

Journal of AI and Data Mining

Vol 6, No 2, 2018, 375-385 DOI: 10.22044/JADM.2017.5015.1603

Optimizing Cost Function in Imperialist Competitive Algorithm for Path

 Coverage Problem in Software Testing

M. A. Saadatjoo and S. M. Babamir
*

Department of Computer Engineering, University of Kashan, Kashan, Iran

Received 22 November 2016; Revised 10 April 2017; Accepted 27 July 2017

*Corresponding author: babamir@kashanu.ac.ir) S. M. Babamir).

Abstract

The search-based optimization methods have been used for the software engineering activities such as

software testing. In the field of software testing, search-based test data generation refers to the application of

meta-heuristic optimization methods to generate the test data that cover the code space of a program.

Automatic test data generation that can cover all the software paths is known as a major challenge.

This paper establishes a new cost function for automatic test data generation, which can traverse the non-

iterative paths of the software control flow graphs (CFGs). This function is later compared with similar cost

functions proposed in the other articles. The results obtained indicate the superior performance of the

proposed function. Another innovation proposed in this paper is the application of the Imperialist

Competitive Algorithm (ICA) in automatic test data generation along with the proposed cost function.

Automatic test data generation is implemented through ICA as well as the genetic algorithm and particle

swarm optimization algorithm for three software programs with different search space sizes. These

algorithms are compared with each other in terms of the convergence speed, computational time, and local

search. The test data generated by the proposed method achieved better results than the other algorithms in

finding the number of non-iterative paths, convergence speed, and computational time with growing the

searching space of the software CFG.

Keywords: Software Testing, Imperialist Competitive Algorithm, Test Data Generation, Control Flow

Graph, Program Complexity, Path Coverage.

1. Introduction

One of the most important tasks in the process of

software quality assurance is software testing,

which is too expensive. According to the

literature, nearly one-third of the software errors

can be avoided by relying on the software testing

methods [1]. Different methods are used for

software testing. Among others, search-based

testing is an effective method for testing a

program if it is possible to cover the execution

space of the program. It refers to the use of a

meta-heuristic optimizing search method to

automate test case generation [2]. In the search-

based testing methods, a test dataset is provided as

a vector of the required values to traverse different

execution paths of a program so as to demonstrate

the maximum software fault. A test dataset

includes a vector with sufficient values to

implement the corresponding software. A test data

vector is ideal if 1) each of its elements is

necessary (i.e. not redundant) and 2) its elements

are sufficient (i.e. no other elements are required).

These two conditions state that the vector should

include the same number of elements as the

program execution paths so that inputting each of

its elements can lead to the execution of a

different program path. If the fist condition is not

met, the test will not be complete but if the second

one is not met, unnecessary cost will be incurred.

The execution paths of a program, known as the

search space, are demonstrated by a Control Flow

Graph (CFG). This is a graph that is built

according to the program code. The more

branches the graph has, the more complex search

space it has. Such a complexity has a direct

mailto:babamir@kashanu.ac.ir

Babamir & Saadatjoo / Journal of AI and Data Mining, Vol 6, No 2, 2018.

375

relationship with program testability (see Section

3).

In this article, a new cost function is introduced.

This cost function is composed of the cost

function introduced in [3] and the recommended

parameter. The value of the cost function in the

recommended method is obtained by the

maximum path coverage, not by choosing the

repeated paths of the Control Flow Graph (CFG).

To evaluate the new function, the problem of

search-based testing in [3] is solved by the

recommended cost function. The results obtained

show that the traverse of non-iterative paths is

more than the one in [3].

Choosing the test data from a software search

space is very complex. To overcome this problem,

the automatic test data generation techniques can

be of help using complete algorithms [4 and 5].

One of the recent evolutionary algorithms that has

drawn the attention of researchers in search-based

issues is the Imperialist Competitive Algorithm

(ICA) [6]. This algorithm has led to better results

in different applications in comparison with the

Genetic Algorithm (GA) and the Particle Swarm

Optimization (PSO) algorithm [7-9]. In [10], these

three are compared with one another according to

the local search parameters, convergence speed,

and computational time. The results obtained

showed that ICA is more efficient than the other

algorithms. In [11], a hybrid meta-heuristic

algorithm based on imperialist competition

algorithm is introduced. Their method showed

that ICA method has better results in finding

global optimum and search speed. In [12], it was

tried to solve a discrete Traveling Salesman

problem using ICA. The results showed the high

capability of this algorithm in solving discrete

problems. Since the problem of automatic

software test data generation by CFG is of a

discrete nature and due to the priorities of ICA in

[10], ICA was used in the present work. The aim

of this work was to show the efficiency of ICA as

an approach recommended versus GA and PSO

algorithm in solving the problem of maximum

path coverage of search-based testing.

Although ICA has been applied for software cost

estimation aimed at software project management

[13-15], it has not yet been used for the automatic

test data generation software.

Using ICA, we generated the test data that

covered more program paths than GA and PSO

algorithm, and the generated data was closer to

ideal. This work is the first attempt to use ICA

through the recommended cost function so as to

generate the automatic test data whose efficiency

is determined against other related approaches

such as GA and PSO algorithm. According to this

experience, the efficiency and capability of the

approach was determined based upon its nearness

to the ideal data, local research, convergence

speed, and computational time. In this work, the

recommended algorithm was used to generate the

test data for four programs with low, medium, and

high degrees of complexity, and the results

obtained were evaluated to determine the

efficiency of the algorithm.

This paper is organized as what follows. The

program CFG is introduced in Section 2. Section

3 deals with the related works. Section 4

addresses ICA (i.e. the proposed algorithm) for

the automatic test data generation. The proposed

cost function and its evaluation are discussed in

Section 5. The use of ICA in software search-

based testing is explained in Section 6. Section 7

draws conclusions and proposes directions for

future research works.

