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Abstract 

The search-based optimization methods have been used for the software engineering activities such as 

software testing. In the field of software testing, search-based test data generation refers to the application of 

meta-heuristic optimization methods to generate the test data that cover the code space of a program. 

Automatic test data generation that can cover all the software paths is known as a major challenge. 

This paper establishes a new cost function for automatic test data generation, which can traverse the non-

iterative paths of the software control flow graphs (CFGs). This function is later compared with similar cost 

functions proposed in the other articles. The results obtained indicate the superior performance of the 

proposed function. Another innovation proposed in this paper is the application of the Imperialist 

Competitive Algorithm (ICA) in automatic test data generation along with the proposed cost function. 

Automatic test data generation is implemented through ICA as well as the genetic algorithm and particle 

swarm optimization algorithm for three software programs with different search space sizes. These 

algorithms are compared with each other in terms of the convergence speed, computational time, and local 

search. The test data generated by the proposed method achieved better results than the other algorithms in 

finding the number of non-iterative paths, convergence speed, and computational time with growing the 

searching space of the software CFG. 

 

Keywords: Software Testing, Imperialist Competitive Algorithm, Test Data Generation, Control Flow 

Graph, Program Complexity, Path Coverage. 

1. Introduction 

One of the most important tasks in the process of 

software quality assurance is software testing, 

which is too expensive. According to the 

literature, nearly one-third of the software errors 

can be avoided by relying on the software testing 

methods [1]. Different methods are used for 

software testing. Among others, search-based 

testing is an effective method for testing a 

program if it is possible to cover the execution 

space of the program. It refers to the use of a 

meta-heuristic optimizing search method to 

automate test case generation [2]. In the search-

based testing methods, a test dataset is provided as 

a vector of the required values to traverse different 

execution paths of a program so as to demonstrate 

the maximum software fault. A test dataset 

includes a vector with sufficient values to 

implement the corresponding software. A test data 

vector is ideal if 1) each of its elements is 

necessary (i.e. not redundant) and 2) its elements 

are sufficient (i.e. no other elements are required). 

These two conditions state that the vector should 

include the same number of elements as the 

program execution paths so that inputting each of 

its elements can lead to the execution of a 

different program path. If the fist condition is not 

met, the test will not be complete but if the second 

one is not met, unnecessary cost will be incurred.  

The execution paths of a program, known as the 

search space, are demonstrated by a Control Flow 

Graph (CFG). This is a graph that is built 

according to the program code. The more 

branches the graph has, the more complex search 

space it has. Such a complexity has a direct 
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relationship with program testability (see Section 

3). 

In this article, a new cost function is introduced. 

This cost function is composed of the cost 

function introduced in [3] and the recommended 

parameter. The value of the cost function in the 

recommended method is obtained by the 

maximum path coverage, not by choosing the 

repeated paths of the Control Flow Graph (CFG). 

To evaluate the new function, the problem of 

search-based testing in [3] is solved by the 

recommended cost function. The results obtained 

show that the traverse of non-iterative paths is 

more than the one in [3].  

Choosing the test data from a software search 

space is very complex. To overcome this problem, 

the automatic test data generation techniques can 

be of help using complete algorithms [4 and 5].  

One of the recent evolutionary algorithms that has 

drawn the attention of researchers in search-based 

issues is the Imperialist Competitive Algorithm 

(ICA) [6]. This algorithm has led to better results 

in different applications in comparison with the 

Genetic Algorithm (GA) and the Particle Swarm 

Optimization (PSO) algorithm [7-9]. In [10], these 

three are compared with one another according to 

the local search parameters, convergence speed, 

and computational time. The results obtained 

showed that ICA is more efficient than the other 

algorithms. In [11], a hybrid meta-heuristic 

algorithm based on imperialist competition 

algorithm is introduced. Their method showed 

that ICA method has better results in finding 

global optimum and search speed.  In [12], it was 

tried to solve a discrete Traveling Salesman 

problem using ICA. The results showed the high 

capability of this algorithm in solving discrete 

problems. Since the problem of automatic 

software test data generation by CFG is of a 

discrete nature and due to the priorities of ICA in 

[10], ICA was used in the present work. The aim 

of this work was to show the efficiency of ICA as 

an approach recommended versus GA and PSO 

algorithm in solving the problem of maximum 

path coverage of search-based testing.  

Although ICA has been applied for software cost 

estimation aimed at software project management 

[13-15], it has not yet been used for the automatic 

test data generation software.  

Using ICA, we generated the test data that 

covered more program paths than GA and PSO 

algorithm, and the generated data was closer to 

ideal. This work is the first attempt to use ICA 

through the recommended cost function so as to 

generate the automatic test data whose efficiency 

is determined against other related approaches 

such as GA and PSO algorithm. According to this 

experience, the efficiency and capability of the 

approach was determined based upon its nearness 

to the ideal data, local research, convergence 

speed, and computational time. In this work, the 

recommended algorithm was used to generate the 

test data for four programs with low, medium, and 

high degrees of complexity, and the results 

obtained were evaluated to determine the 

efficiency of the algorithm.  

