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Abstract 

In this paper, I propose an intelligent approach for the dynamic identification of vehicles. The developed 

approach is based upon data-driven identification and uses a high performance local model network (LMN) 

for estimation of the vehicle longitudinal velocity, lateral acceleration, and yaw rate. The proposed LMN 

requires no pre-defined standard vehicle model, and uses measurement data to identify vehicle dynamics. 

LMN is trained by the hierarchical binary tree learning algorithm, which results in a network with maximum 

generalizability and the best linear or non-linear structure. The proposed approach is applied to a 

measurement dataset obtained from a Volvo V70 vehicle in order to estimate its longitudinal velocity, lateral 

acceleration, and yaw rate. The identification results reveal that LMN can identify accurately the vehicle 

dynamics. Furthermore, comparison of the LMN results and a multi-layer perceptron neural network 

demonstrates the far better performance of the proposed approach. 

 

Keywords: Local Model Network, Hierarchical Binary Tree, Vehicle Dynamics, Identification, 

Neural Network.  

1. Introduction 

Dynamic modeling of vehicles provides a 

mathematical description of vehicle dynamics in 

different operating conditions, which can be used 

for simulation and control of vehicles. Many 

advanced functions of today’s vehicles such as 

electronic stability programs (ESPs), tire pressure 

monitoring systems (TMSs), and road-tire friction 

measurement system require a valid dynamic 

model of the vehicle. Hence, an accurate 

modeling of the vehicle is important [1]. 

However, such a modeling task is challenging and 

complicated, and requires sophisticated modeling 

approaches.  

Generally, two different approaches can be 

identified for dynamic modeling of vehicles, i.e. 

analytical modeling and data-driven identification. 

Analytical modeling, which is based upon the 

physical laws governing the vehicle, requires 

many details [2-3]. Consideration of different 

operating regimes of the vehicle complicates 

analytical modeling, imposing a huge 

computational burden on the modeling process. 

Simplifying assumptions are not a good solution 

in these circumstances as they may lead to invalid 

and inaccurate vehicle model.  

The data-driven identification techniques such as 

non-linear auto-regressive models with exogenous 

variables (NARX) [4], neural networks [5], and 

neuro-fuzzy models [6, 7] are able to model the 

dynamics of complex non-linear systems, e.g. 

vehicles using a set of input-output measurements. 

They usually require no pre-specified assumption 

about the system or process to be identified. This 

property makes data-driven approaches a suitable 

solution when dealing with complicated systems 

with a large number of influential variables.  

Various attempts have been made to identify a 

dynamic vehicle model using the measurement 

data. For instance, Macek et al. have applied 

dynamic modeling and parameter identification 

for autonomous navigation of vehicles [8]. The 

prediction error technique has been used in [9] for 

dynamic identification of vehicles. Moreover, 

artificial neural network (ANN)-based approaches 

have been designed to identify vehicle dynamics 

[10, 11].  
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Among the various identification techniques, local 

modeling approaches (LMAs) have gained 

popularity over the past decade, owing to their 

ability in identification and control of highly non-

linear and complex systems through local 

description of different operating regimes of the 

system by different local models (LMs). In 

addition, they are able to integrate the structured 

knowledge about the system, and hence, provide a 

gray-box modeling outcome [12, 13]. LMAs bear 

different names such as local model networks 

(LMNs) [14], Takagi-Sugeno (TS) fuzzy models 

[15], piecewise linear models [16], and local 

regression [17].  

In this work, we developed a local model network 

for dynamic modeling and identification of 

vehicles. The proposed LMN is made up of a 

number of local linear models (LLMs), each one 

of which describes a certain operating region of 

the vehicle. Interestingly, using LLMs allows a 

good trade-off between the required number of the 

local models and their complexity, and more 

interestingly, provides the possibility of 

transferring parts of the mature field of linear 

control theory to the non-linear world. The 

proposed LMN will be used to model a dynamic 

system such as the longitudinal velocity, lateral 

acceleration, and yaw rate of a Volvo v70 vehicle 

using three input variables of slip of front right 

tire (SFRT), slip of front left tire (SFLT), and 

steering angle. 

The rest of this paper is organized as what 

follows. The structure of the proposed LMN and 

its learning algorithm are presented in Section 2. 

The procedure of dynamic vehicle identification is 

explained in Section 3. In Section 4, I report the 

results of identification of a Volvo v70 vehicle 

using LMN and provide some comparisons to 

several other approaches. Finally, the paper is 

concluded in Section 5.  