2. Control flow graph (CFG)

A CFG is a graph in which each node contains

one or more successive program statements. It has

a start and an end node, and its edges denote the

control flow between the program statements. In

this graph, the branch points indicate conditional

statements [16]. A path starts from a start node

and ends with an end node. Figure 2 shows CFG

for the program in figure 1 (the number of nodes

in figure 2 indicates the number of statements in

figure 1.

Figure 1. CFG of MAX program.

This graph has six nodes, each of which includes

one or more program statements in figure 2, and

seven edges each of which denotes the control

between the statements. The basic paths are as

what follow. The rest of the paths are constructed

out of the basic paths, which are three. It should

be noted that path 1 will not be evaluated by any

test data. Paths such as this are called the

infeasible software paths.

a) 1- 2- 3

b) 1-2-4-5-6-2-3

c) 1-2-4-6-4-3

Generation of an adequate test data for maximum

CFG path coverage is our main concern in this

1

6

1

2

3

4

5

T

T

F

F

Babamir & Saadatjoo / Journal of AI and Data Mining, Vol 6, No 2, 2018.

376

paper. As the CFG branches increase, the CFG

structure becomes more complicated for searching

because the number of paths increases too, and

thus finding adequate test data that can traverse all

the paths becomes difficult. In fact, the number of

elements in the search space of source code paths

is determined by the number of conditions. This is

called program complexity or the McCabe number

[17].

In order to automatically generate the test data,

the search space for the program must be

specified. This space, which shows the structure

of the program, is obtained from CFG. The search

in this space is carried out in the following three

ways: 1) Searching the space for graph nodes in

which each node represents an instruction for the

program 2) Searching the space for graph edges in

which each edge represents a branch in the

program 3) Searching the graph paths in which

each path is a set of nodes and edges and entails

the beginning to the end of the graph. The test

data selected as the answers are only those that are

able to successfully traverse the maximum part of

the search space or the paths of the program CFG.

Figure 2. MAX program.

For a software in which the whole program is run

in one module, a CFG can be easily depicted so as

to determine the number of software paths.

However, in a software whose running process

includes several intricate modules, depiction of

CFG of the whole software is not an easy task. In

such structures, first, a CFG is created for each

module separately, and the number of paths is

determined. Next, based upon the number of paths

in each module, the paths in the whole software

are estimated. This method was used in the

present study to approximate the number of paths.

3. Related works

About 59% of the literature on software

engineering is about software testing [2]. The

main idea to use methods of evolutionary

algorithms for search-based testing is to generate

a set of test data that are partly ideal.

3.1. Application of PSO

The PSO algorithm was first introduced in [18]

and inspired by a swarm of birds looking for food.

In [19], the authors have tried to generate the test

data for a program that merges two arrays using

PSO. To do so, they generated six methods for

traversing paths. However, their experience was

of use for simple problems with low complexity,

and no evaluation was provided for programs with

medium and high degrees of complexity. In this

paper, the studied issues were not so complex, and

the results obtained were not compared with other

approaches. However, the efficiency of the

recommended approach was compared with that

of the PSO algorithm approach.

3.2. Application of GA

GA can be applied to resolve the optimization

issues [20]. The algorithm is also applied to

software automatic test data generation for the

purpose of path coverage. In generating the test

data using this algorithm, a chromosome plays the

role of the input vector of the test data, each of

which functions as a gene.

In [21-24] have proposed principles and rules for

using this algorithm to automatically generate the

test data. They generated the test data according to

the proposed algorithm for a couple of programs.

This algorithm has been used in [22] to generate

the test data based on a dynamic method. The

proposed method was compared with GA for

program branch coverage as the search space.

Finding the ideal test data that is able to cover

more space is one of the properties of this

dynamic method.

Keyvanpour and Homayouni [3] have tried to use

a combination of evolutionary and local search

methods to generate the test data. Using the

Memetic algorithm and a local search method

called „hill climbing‟, at each stage of test data

generation, they tried to reduce the time spent for

finding the suitable tests. The cost function that

they used was a combination of three parameters

including neighborhood, closeness to the border,

and branch coverage. At each stage of their

proposed algorithm, the generated data was

inputted to a neural network for evaluation. They

applied their method to a triangle program, and

using the local search algorithm, they were able to

reduce the number of algorithm iterations to an

acceptable level, which made the convergence

faster. However, this method was not

implemented to solve problems with medium and

high degrees of complexity.

Many researchers have used GA to generate the

test data for different types of coverage including

1. void MAX (int x[],int n) {

2. int max,i=1;
3. max=x[0];

4. ` while(i<n){

5. if(x[i]>max)
6. max=x[i];

7. i++;

8. }
#9. cout<<max;

#10. }

Babamir & Saadatjoo / Journal of AI and Data Mining, Vol 6, No 2, 2018.

377

branch coverage [22], condition-decision

coverage [23], path coverage [24-26], and

multiple-path coverage [27-29].

As for the present article, its focus has only been

placed on path space coverage. In each of the

above-mentioned evolutionary methods, a

program with low complexity is initially

introduced for generating the test data. In the

second step, the evolutionary algorithm

parameters are set according to the desired

program. In the third step, the test data that can

cover the search spaces of condition, path, branch,

and instructions are generated.

Ahmed and Hermadi [27] have investigated their

test data generation method to cover the path

space in a program of low complexity. Their

desired criterion was the amount of the generated

data for traversing one path and then traversing all

the paths of the program. Their proposed method

failed to generate the least test data with the

ability to traverse the most possible paths.