This paper is organized as what follows. The 

program CFG is introduced in Section 2. Section 

3 deals with the related works. Section 4 

addresses ICA (i.e. the proposed algorithm) for 

the automatic test data generation. The proposed 

cost function and its evaluation are discussed in 

Section 5. The use of ICA in software search-

based testing is explained in Section 6. Section 7 

draws conclusions and proposes directions for 

future research works. 

2. Control flow graph (CFG) 

A CFG is a graph in which each node contains 

one or more successive program statements. It has 

a start and an end node, and its edges denote the 

control flow between the program statements. In 

this graph, the branch points indicate conditional 

statements [16]. A path starts from a start node 

and ends with an end node. Figure 2 shows CFG 

for the program in figure 1 (the number of nodes 

in figure 2 indicates the number of statements in 

figure 1. 

 

 

 

 

 

Figure 1. CFG of MAX program. 

This graph has six nodes, each of which includes 

one or more program statements in figure 2, and 

seven edges each of which denotes the control 

between the statements. The basic paths are as 

what follow. The rest of the paths are constructed 

out of the basic paths, which are three. It should 

be noted that path 1 will not be evaluated by any 

test data. Paths such as this are called the 

infeasible software paths. 

a) 1- 2- 3 

b) 1-2-4-5-6-2-3 

c) 1-2-4-6-4-3 

Generation of an adequate test data for maximum 

CFG path coverage is our main concern in this 
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paper. As the CFG branches increase, the CFG 

structure becomes more complicated for searching 

because the number of paths increases too, and 

thus finding adequate test data that can traverse all 

the paths becomes difficult. In fact, the number of 

elements in the search space of source code paths 

is determined by the number of conditions. This is 

called program complexity or the McCabe number 

[17]. 

In order to automatically generate the test data, 

the search space for the program must be 

specified. This space, which shows the structure 

of the program, is obtained from CFG. The search 

in this space is carried out in the following three 

ways: 1) Searching the space for graph nodes in 

which each node represents an instruction for the 

program 2) Searching the space for graph edges in 

which each edge represents a branch in the 

program 3) Searching the graph paths in which 

each path is a set of nodes and edges and entails 

the beginning to the end of the graph. The test 

data selected as the answers are only those that are 

able to successfully traverse the maximum part of 

the search space or the paths of the program CFG. 
 

 

 

 

 

 

 

 

 

 
Figure 2. MAX program. 

For a software in which the whole program is run 

in one module, a CFG can be easily depicted so as 

to determine the number of software paths. 

However, in a software whose running process 

includes several intricate modules, depiction of 

CFG of the whole software is not an easy task. In 

such structures, first, a CFG is created for each 

module separately, and the number of paths is 

determined. Next, based upon the number of paths 

in each module, the paths in the whole software 

are estimated. This method was used in the 

present study to approximate the number of paths. 

3. Related works  

About 59% of the literature on software 

engineering is about software testing [2]. The 

main idea to use methods of evolutionary 

algorithms for search-based testing is to generate 

a set of test data that are partly ideal.  

 

3.1. Application of PSO 

The PSO algorithm was first introduced in [18] 

and inspired by a swarm of birds looking for food. 

In [19], the authors have tried to generate the test 

data for a program that merges two arrays using 

PSO. To do so, they generated six methods for 

traversing paths. However, their experience was 

of use for simple problems with low complexity, 

and no evaluation was provided for programs with 

medium and high degrees of complexity. In this 

paper, the studied issues were not so complex, and 

the results obtained were not compared with other 

approaches. However, the efficiency of the 

recommended approach was compared with that 

of the PSO algorithm approach. 

3.2. Application of GA 

GA can be applied to resolve the optimization 

issues [20]. The algorithm is also applied to 

software automatic test data generation for the 

purpose of path coverage. In generating the test 

data using this algorithm, a chromosome plays the 

role of the input vector of the test data, each of 

which functions as a gene.  

In [21-24] have proposed principles and rules for 

using this algorithm to automatically generate the 

test data. They generated the test data according to 

the proposed algorithm for a couple of programs. 

This algorithm has been used in [22] to generate 

the test data based on a dynamic method. The 

proposed method was compared with GA for 

program branch coverage as the search space. 

Finding the ideal test data that is able to cover 

more space is one of the properties of this 

dynamic method.  

Keyvanpour and Homayouni [3] have tried to use 

a combination of evolutionary and local search 

methods to generate the test data. Using the 

Memetic algorithm and a local search method 

called „hill climbing‟, at each stage of test data 

generation, they tried to reduce the time spent for 

finding the suitable tests. The cost function that 

they used was a combination of three parameters 

including neighborhood, closeness to the border, 

and branch coverage. At each stage of their 

proposed algorithm, the generated data was 

inputted to a neural network for evaluation. They 

applied their method to a triangle program, and 

using the local search algorithm, they were able to 

reduce the number of algorithm iterations to an 

acceptable level, which made the convergence 

faster. However, this method was not 

implemented to solve problems with medium and 

high degrees of complexity. 