 

2. Local model networks 

Local modeling approaches (LMAs) are powerful 

techniques for identification and prediction of 

complex non-linear processes and systems. They 

are able to integrate the structured knowledge 

about the process, facilitating the procedure of 

complex system identification [13]. The ability to 

describe different operating regimes of a system 

or process by different local models (LMs) is 

considered a promising property of LMAs. As a 

favorable class of LMAs, local model network 

(LMN) models are fuzzy inference systems that 

can use neural network learning algorithms for 

estimation of their structures and parameters [15]. 

They are composed of a number of arbitrary LMs 

(allowed to be linear, non-linear, etc.) weighted by 

their corresponding validity functions, as shown 

in figure 1. In this paper, an LMN composed of 

local linear models (LLMs) is employed for the 

identification of vehicle dynamics. LLMs provide 

a good trade-off between the required number of 

the local models and their complexity, and more 

interestingly, they offer the possibilities of 

transferring parts of the mature field of linear 

control theory to the non-linear world [15]. The 

hierarchical binary tree (HBT) learning algorithm 

[13] is also employed to determine the structure of 

LMN and estimate its parameters.  

 
Figure 1. Structure of LMN with p inputs and M local 

models. 

 

2.1. Model structure 

In general, an LMN includes several LMs 

weighted by their corresponding validity 

functions. The general mathematical expression of 

an LMN with p inputs, tr

1 2[ , ,…, ]pu u u u   , and M 

local models as illustrated in figure 1, is given by: 

   
1

M

i i

i

ŷ f u u


   
(1) 

where,  fi(∙) is an arbitrary function describing the 

i-th local model (LMi), Φi indicates the 

corresponding validity function of LMi, and ŷ 

denotes the LMN output. The validity functions 

may be interpreted as the operating point-

dependent weighting factors, which determine the 

contribution of their associated LMs to the final 

output. Moreover, each local model and its 

validity function together realize a non-linear 

neuron. It can also be demonstrated that LMN in 

(1) is equivalent to a fuzzy inference system with 

M rules, where Φi(u) and hi(u) represent the rule 

premises and associated rule consequents, 

respectively [15].  

The following two restrictions are imposed on the 

validity function to allow for (1) a smooth 
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transition between the local models and (2) a 

reasonable interpretation of them.  

 The validity functions are smooth and take their 

values between 0 and 1.  

 The validity functions must form a partition of 

unity; i.e.  
1

1
M

i

i

u


  . 

As stated earlier, use of LLMs in the structure of a 

LMN provides a good trade-off between the 

required number of the local models and their 

complexity as well as the possibility of 

transferring parts of the mature field of the linear 

control theory to the non-linear world. If fi in (1) 

is chosen as LLMs, then:  

  0 1 1i i , i , i ,p pf u u u     K  (2) 

where, 0 1i , i , i , p    K are the parameters of LLMi, 

also called the linear parameters of LMN. In order 

to estimate these linear parameters, the local error 

of the corresponding LLM is minimized for the 

available training data:  

    
1

min 1
i

N

i i

j

I u j e j i , ,M
 

  
    

  
 K  

(3) 

where, e(j) = y(j) – ŷ(j) and y = [y(1), …, y(N)] are 

N target outputs. The weighted least square 

(WLS) solution of (3) leads to:  

 
1

T T

i i i i i iR D R R D y


  
(4) 

where, Ri is the regression matrix associated with 

the i-th local model for the N training samples:  
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(5) 

and the N × N diagonal weighting matrix, iD  , is 

given by:  
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(6) 

 

2.2. Identification of model structure 

In order to fully identify the structure of an LMN, 

the number of non-linear neurons and parameters 

of the validity functions must be determined in 

addition to the LLMs’ parameters. This is done by 

the hierarchical binary tree learning algorithm, 

which is a heuristic tree-construction algorithm 

and hierarchically partitions the input space into 

the hyper-rectangular sub-domains through axis-

orthogonal splits. In each iteration of the 

algorithm, the worst-performing local model is 

divided into two halves. Therefore, two new local 

models are generated and their associated validity 

functions are determined. This procedure 

continues until the desirable performance is 

achieved [13]. 

Figure 2 shows the architecture of the HBT 

algorithm by a hierarchical binary tree example. 

In this architecture, each node i corresponds to the 

partition of the input space into two areas by the 

splitting function ψi(  ) and its counterpart 1ψi(  ). 

Interestingly, the two splitting functions 

automatically sum up to unity; therefore, no 

normalization is required and its undesirable side-

effects such as reactivation in LOLIMOT are 

avoided.  

 
Figure 2. Hierarchical model structure with 5 local 

models (at leaves). 