Using GA, Li and Yeh [29] have generated the

test data to cover the path space through relational

algebra. They examined the CFG paths when

coverage of only one path was desired. However,

they did not discuss the effectiveness of this

method when it was aimed at traversing all the

paths. In their method, the focus of each stage of

implementing the proposed algorithm was only on

traversing one path, and this prevented the

generalization of their method to solve the whole

problem space. Another drawback of this method

is that they used a criterion for comparing the time

regardless of the fitness value showing the extent

of path coverage.

Zhang and Gong [31 and 32] have compared the

speed of implementing their proposed algorithm

in generating the test data on two programs (array

search and bubble sort) with low complexity. In

the current work, this parameter was used to

display and evaluate the implementation speed of

the proposed method together with the quality of

the generated test data (which is dependent upon a

fitness function).

Harman and McMinn [33] have evaluated some

(local and general) search methods in program

tests, and concluded that a method that combines

the local and general search can greatly contribute

to the optimal generation of the test data, which

can properly cover the search space. Their

evaluation was based upon the complexity of

sample programs, all of which were simple or

with low complexity. It was not determined in

their work whether their method could account for

the time when the problem space expands.

Mansour and Salame [34] have used GA for

automatic generation of the test data in problems

that work with accurate and real data. Their

method was limited to certain data types, and no

comparison was made for the amount of path

coverage. However, the test data type had no

effect on our proposed method since it was

determined with respect to the desired problem.

In addition to GA and PSO algorithm, the

Artificial Bee Colony (ABC) algorithm is a

search-based method used for automatic

generation of the test data in order to cover the

path space [35]. However, its effectiveness has

not been proved for path coverage of programs

with high complexity and large search space.

4. Imperialist competitive algorithm (ICA)

In ICA, countries are introduced as problem

results (i.e. test data). The characteristics of each

country are the desired test data to cover the

search space. In this algorithm, in terms of ideal

test data selection, powerful countries are opted

through a cost function as used in this algorithm.

Some countries are selected as imperialists and

some others as colonies. Like many other

evolutionary algorithms, at the beginning of the

algorithm implementation, countries (test data) are

randomly selected in the whole problem space.

Based upon the power of each country, some are

randomly selected as imperialists (i.e. test data

that traverses new and more paths compared with

the other data in the search space) and some

others as colonies. The imperialists and colonies

are selected independently. An imperialist and its

colonies are called an empire. Imperialist

competition means the attempt of an imperialist to

attract maximum colonies from other empires.

There are two conditions for this algorithm

including 1) the algorithm continues based on the

described cases until one or more empires remain

with regard to the problem (2) the algorithm runs

to a certain number of rounds. One may shortly

refer to these two as the final condition and

convergence. In the case of automatic generation

of the test data in this work, each empire will be

considered as a test data vector. Each vector

represents the test data that traverse at least one

new path. The ultimate solution will be the most

powerful imperialist, indicating the best set of test

data vectors that traverse a maximal number of

program paths.

The first step in forming an empire is to establish

countries that are randomly placed throughout the

space. The structures of the countries vary

according to the software under test. In general, a

Babamir & Saadatjoo / Journal of AI and Data Mining, Vol 6, No 2, 2018.

378

problem with a test vector having n elements is

shown as (1):

, ,...,0 1Country num num numn    (1)

Another parameter that plays a crucial role in

attracting the countries and developing an empire

is the power of each imperialist within the empire

or simply the power of each empire. Using the

power of an empire, it can be specified which

country is shared at the time of competition. To

calculate the power of each empire, as mentioned

in [3], the ultimate power of that empire is taken

into account.

The following section outlines the proposed cost

function and its application in ICA for automatic

test data generation.

5. Proposed cost function

The first challenge in solving problems by

evolutionary algorithms is to design a proper cost

function. This aims at generating a minimum test

data to traverse maximum paths of a software

CFG. Thus a proper cost function should be

designed.

The recommended cost function in this paper is

composed of the cost function introduced in [3]

and a new parameter. For a better understanding

of the recommended cost function, all parameters

will be discussed.

5. 1. Path traverse probability

A test vector consists of some test data, each of

which traverses a path of the graph. The

possibility of traversing this path by test data ti

from vector T is:






k

j

ij

i

tpathinconditionsallforP

tPathL

1

))((

))((

 (2)

In (2), k is equal to the conditions in which test

data ti is traversed through its path.

Generally, by taking the following steps, it is

possible to obtain the probable parameter of

traversing a path by a test vector.

 Obtaining a path that traverses the test vector.

 Using CFG of the software to determine the

set of conditions that the test data traverse

through and writing an algebraic expression

among its conditions.

 Normalizing the algebraic equation by

moving one side of this equation to the other

side, for example, changing a < b to a-b < 0.

 Calculating the probability of generating a

normal algebra.

 Calculating the probable parameter of the path

by the data of a T test vector, as follows:

          1 2
P T =1- 1-L Path t * 1-L Path t *... (3)

L(P(t1)) is the probability of selecting a path that

is traversed by the test data ti. If each path has

more than one condition, the probability of the

test data not to select that path is equal to 1-

L(P(t1)). In addition, a test vector is composed of a

combination of several test data. Thus this amount

is calculated for each test data of one test vector.

5.2. Closeness to boundary values

Experience has shown that test cases close to

boundary values are more likely to find program

error 4 [4]. The closeness to the boundary is

shown by N (T).

Close to the boundary values for a test vector T.

This parameter for a test vector is calculated by

Eq. 4:
() () () ...1 2N T N t N t   (4)

where, is the test data of test vector , and

 is close to the boundary value for that is

calculated as follows:

 Obtaining a path that traverses the test vector.

 Using CFG of the software to determine the

set of conditions that the test data traverse

through and writing an algebraic expression

among its conditions.

 In each algebraic expression, all comparison

operations {<, >, ≤, ≥, =} change to {=}.

 Moving the right side of each algebraic

expression to the left side to find the boundary

value of that expression.

