Original/Review Paper
D. Data
Ali Ghorbanian; Zahra Ghorbani
Abstract
Increasing the accuracy of time-series clustering while reducing execution time is a primary challenge in the field of time-series clustering. Researchers have recently applied approaches, such as the development of distance metrics and dimensionality reduction, to address this challenge. However, using ...
Read More
Increasing the accuracy of time-series clustering while reducing execution time is a primary challenge in the field of time-series clustering. Researchers have recently applied approaches, such as the development of distance metrics and dimensionality reduction, to address this challenge. However, using segmentation and ensemble clustering to solve this issue is a key aspect that has received less attention in previous research. In this study, an algorithm based on the selection and combination of the best segments created from a time-series dataset was developed. In the first step, the dataset was divided into segments of equal lengths. In the second step, each segment is clustered using a hierarchical clustering algorithm. In the third step, a genetic algorithm selects different segments and combines them using combinatorial clustering. The resulting clustering of the selected segments was selected as the final dataset clustering. At this stage, an internal clustering criterion evaluates and sorts the produced solutions. The proposed algorithm was executed on 82 different datasets in 10 repetitions. The results of the algorithm indicated an increase in the clustering efficiency of 3.07%, reaching a value of 67.40. The obtained results were evaluated based on the length of the time series and the type of dataset. In addition, the results were assessed using statistical tests with the six algorithms existing in the literature.
Original/Review Paper
H.3.9. Problem Solving, Control Methods, and Search
Zahra Jahan; Abbas Dideban; Farzaneh Tatari
Abstract
This paper introduces an adaptive optimal distributed algorithm based on event-triggered control to solve multi-agent discrete-time zero-sum graphical games for unknown nonlinear constrained-input systems with external disturbances. Based on the value iteration heuristic dynamic programming, the proposed ...
Read More
This paper introduces an adaptive optimal distributed algorithm based on event-triggered control to solve multi-agent discrete-time zero-sum graphical games for unknown nonlinear constrained-input systems with external disturbances. Based on the value iteration heuristic dynamic programming, the proposed algorithm solves the event-triggered coupled Hamilton-Jacobi-Isaacs equations assuming unknown dynamics to develop distributed optimal controllers and satisfy leader-follower consensus for agents interacting on a communication graph. The algorithm is implemented using the actor-critic neural network, and unknown system dynamics are approximated using the identifier network. Introducing and solving nonlinear zero-sum discrete-time graphical games in the presence of unknown dynamics, control input constraints and external disturbances, differentiate this paper from the previously published works. Also, the control input, external disturbance, and the neural network's weights are updated aperiodic and only at the triggering instants to simplify the computational process. The closed-loop system stability and convergence to the Nash equilibrium are proven. Finally, simulation results are presented to confirm theoretical findings.
Original/Review Paper
H.3. Artificial Intelligence
Ali Rebwar Shabrandi; ali Rajabzadeh Ghatari; Mohammad Dehghan nayeri; Nader Tavakoli; Sahar Mirzaei
Abstract
This study proposes a high-level design and configuration for an intelligent dual (hybrid and private) blockchain-based system. The configuration includes the type of network, level of decentralization, nodes, and roles, block structure information, authority control, and smart contracts and intended ...
Read More
This study proposes a high-level design and configuration for an intelligent dual (hybrid and private) blockchain-based system. The configuration includes the type of network, level of decentralization, nodes, and roles, block structure information, authority control, and smart contracts and intended to address the two main categories of challenges–operation management and data management–through three intelligent modules across the pandemic stages. In the pre-hospital stage, an intelligent infection prediction system is proposed that utilizes in-house data to address the lack of a simple, efficient, agile, and low-cost screening method for identifying potentially infected individuals promptly and preventing the overload of patients entering hospitals. In the in-hospital stage, an intelligent prediction system is proposed to predict infection severity and hospital Length of Stay (LoS) to identify high-risk patients, prioritize them for receiving care services, and facilitate better resource allocation. In the post-hospital stage, an intelligent prediction system is proposed to predict the reinfection and readmission rates, to help reduce the burden on the healthcare system and provide personalized care and follow-up for higher-risk patients. In addition, the distribution of limited Personal protective equipment (PPE) is made fair using private blockchain (BC) and smart contracts. These modules were developed using Python and utilized to evaluate the performance of state-of-the-art machine learning (ML) techniques through 10-fold cross-validation at each stage. The most critical features were plotted and analyzed using SHapely Adaptive exPlanations (SHAP). Finally, we explored the implications of our system for both research and practice and provided recommendations for future enhancements.