 

The partitioned regions are further sub-divided by 

the succeeding nodes, if any, and the binary tree 

ends with a set of end nodes, called leaves. Each 

leaf represents a local model and its contribution 

to the overall model output is given by its validity 

function, computed by multiplication of all 

splitting functions from the root of the tree to the 

corresponding leaf. For the binary tree in figure 2 

with nine nodes and five leaves, the validity 

functions can be expressed as: 

       4 2 11 1u u u      (7) 

       5 2 11u u u     (8) 

     7 3 1u u u    (9) 

         8 6 3 11 1u u u u       
(10) 

        9 6 3 11u u u u      (11) 

It is simply verified that:  
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The general form of a splitting function is 

expressed below:  

 
 0 1 1

1

1 e i i , i , i ,p p
i s d d u d u

u
   




K
 

(13) 

which is a sigmoid function with the direction 

vector di = [di,1 … di,p]
T
 deciding the direction of 

split and the position parameter di,0, specifying the 

position of the split and the smoothness parameter 

si setting the smoothness of the split.  

The unknown parameters of the sigmoid functions 

are determined by the HBT algorithm, 

summarized below. 

I. Start with the initial model: set M = 1, start 

with a single LM whose validity function 

(Φ1(x ) = 1) covers the whole input space and 

estimates the model parameters using (4).  

II. Find the worst LM: calculate a loss function 

defined by (7) for each of LMi, i = 1, …, M, 

and find the worst-performing local model 

(LLMwt). 

III. Check all divisions: the validity region of 

LLMwt must be divided into two equal hyper-

rectangles (two new validity regions) in all p 

dimensions.  

III (a). Construct the splitting functions: for each 

p division, a splitting function must be 

determined. The positioning parameter wi,0 is 

set equal to the center of the LLMwt at the 

split dimension, all entries of the direction 

vector except the one that corresponds to the 

division dimension are zero, and the 

smoothness parameter is simply set 

proportional to the length of the newly-

generated hyper-rectangle. Once the splitting 

function ψi is determined, calculate its 

counterpart 1  ψi. 

III (b). Compute the validity functions: determine 

the validity functions of two newly-generated 

validity regions by multiplication of all 

splitting functions from the root of the tree to 

the corresponding leaf.  

III (c). Estimate the local model parameters: only 

parameters of the two LMs corresponding to 

the two newly-generated validity regions must 

be estimated using (4), and finally, the loss 

function for the current overall model must be 

computed. The other existing local models 

remain unchanged.  

IV. Find the best division: the best LMs related to 

the lowest loss function value must be 

determined. The number of LMs is 

incremented: M → M + 1. If the termination 

criterion, e.g. a desired level of validation error 

or model complexity is met, then stop; 

otherwise, go to step II.  

The maximum generalization and noteworthy 

modeling performance is among the salient 

features of the model identified by the HBT 

learning algorithm.  

 

3. Dynamic vehicle identification 

The dynamic model of a vehicle is schematically 

shown in figure 3. It includes three state variables, 

namely the longitudinal velocity (Vx), lateral 

velocity (Vy), and yaw rate (r) of the vehicle.  

Considering figure 3 and applying Newton laws, 

the mathematical relationship between the vehicle 

output variables can be derived. For instance, the 

longitudinal velocity can be expressed by:  

   

   
2

1
x y x ,FL x ,FR

y ,FL y ,FR

x ,RL x ,RR A x

v rv { F F cos
m

F F sin

F F C v }





   

 

 

&

 

(14) 

where, the subscripts x and y denote the 

longitudinal and lateral quantities, respectively; F 

is the force; the indices FR, FL, RL, and RR 

indicate the front left, front right, rear left, and 

rear right tires, respectively; and δ represents the 

steering angle.  

 
Figure 3. Schematic representation of vehicle dynamic 

model. 

 

The mathematical equations for the lateral 

velocity and yaw rate can be similarly extracted. 

The parameters of the dynamic model in figure 3 

include mass of vehicle (m), distance of front axle 

from vehicle’s center of gravity (a), distance of 

rear axle from vehicle’s center of gravity (b), air 

resistance coefficient (CA), longitudinal tire 

stiffness (Cx), and lateral tire stiffness (Cy).  

If the first four parameters are assumed constant, 

the longitudinal and lateral tire stiffness has to be 

estimated by means of a method. This hinders the 
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analytic modeling of the vehicle dynamics and 

introduces more complexity into the modeling 

problem.  

 

 
Figure 4. Structure of LMN for estimation of (a) 

longitudinal velocity, (b) lateral acceleration, and (c) yaw 

rate.  