 Calculating the parameter of closeness to the

boundary values for each input test data, as

follows:

)__/()(1)(SizeValueMaxttN ii  (5)

where, is the test data input, and

SizeValueMax __ is the domain of the test data. The

closeness to the boundary values is calculated for

each existing data on the test vector, and then each

value is multiplied by the others to obtain the

probability of closeness to the boundary borders

of the test vector.

5.3. Edge coverage

Edge coverage means the percentage of edges in

CFG covered by the test data vector. Edge

coverage is computed using (6), where e is the

number of edges traversed by the test vector T,

and E is the total number of CFG edges:

  EeTD / (6)

Babamir & Saadatjoo / Journal of AI and Data Mining, Vol 6, No 2, 2018.

379

The aim of this paper was to generate an ideal test

data that could cover the maximum paths of a

graph. To gain this goal, the parameter of non-

iterative path coverage was selected.

5.4. Non-iterative path coverage

To compute the number of paths traversed by a

test vector, it is required to determine whether the

traversed paths are non-iterative since the test data

that do not generate a new path are practically

useless. For this purpose, we introduced the

concept of Evaluator, and, using this, we

generated vectors that created non-iterative paths.

5.4.1. Evaluator
Obtaining the non-iterative traversed paths in

CFG by a test data vector was an important part of

the present study. An evaluation matrix is used to

determine the non-iteratively traversed paths by

the test data. Assume that the conditions of a CFG

areC p . Therefore, there are 2Cp

corresponding

algebraic expressions (one corresponding

algebraic expression based upon a true condition

and one corresponding algebraic expression based

upon a false condition). Each Evaluator is an array

of paths at the length of 2Cp in which each

element is a corresponding algebra expression.

For every test data, there is an Evaluator. From

the beginning, this array is initialized with a zero,

i.e. the test data does not traverse any path. When

an edge is traversed by the test data, an algebraic

expression is selected from 2Cp of them, whose

corresponding value in the Evaluation array has

the value of 1.

After running the program by a test vector, all the

Evaluators are calculated based on decimals. If the

decimal numbers generated by the Evaluators are

unique, non-iterative paths will be traversed. In

other words, iteration of each number indicates

the traverse of an iterative path. Thus the

Evaluator obtained is unique in every path of

CFG.

If the number of existing test data is equal to that

of vectorV p , then we will have the matrix

pp CVEval 2
 in which every row is an array

corresponding to the test data.

In graphs with loops, it is possible to make the

following equation after generating an Evaluation

matrix:
[] [] []Eval k Eval i Eval j  (7)

where, []Eval i is the
t hi row of the Evaluation

matrix. Here, the
t hk row of the Evaluation

matrix is obtained from the OR logical actions

between the
t hi and t hj rows of the matrix. It

should be noted that the test data that generate

these Evaluators can traverse a given path more

than one time.

The number of lines in the Evaluator obtained

from other lines through the Union logical

operation is displayed by Evalcnt _ . This variable

indicates the number of non-iterative paths

traversed by the test data. The non-iterative path

coverage parameter is computed by Evalcnt _ ,

here referred to as)(TW (Equation 8). The

parameter is presented in this paper for the first

time:

pN

Evalcnt
TW

_
)(

 (8)

where, pN represents the number of total

estimated paths in the graph.

Simply, the computational steps of)(TW are as

follow:

 Using CFG to determine the set of conditions

that the test data can traverse.

 Generating the
pp CVEval 2

Evaluation matrix

in whichV p is the number of test data of a test

vector, and C p is the number of conditions in

CFG.

 Setting the Evaluation matrix according to the

input test vector.

 Calculating the decimal number of each row.

 Determining the number of non-iterative paths

using cnt_Eval.

According to the above criteria, the proposed cost

function is:
4/))()()()(()(TWTDTNTPTF  (9)

5.5. Evaluating proposed cost function

To generate a test data with high quality, the three

parameters path traverse probability, closeness to

boundary values, and edge coverage were linearly

integrated. As in [3], a cost function was used

with the non-iterative path coverage parameter for

the purpose of high-quality test data generation.

To determine the effect of the non-iterative path

coverage parameter, a triangle program was used

as the base example to show the automatic test

data generation.

Two empirical tests were carried out to evaluate

the proposed cost function. In the first one,

according to [3], 25 test vectors, each with five

test data and three elements (all integer numbers

between -32678 and 32677), were involved in the

test. The maximum path coverage of CFG

Babamir & Saadatjoo / Journal of AI and Data Mining, Vol 6, No 2, 2018.

380

depends on the number of test data in a test

vector.

In the second test, 90 test vectors, each with 18

test data and three elements, were selected. Since

the triangle program had 18 paths and the aim of

the article was to traverse the maximum paths of

CFG of a program, every test vector had 18 test

data. These two tests were carried out with the

cost function in [3], the cost function proposed in

the present work, and using GA in equal

situations. The results of averaging 30

independent tests are shown in table 2.

As shown in this table, using the non-iterative

path parameter in the proposed cost function, GA

can find all the paths with five test data. This is

while, by using the cost function [3], only three

paths are traversed. In addition, when the test data

increase, the proposed cost function is more

successful in finding more paths than the cost

function is in [3]. Using the proposed parameter in

the cost function prevents generating iterative test

data and leads to finding the data that traverses

new paths. This is in contrast to the cost function

of [3], where only ideal data are important, and

iterative or non-iterative data is not important.

Finding more paths leads to finding more errors in

the software. The aim of this work was to find an

ideal test data to traverse the CFG paths through

introducing a parameter as explained above.

Owing to its efficacy, the proposed cost function

was used to solve a search-based path-coverage

problem with ICA.