Many researchers have used GA to generate the 

test data for different types of coverage including 

1. void MAX (int x[],int n) { 

2. int max,i=1; 
3. max=x[0]; 

4. ` while(i<n){ 

5. if(x[i]>max) 
6.      max=x[i]; 

7. i++; 

8.        } 
#9.   cout<<max; 

#10.   } 
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branch coverage [22], condition-decision 

coverage [23], path coverage [24-26], and 

multiple-path coverage [27-29]. 

As for the present article, its focus has only been 

placed on path space coverage. In each of the 

above-mentioned evolutionary methods, a 

program with low complexity is initially 

introduced for generating the test data. In the 

second step, the evolutionary algorithm 

parameters are set according to the desired 

program. In the third step, the test data that can 

cover the search spaces of condition, path, branch, 

and instructions are generated. 

Ahmed and Hermadi [27] have investigated their 

test data generation method to cover the path 

space in a program of low complexity. Their 

desired criterion was the amount of the generated 

data for traversing one path and then traversing all 

the paths of the program. Their proposed method 

failed to generate the least test data with the 

ability to traverse the most possible paths. 

Using GA, Li and Yeh [29] have generated the 

test data to cover the path space through relational 

algebra. They examined the CFG paths when 

coverage of only one path was desired. However, 

they did not discuss the effectiveness of this 

method when it was aimed at traversing all the 

paths. In their method, the focus of each stage of 

implementing the proposed algorithm was only on 

traversing one path, and this prevented the 

generalization of their method to solve the whole 

problem space. Another drawback of this method 

is that they used a criterion for comparing the time 

regardless of the fitness value showing the extent 

of path coverage. 

Zhang and Gong [31 and 32] have compared the 

speed of implementing their proposed algorithm 

in generating the test data on two programs (array 

search and bubble sort) with low complexity. In 

the current work, this parameter was used to 

display and evaluate the implementation speed of 

the proposed method together with the quality of 

the generated test data (which is dependent upon a 

fitness function). 

Harman and McMinn [33] have evaluated some 

(local and general) search methods in program 

tests, and concluded that a method that combines 

the local and general search can greatly contribute 

to the optimal generation of the test data, which 

can properly cover the search space. Their 

evaluation was based upon the complexity of 

sample programs, all of which were simple or 

with low complexity. It was not determined in 

their work whether their method could account for 

the time when the problem space expands. 

Mansour and Salame [34] have used GA for 

automatic generation of the test data in problems 

that work with accurate and real data. Their 

method was limited to certain data types, and no 

comparison was made for the amount of path 

coverage. However, the test data type had no 

effect on our proposed method since it was 

determined with respect to the desired problem. 

In addition to GA and PSO algorithm, the 

Artificial Bee Colony (ABC) algorithm is a 

search-based method used for automatic 

generation of the test data in order to cover the 

path space [35]. However, its effectiveness has 

not been proved for path coverage of programs 

with high complexity and large search space. 

4. Imperialist competitive algorithm (ICA) 

In ICA, countries are introduced as problem 

results (i.e. test data). The characteristics of each 

country are the desired test data to cover the 

search space. In this algorithm, in terms of ideal 

test data selection, powerful countries are opted 

through a cost function as used in this algorithm. 

Some countries are selected as imperialists and 

some others as colonies. Like many other 

evolutionary algorithms, at the beginning of the 

algorithm implementation, countries (test data) are 

randomly selected in the whole problem space. 

Based upon the power of each country, some are 

randomly selected as imperialists (i.e. test data 

that traverses new and more paths compared with 

the other data in the search space) and some 

others as colonies. The imperialists and colonies 

are selected independently. An imperialist and its 

colonies are called an empire. Imperialist 

competition means the attempt of an imperialist to 

attract maximum colonies from other empires.  

There are two conditions for this algorithm 

including 1) the algorithm continues based on the 

described cases until one or more empires remain 

with regard to the problem (2) the algorithm runs 

to a certain number of rounds. One may shortly 

refer to these two as the final condition and 

convergence. In the case of automatic generation 

of the test data in this work, each empire will be 

considered as a test data vector. Each vector 

represents the test data that traverse at least one 

new path. The ultimate solution will be the most 

powerful imperialist, indicating the best set of test 

data vectors that traverse a maximal number of 

program paths. 

The first step in forming an empire is to establish 

countries that are randomly placed throughout the 

space. The structures of the countries vary 

according to the software under test. In general, a 
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problem with a test vector having n elements is 

shown as (1): 

, ,...,0 1Country num num numn       (1) 
 

Another parameter that plays a crucial role in 

attracting the countries and developing an empire 

is the power of each imperialist within the empire 

or simply the power of each empire. Using the 

power of an empire, it can be specified which 

country is shared at the time of competition. To 

calculate the power of each empire, as mentioned 

in [3], the ultimate power of that empire is taken 

into account. 