Hopefully, if a measurement-based identification 

is applied, there is no necessity for a direct 

estimation of tire’s stiffness. The vehicle’s 

longitudinal and lateral velocities as well as its 

yaw rate can be estimated using three individual 

LMNs, as shown in figure 4. Each LMN in in this 

figure is identified using the measurement data of 

the vehicle. For estimation of the longitudinal 

velocity of the vehicle, the previous values for the 

longitudinal velocity (Vx), SFRT, SFLT, and 

steering angle (δ) are used as the LMN’s inputs. 

Similar input variables are considered for 

estimation of the lateral acceleration (ay) and yaw 

rate (r) using LMNs, as shown in figure 4.   

 

4. Identification results and discussion  

4.1. Dataset and evaluation criteria 

The proposed LMN will be used to identify the 

longitudinal velocity, lateral acceleration, and yaw 

rate of a Volvo V70 vehicle [10]. The 

experimental data has been collected for a Volvo 

V70 with the sampling interval Ts = 0.1 s. The 

dataset includes 2500 samples, as shown in figure 

5. The first 70% of data samples are used to train 

LMNs and the remaining 30% serve as the test 

dataset to evaluate the performance of the 

identified models. 

 
Figure 5. Inputs and outputs for vehicle identification. 

 

In order to collect the real data, an rpm-meter has 

been used for measurement of the steering angle. 

Moreover, the slip of tires can be measured using 

the difference between the linear velocity of 

vehicle and the linear velocity of tire. The linear 

velocity of vehicle has been measured using a 

piezoelectric sensor. Also the linear velocity of 

the tire can be measured using the multiplication 

of angular velocity by radius of tire. 

In order to investigate the identification 

performance, the root mean square error (RMSE) 

and the normalized mean square error (NMSE) 

are considered:  
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 
1

1 N

i

y y i
N 

   
(17) 

where, 
iy  and ŷ  are the true and estimated 

values and N is the number of data samples. In 

addition, the performance of LMNs will be 

compared with the multi-layer perceptron (MLP) 

neural networks.  

As stated earlier, in Section 3, three LMNs are 

constructed to estimate the longitudinal and lateral 

velocities as well as the yaw rate. The input and 

output for these LMNs are shown in table 1. 

 

Table 1. Identification inputs and outputs. 

Identification output Identification inputs 

Longitudinal velocity,  xV k  
( 1) SFRT( 1) SFRT( 2),

SFLT( 1) SFLT( 2), (k-1),

xV k , k - , k -

k , k 

   

    
 

Lateral acceleration,  ya k  
( 1) SFRT( 1) SFRT( 2),

SFLT( 1) SFLT( 2), (k-1),

ya k , k - , k -

k , k 

   

    
 

Yaw rate,  r k  
( 1) SFRT( 1) SFRT( 2),

SFLT( 1) SFLT( 2), (k-1),

r k , k - , k -

k , k 

   

    
 

 

4.2.  Identification of longitudinal velocity  

An LMN with five neurons provided the best 

performance for the longitudinal velocity 

estimation. The actual and estimated longitudinal 

velocities for the test data are shown in figure 6. 

Moreover, a comparison between the estimation 

errors of the LMN and MLP neural networks is 

presented in figure 7, stressing on the superior 

performance of LMN. The numerical evaluation 

of both the LMN and MLP neural networks is also 

presented in table 2. According to this table, the 

reduction in value for the estimation error based 

on the RMSE index using LMN with regard to 

MLP is about 72%, and based on the NMSE index 

is 91%. 

 

 
Figure 6. Estimated longitudinal velocity. 

 
Figure 7. Estimated longitudinal velocity error. 

 

Table 2. Results of longitudinal velocity identification.  

 LMN MLP 

RMSE 0.0059 0.0203 

NMSE 0.0024 0.0283 

 

4.3.  Identification of lateral acceleration  

The result of lateral acceleration identification is 

shown in figure 8. It can easily be seen that there 

is a close match between the actual and estimated 

accelerations. A graphical comparison between 

the estimation error of the LMN and MLP neural 

networks is depicted in figure 9. The numerical 

evaluations between the LMN and MLP neural 

networks, presented in table 3, demonstrate a 

favorable performance of the proposed 

identification method. As shown in this table, the 

reduction in estimation error based on RMSE 

using LMN in comparison with MLP is 71%, and 

according to NMSE it is about 91%. 

 

 
Figure 8. Lateral acceleration estimation. 
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Figure 9. Lateral acceleration estimation error. 

 

Table 3. Results of lateral acceleration identification. 