6. Using ICA in search-based testing
This section addresses the automatic test data

generation for path coverage in three software

programs with moderate and high degrees of

complexity. Figure 3 shows the pseudo-code of

generating the test vectors to cover the search

space of the software paths using ICA. According

to figure 3, after executing the proposed method,

countries will compete with each other to gain

ideal test data. After the power of each test vector

is calculated, ICA comes to be of use.

To test the software comprehensively, a test

vector including all the aspects is required. The

number of test data in a test vector is proportional

to the paths of the software under test.

6.1. Setting-up parameters of ICA

In this section, the parameters required for

running ICA are discussed.

6.1.1. Empire formation

As stated in Section 5, an Empire is a set of test

vectors. Empire formation means to generate a set

of test vectors in all the spaces of a CFG. In the

automatic test data generation of a software

program and after obtaining the space of the

software CFG and determining the structure of

each vector as a member of an Empire, we have to

determine the role of the test vectors as an empire

or a colony. Vectors with a higher cost function

are an Empire, and the other vectors (countries)

are selected as colonies.

Figure 3. Pseudo-code of generating test data using ICA.

Table 2. Evaluation of proposed cost function in Triangle program using GA.

Cost function
Test number

Test data number Traversed paths

Cost function introduced in [3]

First
5

3

Second
18

6

Proposed cost function

First
5

5

Second
18

14

 6.1.2. Assimilation policy

In order to achieve a powerful empire, an

imperialist tries to assimilate colonies using a

specific assimilation policy. To understand the

process, this policy has to be explained first.

According to the presented cost function, after

calculating the power of each empire and before

entering the competition, each imperialist tries to

assimilate more colonies. At each step of the

algorithm, the imperialist, quite randomly,

substitutes 10% of its arrayed elements, as part of

the test vector, with identical colony elements.

Through this method, the speed and power to

reach an optimal answer significantly increases.

1- Define Fitness

- Identify condition nodes

- Calculate edge coverage

probability

- Calculate closeness to

boundary
- Calculate branch coverage

- Calculate path coverage

- Calculate finesse value
2- Define IP according to paths

3- Tune ICA parameters

- Define test-data pattern

- Define assimilation policy

4- Generate test data

- Run program (p) for each

test data
- Calculate Empire's power

- Colony absorption

- Eliminate powerless
Empire

- Check stop conditions

Babamir & Saadatjoo / Journal of AI and Data Mining, Vol 6, No 2, 2018.

381

What follows is an example of replacing the first

element of an imperialist with that of its colony in

a triangle problem. In this example, the first epoch

of assimilation policy is illustrated. The first

element of the empire is replaced with the first

element of the colony. This replacement continues

to the last element. It means that after n epochs of

ICA, all the remaining colonies in the empire look

completely like the imperialists. The selected

assimilation policy for all the tested programs is

as (10):

1 2 3

1 2 3

1 4 2 5

2 3 4 1

1 3 4 1

...

..

:

...

:

...

..

.

.

n

n

Before assimilation

Imperialist C C C C

After assimilation

Colony

Country num num num num

Country num num num n

C C C C

Colony

m

C C C

u

C













(10)

6.1.3. Final conditions and answers

Like other evolutionary approaches, termination

conditions should be defined. In ICA, the goal is

to have a single empire as the final condition. In

this situation, the test data in the imperialist vector

is the final answer. The convergence condition

means that the algorithm repeats for a pre-

determined number of times, and the cost function

value does not change in any iteration; therefore,

ICA will end. If the algorithm is not terminated

after specific iterations, the Empire that has a

higher cost function than the others is the answer.

Before showing the efficiency of ICA in search-

based testing, it is necessary to introduce the set of

tested software and define the structure of the

tested vectors (i.e. countries) that are required for

traversing the paths.

6.2. Case studies

Four programs (Table 3) were used to evaluate the

effectiveness of the proposed method. Each

program was selected according to the complexity

of the condition structure and the search. Triangle

program, as one of the common software

programs of generating automatic test data,

proved to be proper with which to introduce the

proposed method. Two programs from the

Siemens database were selected to evaluate the

proposed method in big industrial spaces. In order

to automatically generate the test data for these

applications using the proposed method, the

structure of the test vector was initially identified

for each of these programs, and CFG was created

for each program. Then based on that, the

corresponding Evaluation matrix was created.

Finally, a brief description was provided for each

software program and for the structure of the test

vectors.

6.2.1. Triangle program
Triangle program is one of the common programs

that researches use a basic benchmark program.

The code of the triangle software used is in [3],

and its CFG is generated. This program has six

conditions and 12 algebraic expressions. If a test

vector is assumed to consist of four tests, i.e.

T={(1,2,5),(5,5,5),(5,4,5),(25,2,7)},the Evaluation

matrix will be:





















000001011001

011010101001

000110101010

000001101010

Eval

According to the evaluation matrix:

- The 1st
 test data will not evaluate the condition

related to lines 2, 3, and 4 but it can evaluate the

condition of line 5 that is in the scalene triangle

group.

- The 2nd
 test data will not evaluate the condition

related to lines 2, 3, 4, and 5 but it can evaluate

the condition of line 9 that is in the equilateral

triangle group.

- The 3rd test data will not evaluate the condition

related to lines 3, 4, 5, and 9 but it can evaluate

the condition of lines 2 and 12 that are in the

isosceles triangle group.

- The 4th
 test data will not evaluate the condition

related to line 3 but it can evaluate the condition

of lines 2, 4, and 5 that are in the non-triangle

group.

In ICA, each test vector is considered as a

country, and defined as (11).

11 12 13

21 22 23

1 2 3

{(, ,),

(, ,),...,

(, ,)}
K K K

Country num num num

num num num

num num num



(11)

Table 3. Properties of selected programs.