The following section outlines the proposed cost 

function and its application in ICA for automatic 

test data generation. 

5. Proposed cost function  

The first challenge in solving problems by 

evolutionary algorithms is to design a proper cost 

function. This aims at generating a minimum test 

data to traverse maximum paths of a software 

CFG. Thus a proper cost function should be 

designed. 

The recommended cost function in this paper is 

composed of the cost function introduced in [3] 

and a new parameter. For a better understanding 

of the recommended cost function, all parameters 

will be discussed. 

5. 1. Path traverse probability 

A test vector consists of some test data, each of 

which traverses a path of the graph. The 

possibility of traversing this path by test data ti 

from vector T is: 






k

j

ij

i

tpathinconditionsallforP

tPathL

1

))((

))((

 

 

  (2) 

 

In (2), k is equal to the conditions in which test 

data ti is traversed through its path.  

Generally, by taking the following steps, it is 

possible to obtain the probable parameter of 

traversing a path by a test vector. 

 Obtaining a path that traverses the test vector.  

 Using CFG of the software to determine the 

set of conditions that the test data traverse 

through and writing an algebraic expression 

among its conditions. 

 Normalizing the algebraic equation by 

moving one side of this equation to the other 

side, for example, changing a < b to a-b < 0. 

 Calculating the probability of generating a 

normal algebra.   

 Calculating the probable parameter of the path 

by the data of a T test vector, as follows: 

          1 2
P T =1- 1-L Path t * 1-L Path t *...    (3) 

                                   

L(P(t1)) is the probability of selecting a path that 

is traversed by the test data ti. If each path has 

more than one condition, the probability of the 

test data not to select that path is equal to 1-

L(P(t1)). In addition, a test vector is composed of a 

combination of several test data. Thus this amount 

is calculated for each test data of one test vector.  

5.2. Closeness to boundary values 

Experience has shown that test cases close to 

boundary values are more likely to find program 

error 4 [4]. The closeness to the boundary is 

shown by N (T).  

Close to the boundary values for a test vector T. 

This parameter for a test vector is calculated by 

Eq. 4: 
( ) ( ) ( ) ...1 2N T N t N t      (4) 

 

where,    is the     test data of test vector  , and 

      is close to the boundary value for    that is 

calculated as follows:  

 Obtaining a path that traverses the test vector. 

 Using CFG of the software to determine the 

set of conditions that the test data traverse 

through and writing an algebraic expression 

among its conditions. 

 In each algebraic expression, all comparison 

operations {<, >, ≤, ≥, =} change to {=}. 

 Moving the right side of each algebraic 

expression to the left side to find the boundary 

value of that expression. 

  Calculating the parameter of closeness to the 

boundary values for each input test data, as 

follows: 

)__/()(1)( SizeValueMaxttN ii     (5) 
 

where,    is the test data input, and 

SizeValueMax __ is the domain of the test data. The 

closeness to the boundary values is calculated for 

each existing data on the test vector, and then each 

value is multiplied by the others to obtain the 

probability of closeness to the boundary borders 

of the test vector. 

5.3. Edge coverage  

Edge coverage means the percentage of edges in 

CFG covered by the test data vector. Edge 

coverage is computed using (6), where e is the 

number of edges traversed by the test vector T, 

and E is the total number of CFG edges: 

  EeTD /  (6) 
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The aim of this paper was to generate an ideal test 

data that could cover the maximum paths of a 

graph. To gain this goal, the parameter of non-

iterative path coverage was selected. 

5.4. Non-iterative path coverage 

To compute the number of paths traversed by a 

test vector, it is required to determine whether the 

traversed paths are non-iterative since the test data 

that do not generate a new path are practically 

useless. For this purpose, we introduced the 

concept of Evaluator, and, using this, we 

generated vectors that created non-iterative paths. 

5.4.1. Evaluator  
Obtaining the non-iterative traversed paths in 

CFG by a test data vector was an important part of 

the present study. An evaluation matrix is used to 

determine the non-iteratively traversed paths by 

the test data. Assume that the conditions of a CFG 

areC p . Therefore, there are 2Cp
 

corresponding 

algebraic expressions (one corresponding 

algebraic expression based upon a true condition 

and one corresponding algebraic expression based 

upon a false condition). Each Evaluator is an array 

of paths at the length of 2Cp in which each 

element is a corresponding algebra expression. 

For every test data, there is an Evaluator. From 

the beginning, this array is initialized with a zero, 

i.e. the test data does not traverse any path. When 

an edge is traversed by the test data, an algebraic 

expression is selected from 2Cp of them, whose 

corresponding value in the Evaluation array has 

the value of 1.  

After running the program by a test vector, all the 

Evaluators are calculated based on decimals. If the 

decimal numbers generated by the Evaluators are 

unique, non-iterative paths will be traversed. In 

other words, iteration of each number indicates 

the traverse of an iterative path. Thus the 

Evaluator obtained is unique in every path of 

CFG. 

