Volume 13 (2025)
Volume 12 (2024)
Volume 11 (2023)
Volume 10 (2022)
Volume 9 (2021)
Volume 8 (2020)
Volume 7 (2019)
Volume 6 (2018)
Volume 5 (2017)
Volume 4 (2016)
Volume 3 (2015)
Volume 2 (2014)
Volume 1 (2013)
H.3.2.6. Games and infotainment
Harnessing Machine Learning for Procedural Content Generation in Gaming: A Comprehensive Review

Shaqayeq Saffari; Morteza Dorrigiv; Farzin Yaghmaee

Volume 12, Issue 4 , November 2024, , Pages 583-597

https://doi.org/10.22044/jadm.2025.15016.2603

Abstract
  Procedural Content Generation (PCG) through automated and algorithmic content generation is an active research field in the gaming industry. Recently, Machine Learning (ML) approaches have played a pivotal role in advancing this area. While recent studies have primarily focused on examining one or a ...  Read More

H.3.2.6. Games and infotainment
An Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic

A.H. Khabbaz; A. Pouyan; M. Fateh; V. Abolghasemi

Volume 7, Issue 2 , April 2019, , Pages 321-329

https://doi.org/10.22044/jadm.2018.6010.1709

Abstract
  This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on ...  Read More

H.3.2.6. Games and infotainment
Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks

A. Torkaman; R. Safabakhsh

Volume 7, Issue 1 , January 2019, , Pages 149-159

https://doi.org/10.22044/jadm.2018.6932.1815

Abstract
  Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent ...  Read More