Program Task #paths Type of

complexity

Line of

Code

(LOC)

Triangle Determining

triangle type 18 moderate 30

Schedule
Scheduling

tokens by

users
173 high 410

Print-token
Get and print

a token out of
queue

158 high 563

Babamir & Saadatjoo / Journal of AI and Data Mining, Vol 6, No 2, 2018.

382

In this equation, each country has some test data

that are the inputs of the problem. In the triangle

software, each test data has three integers that are

the lengths of the triangle lines. According to the

triangle software paths, the maximum path that a

vector can traverse is 18. Thus = 18, where is

the number of test data used in the test vector.

6.2.2. Schedule program

This program can be taken from the Siemens

database as an industrial program with the aim of

scheduling the sent items in a network. Moreover,

the switch-case control condition makes this

software different from the other software

programs. The features of this software are

presented in table 3, and the program code is

available in [36]. CFG is designed for each

module of this software, and its paths are

extracted. The maximum number of the paths of

this software is 173 with respect to CFG of its

modules. A country (i.e. test vector) is defined as

in (12), where the number of elements in the test

data is 23, and the number of paths equals
 .

1,1 1,23

2,1 2,23

,1 ,23

{(,...,),

(,...,),...,

(,...,)}
K K

Country num num

num num

num num



 (12)

6.2.3. Print-token program

This program is extracted from the Siemens

database. CFG is made for this software, and its

paths are extracted. With respect to CFG of each

module, the maximum number of paths in this

software is 158. In this work, selection of this

software is due to its having more functions and

nested call nodes. For this software, a country (or

a test vector) is defined as (13). This software has

32 inputs, so the number of elements in each test

data is 32, and the paths are calculated as = 158.

1,1 1,32

2,1 2,32

,1 ,32

{(,...,),

(,...,),...,

(,...,)}
K K

Country num num

num num

num num



 (13)

6.3. Evaluating efficiency of ICA for path

coverage in search-based testing

To evaluate the efficiency of ICA over GA and

PSO Algorithm, the cost function proposed in

Section (5) and the parameter introduced in [10]

are used. The corresponding criteria are presented

in the following:

a. Convergence speed: this criterion is the number

of repetitions of algorithms to get a final condition

and find a final answer. In this paper, the final

answer is a test vector that has a higher cost

function.

b. Computational time: this criterion is the time of

executing an algorithm at specified intervals.

c. Local search: the maximum non-iterative path

in a search space is introduced using this criterion.

The different nature of the softwares introduced in

part (7) can be of use to investigate the ability of

the selected algorithms in meeting the above

criteria. For GA and PSO Algorithm, each gene

and particle is a country introduced in part (7).

The selected generations and the final conditions

are the same in the three evolutionary algorithms.

Table 4 shows the general settings of algorithms

for running each of the programs introduced in

table 3. To have a fair comparison between the

evolutionary algorithms, a standard

implementation should be ensured.

The parameters ICA, GA, and PSO are presented

in table 5 based on [10], [37], and [38],

respectively. Random initializations are selected

in generations. The proposed cost function is used

in the implementation of evolutionary algorithms

shown in table 6. This means that the results of

ICA are obtained using the proposed cost

function.

The average results of 30 sequential executions

for four programs are shown in table 6. In this

table, the second column shows the paths

traversed by the ideal test vector. The third

column shows the steps of executing the

algorithm to reach the final conditions.

The fourth column shows the execution time of

the algorithm to reach the optimal answer. Among

all the available paths in CFG, the fifth column

shows the traverse percentage of the algorithm.

The quality of the generated test data through the

cost function in each algorithm is shown in the

last column of the table. The following results are

obtained from table 6:

a. In problems with bigger search spaces, ICA is

repeated less than in the other two methods in the

search space of CFG.

b. Computational time of the PSO algorithm is

shorter than that of GA and ICA due to fewer

operators.

Table 4. General settings of algorithms.

Program Triangle Schedule Print-token

Test data length 3 23 32

Path number 18 173 158
Population 2000 5000 5000

Maximum repetition 200 500 500

Babamir & Saadatjoo / Journal of AI and Data Mining, Vol 6, No 2, 2018.

383

c. In bigger search spaces, the searching power of

ICA is more. The higher rate of path coverage in

big problems is a good proof.

d. Although cost function structures are similar, it

is obvious that the test data selected by ICA has a

higher quality than those selected by the other two

methods (i.e. when the cost function value is

higher, selection chances are better).

Table 5. Basic algorithm parameters.

Algorithms ICA GA PSO

Parameters
Coefficient

power

Imperialist

number
Revolution

rate
Mutation

Cross-

over
Probability Selection

method

Inertia

weight
Acceleration

Values 0.05
10% of total

countries
0.2 0.01

Two

Point
1 Binary

tournament
0.09 2

Table 6. Average results of simulation for 30 runs.

Algorithm Program
Local search

(No. of paths)

Convergence speed (No. of

algorithm operations)

Computational time

(minute)

 (runtime of algorithm)

Path coverage

percentage

Cost

function

value

Imperialist

Competitive Algorithm

Triangle 15.5 23.4 0.21 0.86 0.75

Schedule 148.3 132.6 30.55 0.85 0.85

Print-token 137.4 178.4 35.53 0.86 0.88

GA

Triangle 15.5 49.3 0.94 0.86 0.71

Schedule 101.4 177.88 140.13 0.58 0.63

Print-token 92.2 470.37 186.99 0.58 0.68

PSO Algorithm

Triangle 16.5 86.6 0.19 0.91 0.77

Schedule 61.1 66.2 4.93 0.35 0.41

Print -token 53.6 46.23 5.15 0.34 0.38

7. Conclusions and perspective for future

research works
In the present work, we applied ICA for the

optimal generation of the test data. In order to

enhance the optimization process in this regard,

the cost function algorithm was re-designed and a

new parameter, namely non-iterative path

coverage, was added to it. For automatic test data

generation by evolutionary algorithms, a new

cost function was proposed. This cost function

serves to compute the parameter of “non-iterative

path coverage”. In this situation, only the set of

test data that have traversed the non-iterative

paths of CFG are selected by this cost function.