If the number of existing test data is equal to that 

of vectorV p , then we will have the matrix 

pp CVEval 2
 in which every row is an array 

corresponding to the test data. 

In graphs with loops, it is possible to make the 

following equation after generating an Evaluation 

matrix: 
[ ] [ ] [ ]Eval k Eval i Eval j   (7) 

 

where, [ ]Eval i is the
t hi row of the Evaluation 

matrix. Here, the 
t hk  row of the Evaluation 

matrix is obtained from the OR logical actions 

between the 
t hi  and t hj  rows of the matrix. It 

should be noted that the test data that generate 

these Evaluators can traverse a given path more 

than one time.  

The number of lines in the Evaluator obtained 

from other lines through the Union logical 

operation is displayed by Evalcnt _ . This variable 

indicates the number of non-iterative paths 

traversed by the test data. The non-iterative path 

coverage parameter is computed by Evalcnt _ , 

here referred to as )(TW  (Equation 8). The 

parameter is presented in this paper for the first 

time:   

pN

Evalcnt
TW

_
)(   

  (8) 

 

where, pN  represents the number of total 

estimated paths in the graph.  

Simply, the computational steps of )(TW  are as 

follow: 

 Using CFG to determine the set of conditions 

that the test data can traverse.  

 Generating the 
pp CVEval 2

Evaluation matrix 

in whichV p  is the number of test data of a test 

vector, and C p  is the number of conditions in 

CFG.  

 Setting the Evaluation matrix according to the 

input test vector. 

 Calculating the decimal number of each row. 

 Determining the number of non-iterative paths 

using cnt_Eval. 

According to the above criteria, the proposed cost 

function is: 
4/))()()()(()( TWTDTNTPTF     (9) 

5.5. Evaluating proposed cost function 

To generate a test data with high quality, the three 

parameters path traverse probability, closeness to 

boundary values, and edge coverage were linearly 

integrated. As in [3], a cost function was used 

with the non-iterative path coverage parameter for 

the purpose of high-quality test data generation. 

To determine the effect of the non-iterative path 

coverage parameter, a triangle program was used 

as the base example to show the automatic test 

data generation.  

Two empirical tests were carried out to evaluate 

the proposed cost function. In the first one, 

according to [3], 25 test vectors, each with five 

test data and three elements (all integer numbers 

between -32678 and 32677), were involved in the 

test. The maximum path coverage of CFG 
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depends on the number of test data in a test 

vector.  

In the second test, 90 test vectors, each with 18 

test data and three elements, were selected. Since 

the triangle program had 18 paths and the aim of 

the article was to traverse the maximum paths of 

CFG of a program, every test vector had 18 test 

data. These two tests were carried out with the 

cost function in [3], the cost function proposed in 

the present work, and using GA in equal 

situations. The results of averaging 30 

independent tests are shown in table 2. 

As shown in this table, using the non-iterative 

path parameter in the proposed cost function, GA 

can find all the paths with five test data. This is 

while, by using the cost function [3], only three 

paths are traversed. In addition, when the test data 

increase, the proposed cost function is more 

successful in finding more paths than the cost 

function is in [3]. Using the proposed parameter in 

the cost function prevents generating iterative test 

data and leads to finding the data that traverses 

new paths. This is in contrast to the cost function 

of [3], where only ideal data are important, and 

iterative or non-iterative data is not important. 

Finding more paths leads to finding more errors in 

the software. The aim of this work was to find an 

ideal test data to traverse the CFG paths through 

introducing a parameter as explained above.  

Owing to its efficacy, the proposed cost function 

was used to solve a search-based path-coverage 

problem with ICA.  

6. Using ICA in search-based testing 
This section addresses the automatic test data 

generation for path coverage in three software 

programs with moderate and high degrees of 

complexity. Figure 3 shows the pseudo-code of 

generating the test vectors to cover the search 

space of the software paths using ICA. According 

to figure 3, after executing the proposed method, 

countries will compete with each other to gain 

ideal test data. After the power of each test vector 

is calculated, ICA comes to be of use. 

To test the software comprehensively, a test 

vector including all the aspects is required. The 

number of test data in a test vector is proportional 

to the paths of the software under test.  

6.1. Setting-up parameters of ICA 

In this section, the parameters required for 

running ICA are discussed.  

6.1.1. Empire formation 

As stated in Section 5, an Empire is a set of test 

vectors. Empire formation means to generate a set 

of test vectors in all the spaces of a CFG. In the 

automatic test data generation of a software 

program and after obtaining the space of the 

software CFG and determining the structure of 

each vector as a member of an Empire, we have to 

determine the role of the test vectors as an empire 

or a colony. Vectors with a higher cost function 

are an Empire, and the other vectors (countries) 

are selected as colonies.  

Figure 3. Pseudo-code of generating test data using ICA.

Table 2. Evaluation of proposed cost function in Triangle program using GA. 

