Seyed M. Sadatrasoul; O. Ebadati; R. Saedi
Abstract
The purpose of this study is to reduce the uncertainty of early stage startups success prediction and filling the gap of previous studies in the field, by identifying and evaluating the success variables and developing a novel business success failure (S/F) data mining classification prediction model ...
Read More
The purpose of this study is to reduce the uncertainty of early stage startups success prediction and filling the gap of previous studies in the field, by identifying and evaluating the success variables and developing a novel business success failure (S/F) data mining classification prediction model for Iranian start-ups. For this purpose, the paper is seeking to extend Bill Gross and Robert Lussier S/F prediction model variables and algorithms in a new context of Iranian start-ups which starts from accelerators in order to build a new S/F prediction model. A sample of 161 Iranian start-ups which are based in accelerators from 2013 to 2018 is applied and 39 variables are extracted from the literature and organized in five groups. Then the sample is fed into six well-known classification algorithms. Two staged stacking as a classification model is the best performer among all other six classification based S/F prediction models and it can predict binary dependent variable of success or failure with accuracy of 89% on average. Also finding shows that “starting from Accelerators”, “creativity and problem solving ability of founders”, “fist mover advantage” and “amount of seed investment” are the four most important variables which affects the start-ups success and the other 15 variables are less important.
H.3.7. Learning
M. Farhid; M. Shamsi; M. H. Sedaaghi
Abstract
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of ...
Read More
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defined based on previously calculated signal to noise ratio (SNR), is assumed to be the informed nodes that collect data and perform in-network processing, while the remaining nodes are assumed to be uninformed and only participate in the processing tasks. As our simulation results show, the proposed algorithm not only considerably improves the performance of the Distributed Incremental LMS algorithm in a same condition, but also proves a good accuracy of estimation in cases where some of the nodes make unreliable observations (noisy nodes). Also studied is the application of the same algorithm on the cases where node failure happens
B.3. Communication/Networking and Information Technology
V. Babaiyan; Seyyede A. Sarfarazi
Abstract
Telecommunication Companies use data mining techniques to maintain good relationships with their existing customers and attract new customers and identifying profitable/unprofitable customers. Clustering leads to better understanding of customer and its results can be used to definition and decision-making ...
Read More
Telecommunication Companies use data mining techniques to maintain good relationships with their existing customers and attract new customers and identifying profitable/unprofitable customers. Clustering leads to better understanding of customer and its results can be used to definition and decision-making for promotional schemes. In this study, we used the 999-customer purchase records in South Khorasan Telecommunication Company which has been collected during a year. The purpose of this study is to classify customers into several clusters. Since the clusters and the number of their members are determined, high-consumption users will be logged out of the system and high-value customers who are missed will be identified. In this research we divided our customers into five categories: loyal, potential, new, missed and high-consumption by using the Clementine software, developing the RFM model to the LRFM model and TwoStep and k_Means algorithms. Thus, this category will be a good benchmark for company's future decisions and we can make better decisions for each group of customers in the future.
A.7. Logic Design
A. M. Mousavi; M. Khodadadi
Abstract
Usually, important parameters in the design and implementation of combinational logic circuits are the number of gates, transistors, and the levels used in the design of the circuit. In this regard, various evolutionary paradigms with different competency have recently been introduced. However, while ...
Read More
Usually, important parameters in the design and implementation of combinational logic circuits are the number of gates, transistors, and the levels used in the design of the circuit. In this regard, various evolutionary paradigms with different competency have recently been introduced. However, while being advantageous, evolutionary paradigms also have some limitations including: a) lack of confidence in reaching at the correct answer, b) long convergence time, and c) restriction on the tests performed with higher number of input variables. In this paper, we have implemented a genetic programming approach that given a Boolean function, outputs its equivalent circuit such that the truth table is covered and the minimum number of gates (and to some extent transistors and levels) are used. Furthermore, our implementation improves the aforementioned limitations by: Incorporating a self-repairing feature (improving limitation a); Efficient use of the conceivable coding space of the problem, which virtually brings about a kind of parallelism and improves the convergence time (improving limitation b). Moreover, we have applied our method to solve Boolean functions with higher number of inputs (improving limitation c). These issues are verified through multiple tests and the results are reported.
