F.1. General
Farzad Zandi; Parvaneh Mansouri; Reza Sheibani
Abstract
In the field of optimization, metaheuristic algorithms have garnered significant interest. These algorithms, which draw inspiration from natural selection, evolution, and problem-solving strategies, offer an alternative approach to solving complex optimization problems. Unlike conventional software engineering ...
Read More
In the field of optimization, metaheuristic algorithms have garnered significant interest. These algorithms, which draw inspiration from natural selection, evolution, and problem-solving strategies, offer an alternative approach to solving complex optimization problems. Unlike conventional software engineering methods, metaheuristics do not rely on derivative calculations in the search space. Instead, they explore solutions by iteratively refining and adapting their search process. The no-free-lunch (NFL) theorem proves that an optimization scheme cannot perform well in dealing with all optimization challenges. Over the last two decades, a plethora of metaheuristic algorithms has emerged, each with its unique characteristics and limitations. In this paper, we propose a novel meta-heuristic algorithm called ISUD (Individuals with Substance Use Disorder) to solving optimization problems by examining the clinical behaviors of individuals compelled to use drugs. We evaluate the effectiveness of ISUD by comparing it with several well-known heuristic algorithms across 44 benchmark functions of varying dimensions. Our results demonstrate that ISUD outperforms these existing methods, providing superior solutions for optimization problems.
F.1. General
A. Telikani; A. Shahbahrami; R. Tavoli
Abstract
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that ...
Read More
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved against association rule mining method. This process strongly rely on the minimizing the impact of data sanitization on the data utility by minimizing the number of lost patterns in the form of non-sensitive patterns which are not mined from sanitized database. This study proposes a data sanitization algorithm to hide sensitive patterns in the form of frequent itemsets from the database while controls the impact of sanitization on the data utility using estimation of impact factor of each modification on non-sensitive itemsets. The proposed algorithm has been compared with Sliding Window size Algorithm (SWA) and Max-Min1 in term of execution time, data utility and data accuracy. The data accuracy is defined as the ratio of deleted items to the total support values of sensitive itemsets in the source dataset. Experimental results demonstrate that proposed algorithm outperforms SWA and Max-Min1 in terms of maximizing the data utility and data accuracy and it provides better execution time over SWA and Max-Min1 in high scalability for sensitive itemsets and transactions.