To this end, an Evaluation matrix was used for

detecting these paths.

The cost function was used to detect the non-

iterative paths of three software programs in a

search-based testing problem. In this work, we

used ICA, for the first time, for the automatic test

data generation, which could have maximum path

coverage of CFG. Three criteria including local

search, computation time, and convergence speed

were involved in the evaluation of ICA, as

compared to GA and PSO algorithm.

The evaluation results showed that:

 As the search space for the problem

increased, ICA gained a higher

convergence speed.

 It was also found that a higher path

coverage speed in bigger problems

signified the ICA power in a local search.

 As another finding, a higher cost function

rate in ICA served as an indication of the

value of ideal data, as compared with the

other algorithms.

 Finally, the computing time in PSO

turned out to be shorter than that in the

other algorithms, which could be

Babamir & Saadatjoo / Journal of AI and Data Mining, Vol 6, No 2, 2018.

384

 attributed to the smaller number of

computational operators in the structure

of PSO.

To evaluate the capability of the proposed

method in detecting faults, mutation testing will

be used in our future research work.

Acknowledgment
The authors wish to thank University of Kashan

for supporting this research work with grant No.

577242.

References
[1] Aggarwal, K. & Singh, Y. (2007). Software

Engineering (3rd Ed.). New Age International

Publishers

[2] Peeze, M. & Young, M. (2007). Software Testing

and Analysis: Process, Principles and Techniques,

John Wiley, Sons

[3] Keyvanpour, M. R., Homayouni, H. & Shirazee,

H. (2011). Automatic Software Test Case Generation.

Software Engineering, vol. 5, pp. 91-101.

[4] Singh, H. (2004). Automatic generation of

software test cases using genetic algorithms. A thesis

in Thapar University Patiala may.

[5] Shimin, L. & Zhangang, W. (2011). Genetic

Algorithm and its Application in the path-oriented test

data automatic generation. Procedia Engineering, vol.

15, PP. 1186 – 1190.

[6] Atashpaz-Gargari, E. & Lucas, C. (2007).

Imperialist Competitive Algorithm: An Algorithm for

Optimization Inspired by Imperialistic Competition.

IEEE Congress on Evolutionary Computation,

Singapore, pp. 4661-4667.

[7] Lucas, C., Nasiri-Gheidari, Z. & Tootoonchian, F.

(2010). Application of an imperialist competitive

algorithm to the design of a linear induction motor.

Energy Conversion and Management, vol. 51, pp.

1407-141.

[8] Bahrami, H., Faez. K. & Abdechiri, M. (2010).

Imperialist competitive algorithm using chaos theory

for optimization. Computer Modelling and Simulation

(UKSim), 12
th

 International Conference on IEEE, pp.

98-103.

 [9] Wang, G., Zhang, J. B. & Chen, J. W. (2011). A

novel algorithm to solve the vehicle routing problem

with time windows: Imperialist competitive algorithm.

Advances in Information Sciences and Service

Sciences, vol. 3, no. 5, pp. 108-116.

[10] Hosseini, S., Al Khaled, A. (2014). A survey on

the Imperialist Competitive Algorithm metaheuristic:

Implementation in engineering domain and directions

for future research. Applied Soft Computing, vol. 24,

pp. 1078-1094.

[11] Roustaei, R. & Yousefi Fakhr, F. (2016). A

hybrid meta-heuristic algorithm based on imperialist

competition algorithm. Journal of AI & Data Mining,

In Press.

[12] Yousefikhoshbakht, M. & Sedighpour, M.

(2013). New Imperialist Competitive Algorithm to

solve the travelling salesman problem. Computer

Mathematics, vol. 90, pp. 1495-1505.

[13] Gharehchopogh, F. S. & Maroufi, A. (2014).

Approach of software cost estimation with hybrid of

imperialist competitive and artificial neural network

algorithms, Journal of Scientific Research and

Development, vol. 1, pp. 50-57.

[14] Pourali, A. & Sangar, A. B. (2015). A new

approach in software cost estimation with hybrid of

imperialist competitive algorithm and ant colony

algorithm. Academiea Royale Des Sciences D Outre-

Mer Bulletin Des Seances, vol. 4, pp. 106-113.

[15] Sadeghi, B., Khatibi, V., Esfandiari, M. &

Hosseinzadeh, F. (2015). A Novel ICA-based

Estimator for Software Cost Estimation, Advances in

Computer Engineering and Technology, vol. 1, pp.15-

24.

[16] Hutcheson, M. L. (2003). Software Testing

Fundamentals: Methods and Metrics. John Wiley,

Sons.

[17] Qingfeng, D. & Xiao, D. (2011). An improved

algorithm for basis path testing. Management and

Electronic Information (BMEI), International

Conference on, vol. 3, pp. 175-178.

 [18] Kennedy, J. & Eberhart, R. (1995). Particle

swarm optimization. Proceedings of IEEE

international conference on neural networks, vol. 4,

no. 2, pp. 1942-1948.

[19] Andalib, A. & Babamir, S. M. (2014). A New

Approach for Test Case Generation by Discrete

Particle Swarm Optimization Algorithm. 22nd Iranian

Conference on Electrical Engineering, pp. 1180–1185.

[20] Sivanandam, S. N & Deepa. S. N. (2008).

Genetic Algorithm Optimization Problems. Springer

Berlin Heidelberg.

[21] Papadakis, M. & Malevris, N. (2012). Mutation

based test case generation via a path selection strategy.

J.Information and Software Technology, vol. 54, pp.

915-932.