R. Asgarian Dehkordi; H. Khosravi
Abstract
Fine-grained vehicle type recognition is one of the main challenges in machine vision. Almost all of the ways presented so far have identified the type of vehicle with the help of feature extraction and classifiers. Because of the apparent similarity between car classes, these methods may produce erroneous ...
Read More
Fine-grained vehicle type recognition is one of the main challenges in machine vision. Almost all of the ways presented so far have identified the type of vehicle with the help of feature extraction and classifiers. Because of the apparent similarity between car classes, these methods may produce erroneous results. This paper presents a methodology that uses two criteria to identify common vehicle types. The first criterion is feature extraction and classification and the second criterion is to use the dimensions of car for classification. This method consists of three phases. In the first phase, the coordinates of the vanishing points are obtained. In the second phase, the bounding box and dimensions are calculated for each passing vehicle. Finally, in the third phase, the exact vehicle type is determined by combining the results of the first and second criteria. To evaluate the proposed method, a dataset of images and videos, prepared by the authors, has been used. This dataset is recorded from places similar to those of a roadside camera. Most existing methods use high-quality images for evaluation and are not applicable in the real world, but in the proposed method real-world video frames are used to determine the exact type of vehicle, and the accuracy of 89.5% is achieved, which represents a good performance.
Muhammad Naeem; Muhammad Bilal Khan; Muhammad Tanvir Afzal
Abstract
Expert discovery is a quest in search of finding an answer to a question: “Who is the best expert of a specific subject in a particular domain within peculiar array of parameters?” Expert with domain knowledge in any field is crucial for consulting in industry, academia and scientific community. ...
Read More
Expert discovery is a quest in search of finding an answer to a question: “Who is the best expert of a specific subject in a particular domain within peculiar array of parameters?” Expert with domain knowledge in any field is crucial for consulting in industry, academia and scientific community. Aim of this study is to address the issues for expert-finding task in real-world community. Collaboration with expertise is critical requirement in business corporate such as in fields of engineering, geographies, bio-informatics, medical domain etc. We have proposed multifaceted web mining heuristic that resulted into the design and development of a tool using data from Growbag, dblpXML with Authors home pages resource to find people of desired expertise. We mined more than 2,500 Author's web pages based on the credibility of 12 key parameters while parsing on each page for a large number of co-occurred keyword and all available general terms. It presents evidence to validate this quantification as a measure of expertise. The prototype enables users to distinguish easily someone, who has briefly worked in a particular area with more extensive experience, resulting in the capability to locate people with broader expertise throughout large parts of the product. Through this extension to the web enabling methodology, we have shown that the implemented tool delivers a novel web mining idea with improved results.
D.1. General
N. Bigdeli; H. Sadegh Lafmejani
Abstract
The renewable energy resources such as wind power have recently attracted more researchers’ attention. It is mainly due to the aggressive energy consumption, high pollution and cost of fossil fuels. In this era, the future fluctuations of these time series should be predicted to increase the reliability ...
Read More
The renewable energy resources such as wind power have recently attracted more researchers’ attention. It is mainly due to the aggressive energy consumption, high pollution and cost of fossil fuels. In this era, the future fluctuations of these time series should be predicted to increase the reliability of the power network. In this paper, the dynamic characteristics and short-term predictability of hourly wind speed and power time series are investigated via nonlinear time series analysis methods such as power spectral density analysis, time series histogram, phase space reconstruction, the slope of integral sums, the method, the recurrence plot and the recurrence quantification analysis. Moreover, the interactive behavior of the wind speed and wind power time series is studied via the cross correlation, the cross and joint recurrence plots as well as the cross and joint recurrence quantification analyses. The results imply stochastic nature of these time series. Besides, a measure of the short-term mimic predictability of the wind speed and the underlying wind power has been derived for the experimental data of Spain’s wind farm.