Cost function 
Test number 

Test data number Traversed paths 

Cost function introduced in [3] 

First 
5 

3 

Second 
18 

6 

Proposed cost function 

First 
5 

5 

Second 
18 

14 

 6.1.2. Assimilation policy  

In order to achieve a powerful empire, an 

imperialist tries to assimilate colonies using a 

specific assimilation policy. To understand the 

process, this policy has to be explained first. 

According to the presented cost function, after 

calculating the power of each empire and before  

 

entering the competition, each imperialist tries to 

assimilate more colonies. At each step of the 

algorithm, the imperialist, quite randomly, 

substitutes 10% of its arrayed elements, as part of 

the test vector, with identical colony elements. 

Through this method, the speed and power to 

reach an optimal answer significantly increases.  

1- Define Fitness 

- Identify condition nodes 

- Calculate edge coverage 

probability 

- Calculate closeness to 

boundary 
- Calculate branch coverage 

- Calculate path coverage 

- Calculate finesse value  
2- Define IP according to paths   

 

3- Tune ICA parameters 

- Define test-data pattern  

- Define assimilation policy  

4- Generate test data 

- Run program (p) for each 

test data 
- Calculate Empire's power 

- Colony absorption  

- Eliminate powerless 
Empire 

- Check stop conditions 



Babamir & Saadatjoo / Journal of AI and Data Mining, Vol 6, No 2, 2018. 
 

381 

 

What follows is an example of replacing the first 

element of an imperialist with that of its colony in 

a triangle problem. In this example, the first epoch 

of assimilation policy is illustrated. The first 

element of the empire is replaced with the first 

element of the colony. This replacement continues 

to the last element. It means that after n epochs of 

ICA, all the remaining colonies in the empire look 

completely like the imperialists. The selected 

assimilation policy for all the tested programs is 

as (10): 

1 2 3

1 2 3

1 4 2 5

2 3 4 1

1 3 4 1

...

..

:

...

:

...

..

.

.

n

n

Before assimilation

Imperialist C C C C

After assimilation

Colony

Country num num num num

Country num num num n

C C C C

Colony

m

C C C

u

C












 

 

 

 

 

 

 

(10) 

6.1.3. Final conditions and answers 

Like other evolutionary approaches, termination 

conditions should be defined. In ICA, the goal is 

to have a single empire as the final condition. In 

this situation, the test data in the imperialist vector 

is the final answer. The convergence condition 

means that the algorithm repeats for a pre-

determined number of times, and the cost function 

value does not change in any iteration; therefore, 

ICA will end. If the algorithm is not terminated 

after specific iterations, the Empire that has a 

higher cost function than the others is the answer. 

Before showing the efficiency of ICA in search-

based testing, it is necessary to introduce the set of 

tested software and define the structure of the 

tested vectors (i.e. countries) that are required for 

traversing the paths.  

6.2. Case studies 

Four programs (Table 3) were used to evaluate the 

effectiveness of the proposed method. Each 

program was selected according to the complexity 

of the condition structure and the search. Triangle 

program, as one of the common software 

programs of generating automatic test data, 

proved to be proper with which to introduce the 

proposed method. Two programs from the 

Siemens database were selected to evaluate the 

proposed method in big industrial spaces. In order 

to automatically generate the test data for these 

applications using the proposed method, the 

structure of the test vector was initially identified 

for each of these programs, and CFG was created 

for each program. Then based on that, the 

corresponding Evaluation matrix was created. 

Finally, a brief description was provided for each 

software program and for the structure of the test 

vectors. 

6.2.1. Triangle program  
Triangle program is one of the common programs 

that researches use a basic benchmark program. 

 

The code of the triangle software used is in [3], 

and its CFG is generated. This program has six 

conditions and 12 algebraic expressions. If a test 

vector is assumed to consist of four tests, i.e. 

T={(1,2,5),(5,5,5),(5,4,5),(25,2,7)},the Evaluation 

matrix will be: 

 





















000001011001

011010101001

000110101010

000001101010

Eval
  

 

According to the evaluation matrix: 

- The 1st
 test data will not evaluate the condition 

related to lines 2, 3, and 4 but it can evaluate the 

condition of line 5 that is in the scalene triangle 

group. 

- The 2nd
 test data will not evaluate the condition 

related to lines 2, 3, 4, and 5 but it can evaluate 

the condition of line 9 that is in the equilateral 

triangle group. 

- The 3rd  test data will not evaluate the condition 

related to lines 3, 4, 5, and 9 but it can evaluate 

the condition of lines 2 and 12 that are in the 

isosceles triangle group. 

- The 4th
 test data will not evaluate the condition 

related to line 3 but it can evaluate the condition 

of lines 2, 4, and 5 that are in the non-triangle 

group.  

In ICA, each test vector is considered as a 

country, and defined as (11). 

11 12 13

21 22 23

1 2 3

{( , , ),

( , , ),...,

( , , )}
K K K

Country num num num

num num num

num num num


 

 

 

     

(11) 

Table 3. Properties of selected programs. 