[22] Pachauri, A. & Srivastava, G. (2013). Automated

test data generation for branch testing using genetic

algorithm: An improved approach using branch

ordering, memory and elitism. Systems and Software,

vol. 86, pp. 1191-1208.

[23] Miller, J., Reformat, M. & Zhangm, H. (2006).

Automatic test data generation using genetic algorithm

and program dependence graphs. Information and

Software Technology, vol. 48, pp. 586-605.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6971894
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6971894
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6971894

Babamir & Saadatjoo / Journal of AI and Data Mining, Vol 6, No 2, 2018.

385

[24] Babamir, S. M. & Babamir, F. S. (2009). Test-

Data Generation for Program Path Coverage Using

Genetic Algorithm. 4
th

 annual International CSI

Computer Conference.

[25] Sthamer, H. (1995). The Automatic Generation of

Software Test data using genetic algorithms. Ph.D.

Thesis, University of Glamorgan, UK.

[26] Michael, C., McGraw, G. & Schatz, M. (2001).

Generating Software Test Data by Evolution. IEEE

Transactions. Software Engineering, vol. 27, pp. 1085-

1110.

[27] Ahmed, M. A. & hermadi, I. (2008). GA-based

multiple paths test data generator. Computers &

Operations Research, vol. 35, pp. 3107-3124.

[28] Bueno, P. M. S. & Jino, M. (2002). Automatic

test data generation for program paths using genetic

algorithms. Software Engineering. Knowledge

Engineering, vol. 12, pp. 691-709.

[29] Lin, J. C. & Yeh, P. L. (2001). Automatic test

data generation for path testing using GAs.

Information Sciences, pp. 47-64.

[30] Watkins, A. & Hufnagel, E. M. (2006).

Evolutionary test data generation: A comparison of

fitness functions. Software: Practice and Experience,

vol. 36, pp. 95-116.

[31] Gong, D., Zhang, W. & Zhang, Y. (2011).

Evolutionary generation of test data for multiple paths

coverage. Chinese Journal of Electronics, vol. 19,

pp. 233-237.

[32] Zhang, W., Gong, D., Yao, X. & Zhang, Y.

(2010). Evolutionary generation of test data for many

paths coverage. Control and Decision Conference

(CCDC), Chinese, pp. 230-235. IEEE.

[33] Harman, M. & McMinn, P. (2010). A Theoretical

and Empirical Study of Search-Based Testing: Local,

Global, and Hybrid Search. IEEE Transactions on

Software Engineering, vol. 36, pp. 226-247.

[34] Mansour, N. & Salame, M. (2004). Data

generation for path testing. Software Quality Control,

vol. 12, pp. 121–136.

[35] Suri, B. & Snehlata, B. (2011). Review of

Artificial Bee Colony Algorithm to Software Testing.

Research and Reviews in Computer Science

(IJRRCS), vol. 2, pp. 706-711.

[36] Rothermel, G., Elbaum, S., Kinneer, A & Do, H.

Software artifact infrastructure repository. Available:

http://www.cse.unl.edu/~galileo/sir.

[37] Boyabatli, O. & Sabuncuoglu, I. (2004).

Parameter selection in genetic algorithms. Systemics,

Cybernetics and Informatics, vol. 4, pp. 78.

[38] Rezaee, J. A. & Jasni, J. (2013). Parameter

selection in particle swarm optimization: a

survey. Experimental & Theoretical Artificial

Intelligence, pp. 527-542.

http://www.cse.unl.edu/~galileo/sir

 نشریه هوش مصنوعی و داده کاوی

 سازی تابع هزینه در الگوریتم رقابت استعماری برای مسئله پوشش مسیر آزمون نرم افزاربهینه

 *سید مرتضی بابامیر و محمدعلی سعادت جو

 .ایران، کاشان، دانشگاه کاشان، کامپیوتر گروه مهندسی

 22/12/2112 پذیرش؛ 11/10/2112 بازنگری؛ 22/11/2112 ارسال

 چکیده:

 جستجو در فضای مسیرهای اجرایییباشد. سازی آزمون مبتنی بر جستجو میگیرد بهینهمورد استفاده قرار میهایی که در آزمون نرم افزار یکی از روش

هیای آزمیون است. زیرا پوشش ایین فضیا نیازمنید ادیداد وزم و کیافی از داده افزارهای بزرگافزار برای یافتن خطا، یک چالش اساسی در نرمکد یک نرم

افزار را پوشش دهند، میورد های وزم و کافی فضای جستجوی حداکثری در کد نرمهایی که بتوانند به صوررت خودکار و با اولید دادهمناسب است. روش

-جهت اولید خودکار داده آزمونی که بتواند مسیرهای غیراکراری گراف کنتیرل جرییان نیرم در این مقاله یک اابع هزینه جدید. است استقبال واقع شده

آوری دیگیر مقالیه، افزار را بپیماید و با اابع هزینه مشابه در سایر مقاوت مقایسه شده است که نتایج بیانگر عملکرد بهتر اابع هزینه پیشنهادی است. نیو

هیای رقابیت اولید خودکار داده آزمون با اابع هزینه پیشنهادی است. اولید خودکار داده آزمیون اوسیا الگیوریتمبکاریری الگوریتم رقابت استدماری در

هیا از نریر مقیدار ایابع هزینیه، ام شده است. هر کدام از الگوریتممتفاوت انج فضای جستجویافزار با سازی ذرات و ژنتیک برای سه نرماستدماری، بهینه

 اند. نتایج این ارزیابی نشان دهنده براری الگوریتم پیشنهادی است.پوشش مسیر با یکدیگر مقایسه شده میزانادداد مراحل اجرا و

 افزار.گراف کنترل جریان، درجه پیچیدگی نرم ،قابت استدماری، اولید داده آزمونافزار، الگوریتم رآزمون نرم :کلمات کلیدی