H.6.2.2. Fuzzy set
M. M. Fateh; S. Azargoshasb
Abstract
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances ...
Read More
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimation error using a gradient descent algorithm. The proposed discrete control is robust against all uncertainties as verified by stability analysis. The proposed robust control law is simulated on a SCARA robot driven by permanent magnet dc motors. Simulation results show the effectiveness of the control approach.
Seyed Mahdi sadatrasoul; Mohammadreza gholamian; Mohammad Siami; Zeynab Hajimohammadi
Abstract
This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates ...
Read More
This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct online journal database. The articles are categorized and classified into enterprise, individual and small and midsized (SME) companies credit scoring. Data mining techniques is also categorized to single classifier, Hybrid methods and Ensembles. Variable selection methods are also investigated separately because it’s a major issue in credit scoring problem. The findings of the review reveals that data mining techniques are mostly applied to individual credit score and there are a few researches on enterprise and SME credit scoring. Also ensemble methods, support vector machines and neural network methods are the most favorite techniques used recently. Hybrid methods are investigated in four categories and two of them which are “classification and classification” and “clustering and classification” combinations are used more. Paper analysis provides a guide to future researches and concludes with several suggestions for further studies.
I.3.7. Engineering
V. R. Kohestani; M. R. Bazarganlari; J. Asgari marnani
Abstract
Due to urbanization and population increase, need for metro tunnels, has been considerably increased in urban areas. Estimating the surface settlement caused by tunnel excavation is an important task especially where the tunnels are excavated in urban areas or beneath important structures. Many models ...
Read More
Due to urbanization and population increase, need for metro tunnels, has been considerably increased in urban areas. Estimating the surface settlement caused by tunnel excavation is an important task especially where the tunnels are excavated in urban areas or beneath important structures. Many models have been established for this purpose by extracting the relationship between the settlement and the factors that influence it. In this paper, Random Forest (RF) is introduced and investigated for the prediction of maximum surface settlement caused by EPB shield tunneling. Various factors that affect this settlement, including geometrical, geological and shield operational parameters were considered. The results of RF model has been compared with the available artificial neural network (ANN) model. It is shown that the proposed RF model provides more accurate results than the ANN model proposed in the literature.
H.3. Artificial Intelligence
S. Roohollahi; A. Khatibi Bardsiri; F. Keynia
Abstract
Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and ...
Read More
Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire network. This paper proposes a sampling algorithm that equipped with an evaluator unit for analyzing the edges and a set of simple fixed structure learning automata. Evaluator unit evaluates each edge and then decides whether edge and corresponding node should be added to the sample set. In The proposed algorithm, each main activity graph node is equipped with a simple learning automaton. The proposed algorithm is compared with the best current sampling algorithm that was reported in the Kolmogorov-Smirnov test (KS) and normalized L1 and L2 distances in real networks and synthetic networks presented as a sequence of edges. Experimental results show the superiority of the proposed algorithm.
H.6.5.13. Signal processing
M. Asadolahzade Kermanshahi; M. M. Homayounpour
Abstract
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There ...
Read More
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Most previous research attempted to improve training phase such as training algorithms, different types of network, network architecture, feature type, etc. But in this study, we focus on test phase which is related to generate phoneme sequence that is also essential to achieve good phoneme recognition accuracy. Past research used Viterbi algorithm on hidden Markov model (HMM) to generate phoneme sequences. We address an important problem associated with this method. To deal with the problem of considering geometric distribution of state duration in HMM, we use real duration probability distribution for each phoneme with the aid of hidden semi-Markov model (HSMM). We also represent each phoneme with only one state to simply use phonemes duration information in HSMM. Furthermore, we investigate the performance of a post-processing method, which corrects the phoneme sequence obtained from the neural network, based on our knowledge about phonemes. The experimental results using the Persian FarsDat corpus show that using extended Viterbi algorithm on HSMM achieves phoneme recognition accuracy improvements of 2.68% and 0.56% over conventional methods using Gaussian mixture model-hidden Markov models (GMM-HMMs) and Viterbi on HMM, respectively. The post-processing method also increases the accuracy compared to before its application.