Original/Review Paper
H.3. Artificial Intelligence
Seyed Alireza Bashiri Mosavi; Mohsen Javaherian; Omid Khalaf Beigi
Abstract
One way of analyzing COVID-19 is to exploit X-ray and computed tomography (CT) images of the patients' chests. Employing data mining techniques on chest images can provide in significant improvements in the diagnosis of COVID-19. However, in feature space learning of chest images, there exists a large ...
Read More
One way of analyzing COVID-19 is to exploit X-ray and computed tomography (CT) images of the patients' chests. Employing data mining techniques on chest images can provide in significant improvements in the diagnosis of COVID-19. However, in feature space learning of chest images, there exists a large number of features that affect COVID-19 identification performance negatively. In this work, we aim to design the dual hybrid partial-oriented feature selection scheme (DHPFSS) for selecting optimal features to achieve high-performance COVID-19 prediction. First, by applying the Zernike function to the data, moments of healthy chest images and infected ones were extracted. After Zernike moments (ZMs) segmentation, subsets of ZMs (SZMs1:n) are entered into the DHPFSS to select SZMs1:n-specific optimal ZMs (OZMs1:n). The DHPFSS consists of the filter phase and dual incremental wrapper mechanisms (IWMs), namely incremental wrapper subset selection (IWSS) and IWSS with replacement (IWSSr). Each IWM is fed by ZMs sorted by filter mechanism. The dual IWMs of DHPFSS are accompanied with the support vector machine (SVM) and twin SVM (TWSVM) classifiers equipped with radial basis function kernel as SVMIWSSTWSVM and SVMIWSSrTWSVM blocks. After selecting OZMs1:n, the efficacy of the union of OZMs1:n is evaluated based on the cross-validation technique. The obtained results manifested that the proposed framework has accuracies of 98.66%, 94.33%, and 94.82% for COVID-19 prediction on COVID-19 image data (CID) including 1CID, 2CID, and 3CID respectively, which can improve accurate diagnosis of illness in an emergency or the absence of a specialist.
Applied Article
H.5.7. Segmentation
Ehsan Ehsaeyan
Abstract
This paper presents a novel approach to image segmentation through multilevel thresholding, leveraging the speed and precision of the technique. The proposed algorithm, based on the Grey Wolf Optimizer (GWO), integrates Darwinian principles to address the common stagnation issue in metaheuristic algorithms, ...
Read More
This paper presents a novel approach to image segmentation through multilevel thresholding, leveraging the speed and precision of the technique. The proposed algorithm, based on the Grey Wolf Optimizer (GWO), integrates Darwinian principles to address the common stagnation issue in metaheuristic algorithms, which often results in local optima and premature convergence. The search agents are efficiently steered across the search space by a dual mechanism of encouragement and punishment employed by our strategy, thereby curtailing computational time. This is implemented by segmenting the population into distinct groups, each tasked with discovering superior solutions. To validate the algorithm’s efficacy, 9 test images from the Pascal VOC dataset were selected, and the renowned energy curve method was employed for verification. Additionally, Kapur entropy was utilized to gauge the algorithm’s performance. The method was benchmarked against four disparate search algorithms, and its dominance was underscored by achieving the best outcomes in 20 out of 27 cases for image segmentation. The experimental findings collectively affirm that the Darwinian Grey Wolf Optimizer (DGWO) stands as a formidable instrument for multilevel thresholding.