Program Task  #paths Type of 

complexity 

Line of 

Code 

(LOC) 

Triangle Determining 

triangle type 18 moderate 30 

Schedule 
Scheduling 

tokens by 

users 
173 high 410 

Print-token 
Get and print 

a token out of 
queue 

158 high 563 
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In this equation, each country has some test data 

that are the inputs of the problem. In the triangle 

software, each test data has three integers that are 

the lengths of the triangle lines. According to the 

triangle software paths, the maximum path that a 

vector can traverse is 18. Thus   = 18, where   is 

the number of test data used in the test vector.  

6.2.2. Schedule program 

This program can be taken from the Siemens 

database as an industrial program with the aim of 

scheduling the sent items in a network. Moreover, 

the switch-case control condition makes this 

software different from the other software 

programs. The features of this software are 

presented in table 3, and the program code is 

available in [36]. CFG is designed for each 

module of this software, and its paths are 

extracted. The maximum number of the paths of 

this software is 173 with respect to CFG of its 

modules. A country (i.e. test vector) is defined as 

in (12), where the number of elements in the test 

data is 23, and the number of paths equals   
   .  

1,1 1,23

2,1 2,23

,1 ,23

{( ,..., ),

( ,..., ),...,

( ,..., )}
K K

Country num num

num num

num num


 

 

 

  (12) 

6.2.3. Print-token program 

This program is extracted from the Siemens 

database. CFG is made for this software, and its 

paths are extracted. With respect to CFG of each 

module, the maximum number of paths in this 

software is 158. In this work, selection of this 

software is due to its having more functions and 

nested call nodes. For this software, a country (or 

a test vector) is defined as (13). This software has 

32 inputs, so the number of elements in each test 

data is 32, and the paths are calculated as   = 158.  

1,1 1,32

2,1 2,32

,1 ,32

{( ,..., ),

( ,..., ),...,

( ,..., )}
K K

Country num num

num num

num num


 

 

 

  (13) 

6.3. Evaluating efficiency of ICA for path 

coverage in search-based testing 

To evaluate the efficiency of ICA over GA and 

PSO Algorithm, the cost function proposed in 

Section (5) and the parameter introduced in [10] 

are used. The corresponding criteria are presented 

in the following: 

a. Convergence speed: this criterion is the number 

of repetitions of algorithms to get a final condition 

and find a final answer. In this paper, the final 

answer is a test vector that has a higher cost 

function.  

b. Computational time: this criterion is the time of 

executing an algorithm at specified intervals. 

c. Local search: the maximum non-iterative path 

in a search space is introduced using this criterion. 

The different nature of the softwares introduced in 

part (7) can be of use to investigate the ability of 

the selected algorithms in meeting the above 

criteria. For GA and PSO Algorithm, each gene 

and particle is a country introduced in part (7). 

The selected generations and the final conditions 

are the same in the three evolutionary algorithms. 

Table 4 shows the general settings of algorithms 

for running each of the programs introduced in 

table 3. To have a fair comparison between the 

evolutionary algorithms, a standard 

implementation should be ensured. 

 

 

The parameters ICA, GA, and PSO are presented 

in table 5 based on [10], [37], and [38], 

respectively. Random initializations are selected 

in generations. The proposed cost function is used 

in the implementation of evolutionary algorithms 

shown in table 6. This means that the results of 

ICA are obtained using the proposed cost 

function. 

The average results of 30 sequential executions 

for four programs are shown in table 6. In this 

table, the second column shows the paths 

traversed by the ideal test vector. The third 

column shows the steps of executing the 

algorithm to reach the final conditions. 

The fourth column shows the execution time of 

the algorithm to reach the optimal answer. Among 

all the available paths in CFG, the fifth column 

shows the traverse percentage of the algorithm. 

The quality of the generated test data through the 

cost function in each algorithm is shown in the 

last column of the table. The following results are 

obtained from table 6: 

a. In problems with bigger search spaces, ICA is 

repeated less than in the other two methods in the 

search space of CFG. 

b. Computational time of the PSO algorithm is 

shorter than that of GA and ICA due to fewer 

operators. 

Table 4.  General settings of algorithms. 

Program Triangle Schedule Print-token 

Test data length 3 23 32 

Path number 18 173 158 
Population  2000 5000 5000 

Maximum repetition 200 500 500 
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c. In bigger search spaces, the searching power of 

ICA is more. The higher rate of path coverage in 

big problems is a good proof.   

d. Although cost function structures are similar, it 

is obvious that the test data selected by ICA has a 

higher quality than those selected by the other two 

methods (i.e. when the cost function value is 

higher, selection chances are better). 

 

Table 5. Basic algorithm parameters. 

Algorithms ICA GA PSO 

Parameters 
Coefficient 

power 

Imperialist 

number 
Revolution 

rate 
Mutation 

Cross-

over 
Probability Selection 

method 

Inertia 

weight 
Acceleration 

Values 0.05 
10% of total 

countries 
0.2 0.01 

Two 

Point 
1 Binary 

tournament 
0.09 2 

  

Table 6. Average results of simulation for 30 runs. 

