs slabg, 5 LIFT s i o cs ciyls ) oz s 4T (5l
Gz O Gl i g Gl (j9el Slaaiped ol i 5 a4 oS T (o0 e (i g e (slaados 4y |y (Sisel (sladisel oz
S o lag k-means andle> 5l eslaiuwl by Gz 1o (sl ke 9 Cudio sladiged 4 bg o sbaaligs slaoainled o 68l cpl G .l
B el ayan glcd olal wuaz sla S5 il b .oiS o 050l diigs 55110 opl U diges ] Al ol L1, aiges ;o Lol slo S5s 5
izl f Sz oe oalplty s 5L 0)50 (ol o S ez lo Shs ol (ilew sl oJl ol b 0 (o by oS a2
a5 J3las L) g0 9 o] (Sllome (Sauzey talS jshite 4 LIFT (g4 amllol G IS ol 10 .0u8 od oy (20lS oo diz ganail
lo Caws Blaal ol s lojed ol atailsy (golpiin i, oSl a5 wims o olis o iale;] bt .l sas plosl siainl oyl o Slae (Gl

S

29,5 didi s LIFT saids ¢ oz p diz s0ls 1 gdadS” OlolS