 LMN MLP 

RMSE 0.0846 0.2921 
NMSE 0.0827 0.9851 

 

4.4. Identification of Yaw Rate 

The final identification case focuses on estimation 

of the vehicle’s yaw rate. An LMN with four 

neurons resulted in the lowest validation error. 

Figure 10 shows the LMN estimation of the yaw 

rate against the actual measurements. Similar to 

the previous case studies, a graphical comparison 

of the estimation error of the LMN and MLP 

neural networks is illustrated in figure 11, and the 

numerical evaluations presented in table 4 confirm 

a more satisfactory performance of the proposed 

approach. 

 

 
Figure 10. Yaw rate estimation. 

 
Figure 11. Yaw rate estimation error. 

 

Table 4. Results of yaw rate identification. 

 LMN MLP 

RMSE 0.0012 0.0041 

NMSE 0.0090 0.1097 

 

The identification process of the yaw rate depicts 

a reduction of 70% in the estimation error on the 

basis of RMSE and a reduction of 92% based on 

NMSE using LMN relative to MLP, as shown in 

table 4.  

In the control purpose of vehicle, an accurate 

identification of the longitudinal velocity, lateral 

acceleration, and yaw rate is very important. The 

exact estimation of these variables leads to the 

appropriate behavior in the yaw controller system. 

As a result of the identification process, the 

vehicle dynamics can be stabilized using this 

controller via the actuator system, e.g. distributed 

breaking system. 

According to the results of the system 

identification based on LMN and MLP, the LMN 

approach decreases the run-time of processing for 

about 16% in comparison with MLP. Also the 

estimation error is reduced in the identification 

process using LMN relative to MLP. As a result, 

LMN can estimate these variables more accurately 

and more rapidly than the simplest method, e.g. 

MLP. Moreover, the identification of these 

variables using LMN has been carried out as well 

as with a fewer number of datasets.  

 
5. Conclusion 

In this paper, I proposed a data-driven 

identification strategy for the dynamic modeling 

of vehicles. In the proposed method, a local model 

network was employed for the dynamic estimation 

of the longitudinal velocity, lateral acceleration, 

and yaw rate of the vehicle. The proposed LMN 
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was composed of local linear models and their 

associated validity functions, each describing a 

specific operating regime of the vehicle dynamics. 

LMN was trained using the heuristic and fast HBT 

learning algorithm, and then applied for 

estimation of the longitudinal velocity, lateral 

acceleration, and yaw rate for a Volvo V70 

vehicle. The identification results and comparison 

with an MLP neural network demonstrated the 

promising performance of the proposed approach. 

Consequently, the identification of variables using 

LMN relative to MLP depicts a reduction of about 

70% in the estimation error based on RMSE and a 

reduction of 90% based on NMSE. Also the rapid 

convergence of the estimation process is more 

revealed in LMN due to the reduction in run-time.  
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 چکیده:

شبکه مدل محلی باا ااارییی باا   ،توسعه داده شده نگرشخودرو ارائه شده است. متغیرهای یک نگرش هوشمند برای شناسایی دینامیکی در این مقاله، 

ای حاول زاویاههای سرعت طاولی، شاتاج ناانبی و سارعت برای تخمین متغیر اه باشدمیخودرو  های استخراج شده از سیستمبراساس شناسایی داده

هاای از داده تنهاا و نیاازی نداشاته فار خودرو به عنوان پیشاستاندارد شبکه مدل محلی ارائه شده به مدل  گیرد.مورد استفاده قرار می محور عمودی

شود ااه ای یموزش داده میهدودویی مرتب یدرختالگوریتم  بوسیله. شبکه مدل محلی نمایدمیگیری شده برای شناسایی دینامیک خودرو استفاده اندازه

-هاای انادازهبار روی داده ،شود. روش ارائه شدهتبدیل میبهترین ساختار خطی یا غیرخطی  باپذیری به یک شبکه با حدااثر قابلیت تعمیمبدین وسیله 

. نتاای  حالال شاودمیاستفاده ای عمودی ین ی، شتاج نانبی و سرعت زاویهسرعت طولاه به منظور تخمین  شدگیری شده از خودرو ولوو بکار گرفته 

دهد اه شبکه مدل محلی قادر است بدقت متغیرهای دینامیکی خودرو را شناسایی نماید. بعاووه، مقایساه نتاای  از شناسایی دینامیک سیستم نشان می

 حالل از شبکه مدل محلی با شبکه عصبی پرسترون چند  یه حاای از عملکرد بهتر نگرش شناسایی ارائه شده است. 

 خودرو، شناسایی، شبکه عصبی. شبکه مدل محلی، درخت دودویی مرتبه ای، دینامیک :کلمات کلیدی

 