H.3.11. Vision and Scene Understanding
Sh. Foolad; A. Maleki
Abstract
Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, ...
Read More
Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map is obtained by putting adaptive threshold on color differences relative to the background. In final saliency detection, a graph is constructed, and the ranking technique is exploited. In the proposed method, the background is suppressed effectively, and often salient regions are selected correctly. Experimental results on the MSRA-1000 database demonstrate excellent performance and low computational complexity in comparison with the state-of-the-art methods.
F.2.7. Optimization
M.M Abravesh; A Sheikholeslami; H. Abravesh; M. Yazdani asrami
Abstract
Metal oxide surge arrester accurate modeling and its parameter identification are very important for insulation coordination studies, arrester allocation and system reliability. Since quality and reliability of lightning performance studies can be improved with the more efficient representation of the ...
Read More
Metal oxide surge arrester accurate modeling and its parameter identification are very important for insulation coordination studies, arrester allocation and system reliability. Since quality and reliability of lightning performance studies can be improved with the more efficient representation of the arresters´ dynamic behavior. In this paper, Big Bang – Big Crunch and Hybrid Big Bang – Big Crunch optimization algorithms are used to selects optimum surge arrester model equivalent circuit parameters values, minimizing the error between the simulated peak residual voltage value and this given by the manufacturer.The proposed algorithms are applied to a 63 kV and 230 kV metal oxide surge arrester. The obtained results show that using this method the maximum percentage error is below 1.5 percent.
H.6.4. Clustering
M. Lashkari; M. Moattar
Abstract
A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization ...
Read More
A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages such as fast convergence rate, intelligent operators and simultaneous local and global search which are the motivations behind choosing this algorithm. In the Extended Cuckoo Algorithm, we have enhanced the operators in the classical version of the Cuckoo algorithm. The proposed operator of production of the initial population is based on a Chaos trail whereas in the classical version, it is based on randomized trail. Moreover, allocating the number of eggs to each cuckoo in the revised algorithm is done based on its fitness. Another improvement is in cuckoos’ migration which is performed with different deviation degrees. The proposed method is evaluated on several standard data sets at UCI database and its performance is compared with those of Black Hole (BH), Big Bang Big Crunch (BBBC), Cuckoo Search Algorithm (CSA), traditional Cuckoo Optimization Algorithm (COA) and K-means algorithm. The results obtained are compared in terms of purity degree, coefficient of variance, convergence rate and time complexity. The simulation results show that the proposed algorithm is capable of yielding the optimized solution with higher purity degree, faster convergence rate and stability in comparison to the other compared algorithms.
F.2.7. Optimization
M. Kosari; M. Teshnehlab
Abstract
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, ...
Read More
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain identification fractional-order chaotic systems where conventional derivation is replaced by a fractional one with the help of a non-integer derivation. This operator is itself approximated by a N-dimensional system composed of an integrator and a phase-lead filter. A hybrid particle swarm optimization (PSO) and genetic algorithm (GA) method has been applied to estimate the parameters of approximated nonlinear fractional-order chaotic system that modeled by a state-space representation. The feasibility of this approach is demonstrated through identifying the parameters of approximated fractional-order Lorenz chaotic system. The performance of the proposed algorithm is compared with the genetic algorithm (GA) and standard particle swarm optimization (SPSO) in terms of parameter accuracy and cost function. To evaluate the identification accuracy, the time-domain output error is designed as the fitness function for parameter optimization. Simulation results show that the proposed method is more successful than other algorithms for parameter identification of fractional order chaotic systems.