Algorithm Program 
Local search 

(No. of paths) 

Convergence speed (No. of 

algorithm operations) 

Computational time 

(minute) 

 (runtime of algorithm) 

Path coverage 

percentage 

Cost 

function 

value 

Imperialist  

Competitive Algorithm 

Triangle 15.5 23.4 0.21 0.86 0.75 

Schedule 148.3 132.6 30.55 0.85 0.85 

Print-token 137.4 178.4 35.53 0.86 0.88 

GA 

Triangle 15.5 49.3 0.94 0.86 0.71 

Schedule 101.4 177.88 140.13 0.58 0.63 

Print-token 92.2 470.37 186.99 0.58 0.68 

PSO Algorithm 

Triangle 16.5 86.6 0.19 0.91 0.77 

Schedule 61.1 66.2 4.93 0.35 0.41 

Print -token 53.6 46.23 5.15 0.34 0.38 

7. Conclusions and perspective for future 

research works 
In the present work, we applied ICA for the 

optimal generation of the test data. In order to 

enhance the optimization process in this regard, 

the cost function algorithm was re-designed and a 

new parameter, namely non-iterative path 

coverage, was added to it. For automatic test data 

generation by evolutionary algorithms, a new 

cost function was proposed. This cost function 

serves to compute the parameter of “non-iterative 

path coverage”. In this situation, only the set of 

test data that have traversed the non-iterative 

paths of CFG are selected by this cost function. 

To this end, an Evaluation matrix was used for 

detecting these paths.  

The cost function was used to detect the non-

iterative paths of three software programs in a 

search-based testing problem. In this work, we 

used ICA, for the first time, for the automatic test  

 
 

data generation, which could have maximum path 

coverage of CFG. Three criteria including local 

search, computation time, and convergence speed 

were involved in the evaluation of ICA, as 

compared to GA and PSO algorithm.  

The evaluation results showed that: 

 As the search space for the problem 

increased, ICA gained a higher 

convergence speed.  

 It was also found that a higher path 

coverage speed in bigger problems 

signified the ICA power in a local search. 

 As another finding, a higher cost function 

rate in ICA served as an indication of the 

value of ideal data, as compared with the 

other algorithms.  

 Finally, the computing time in PSO 

turned out to be shorter than that in the 

other algorithms, which could be   



Babamir & Saadatjoo / Journal of AI and Data Mining, Vol 6, No 2, 2018. 
 

384 

 

 attributed to the smaller number of 

computational operators in the structure 

of PSO.  

To evaluate the capability of the proposed 

method in detecting faults, mutation testing will 

be used in our future research work.  
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 سازی تابع هزینه در الگوریتم رقابت استعماری برای مسئله پوشش مسیر آزمون نرم افزاربهینه

 

  *سید مرتضی بابامیر و محمدعلی سعادت جو

 .ایران، کاشان، دانشگاه کاشان، کامپیوتر گروه مهندسی

 22/12/2112 پذیرش؛ 11/10/2112 بازنگری؛ 22/11/2112 ارسال

 چکیده:

 جستجو در فضای مسیرهای اجرایییباشد. سازی آزمون مبتنی بر جستجو میگیرد بهینهمورد استفاده قرار میهایی که در آزمون نرم افزار یکی از روش

هیای آزمیون است. زیرا پوشش ایین فضیا نیازمنید ادیداد وزم و کیافی از داده افزارهای بزرگافزار برای یافتن خطا، یک چالش اساسی در نرمکد یک نرم

افزار را پوشش دهند، میورد های وزم و کافی فضای جستجوی حداکثری در کد نرمهایی که بتوانند به صوررت خودکار و با اولید دادهمناسب است. روش

-جهت اولید خودکار داده آزمونی که بتواند مسیرهای غیراکراری گراف کنتیرل جرییان نیرم در این مقاله یک اابع هزینه جدید. است استقبال واقع شده

آوری دیگیر مقالیه، افزار را بپیماید و با اابع هزینه مشابه در سایر مقاوت مقایسه شده است که نتایج بیانگر عملکرد بهتر اابع هزینه پیشنهادی است.  نیو

هیای رقابیت اولید خودکار داده آزمون با اابع هزینه پیشنهادی است. اولید خودکار داده آزمیون اوسیا الگیوریتمبکاریری الگوریتم رقابت استدماری در 

هیا از نریر مقیدار ایابع هزینیه، ام شده است. هر کدام از الگوریتممتفاوت انج فضای جستجویافزار با سازی ذرات و ژنتیک برای سه نرماستدماری، بهینه

 اند. نتایج این ارزیابی نشان دهنده براری الگوریتم پیشنهادی است.پوشش مسیر با یکدیگر مقایسه شده میزانادداد مراحل اجرا و 

 افزار.گراف کنترل جریان، درجه پیچیدگی نرم ،قابت استدماری، اولید داده آزمونافزار، الگوریتم رآزمون نرم :کلمات کلیدی

 