Amir Mosavi
Abstract
Often in modeling the engineering optimization design problems, the value of objective function(s) is not clearly defined in terms of design variables. Instead it is obtained by some numerical analysis such as FE structural analysis, fluid mechanic analysis, and thermodynamic analysis, etc. Yet, the ...
Read More
Often in modeling the engineering optimization design problems, the value of objective function(s) is not clearly defined in terms of design variables. Instead it is obtained by some numerical analysis such as FE structural analysis, fluid mechanic analysis, and thermodynamic analysis, etc. Yet, the numerical analyses are considerably time consuming to obtain the final value of objective function(s). For the reason of reducing the number of analyses as few as possible our methodology works as a supporting tool to the meta-models. The research in meta-modeling for multiobjective optimization are relatively young and there is still much to do. Here is shown that visualizing the problem on the basis of the randomly sampled geometrical big-data of computer aided design (CAD) and computer aided engineering (CAE) simulation results, combined with utilizing classification tool of data mining could be effective as a supporting system to the available meta-modeling approaches. To evaluate the effectiveness of the proposed method a study case in 3D wing optimal design is given. Along with the study case, it is discussed that how effective the proposed methodology could be in further practical engineering design problems.
mehdi hajian; Asghar Akbari Foroud
Abstract
The aim of this paper is to extend a hybrid protection plan for Power Transformer (PT) based on MRA-KSIR-SSVM. This paper offers a new scheme for protection of power transformers to distinguish internal faults from inrush currents. Some significant characteristics of differential currents in the real ...
Read More
The aim of this paper is to extend a hybrid protection plan for Power Transformer (PT) based on MRA-KSIR-SSVM. This paper offers a new scheme for protection of power transformers to distinguish internal faults from inrush currents. Some significant characteristics of differential currents in the real PT operating circumstances are extracted. In this paper, Multi Resolution Analysis (MRA) is used as Time–Frequency Analysis (TFA) for decomposition of Contingency Transient Signals (CTSs), and feature reduction is done by Kernel Sliced Inverse Regression (KSIR). Smooth Supported Vector Machine (SSVM) is utilized for classification. Integration KSIR and SSVM is tackled as most effective and fast technique for accurate differentiation of the faulted and unfaulted conditions. The Particle Swarm Optimization (PSO) is used to obtain optimal parameters of the classifier. The proposed structure for Power Transformer Protection (PTP) provides a high operating accuracy for internal faults and inrush currents even in noisy conditions. The efficacy of the proposed scheme is tested by means of numerous inrush and internal fault currents. The achieved results are utilized to verify the suitability and the ability of the proposed scheme to make a distinction inrush current from internal fault. The assessment results illustrate that proposed scheme presents an enhancement of distinguish inrush current from internal fault over the method to be compared without Dimension Reduction (DR).
H.6.2.2. Fuzzy set
M. Moradizirkohi; S. Izadpanah
Abstract
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID ...
Read More
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the control design parameters to achieve a desired performance. It is worthy of note that to form control law by considering practical considerations just the available feedbacks are used. It is beneficial for industrial applications wherethe real-time computation is costly. The proposed control approach has a fast response with a good tracking performance under the well-behaved control efforts. The stability is guaranteed in the presence of both structured and unstructured uncertainties. As a result, all system states are remained bounded. Simulation results on a two-link flexible-joint robot show the efficiency of the proposed scheme.
H.3.2.6. Games and infotainment
A. Torkaman; R. Safabakhsh
Abstract
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent ...
Read More
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope with the uncertainty existing in these games, we design a Bayesian network whose parameters are learned from an unlabeled game-logs dataset; so it does not require a human expert’s knowledge. We evaluate our model on StarCraft which is considered as a unified test-bed in this domain. The model is compared with that proposed by Synnaeve and Bessiere. Experimental results on recorded games of human players show that the proposed model can predict the opponent’s future decisions more effectively. Using this model, it is possible to create an adaptive game intelligence algorithm applicable to RTS games, where the concept of build order (the order of building construction) exists.
C.1. General
L. khalvati; M. Keshtgary; N. Rikhtegar
Abstract
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach ...
Read More
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper is generating an efficient training dataset. To exploit the strength of clustering and feature selection, an intensive focus on intrusion detection combines the two, so the proposed method is using these techniques too. At first, a new training dataset is created by K-Medoids clustering and Selecting Feature using SVM method. After that, Naïve Bayes classifier is used for evaluating. The proposed method is compared with another mentioned hybrid algorithm and also 10-fold cross validation. Experimental results based on KDD CUP’99 dataset show that the proposed method has better accuracy, detection rate and also false alarm rate than others.
H.6.4. Clustering
P. Shahsamandi Esfahani; A. Saghaei
Abstract
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering ...
Read More
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two contradictory objective functions based on maximum data compactness in clusters (the degree of proximity of data) and maximum cluster separation (the degree of remoteness of clusters’ centers) is proposed. In order to solve this model, a recently proposed optimization method, the Multi-objective Improved Teaching Learning Based Optimization (MOITLBO) algorithm, is used. This algorithm is tested on several datasets and its clusters are compared with the results of some single-objective algorithms. Furthermore, with respect to noise, the comparison of the performance of the proposed model with another multi-objective model shows that it is robust to noisy data sets and thus can be efficiently used for multi-objective fuzzy clustering.
C.3. Software Engineering
M. A. Saadtjoo; S. M. Babamir
Abstract
Search-based optimization methods have been used for software engineering activities such as software testing. In the field of software testing, search-based test data generation refers to application of meta-heuristic optimization methods to generate test data that cover the code space of a program. ...
Read More
Search-based optimization methods have been used for software engineering activities such as software testing. In the field of software testing, search-based test data generation refers to application of meta-heuristic optimization methods to generate test data that cover the code space of a program. Automatic test data generation that can cover all the paths of software is known as a major challenge. The paper establishes a new cost function for automatic test data generation, which can traverse the non-iterative paths of software control flow graphs. This function is later compared with similar cost functions proposed in other articles. The results indicate the superior performance of the proposed function. Still another innovation in this paper is the application of the Imperialist Competitive Algorithm in automatic test data generation along with the proposed cost function. Automatic test data generation is implemented through the Imperialist Competitive Algorithm as well as the Genetic and Particle Swarm Optimization Algorithms for three software programs with different search space sizes. The algorithms are compared with each other in terms of convergence speed, computational time, and local search. Test data generated by the proposed method has achieved better results than other algorithms in finding the number of non-iterative paths, the convergence speed and computational time with growing the searching space of the software's control flow graph.
Mohammad Mehdi Hosseini; Jalal Hassanian
Abstract
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm ...
Read More
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several solutions such as the particle filter, kalman filter and dynamic programming tracking have been used, but they are complicated, time consuming and so expensive. The proposed method is so easy, fast, efficient and low cost. In the first step, the motion detection algorithm subtracts the previous frame from the current frame to obtain the changes between two images and white pixels (motion level) are detected by using the threshold level. Then the mean shift algorithm is applied for tracking the hand motion. Simulation results show this method is faster than two times to compared with the old common algorithms
H.6.2.4. Neural nets
M. Abtahi
Abstract
This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. ...
Read More
This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identify vehicle’s dynamics. The LMN is trained by hierarchical binary tree (HBT) learning algorithm, which results in a network with maximum generalizability and best linear or nonlinear structure. The proposed approach is applied to a measurement dataset, obtained from a Volvo V70 vehicle to estimate its longitudinal velocity, lateral acceleration and yaw rate. The results of identification revealed that the LMN can identify accurately the vehicle’s dynamics. Furthermore, comparison of LMN results and a multi-layer perceptron (MLP) neural network demonstrated the far-better performance of the proposed approach.