D. Data
Zahra Ghorbani; Ali Ghorbanian
Abstract
Increasing the accuracy of time-series clustering while reducing execution time is a primary challenge in the field of time-series clustering. Researchers have recently applied approaches, such as the development of distance metrics and dimensionality reduction, to address this challenge. However, using ...
Read More
Increasing the accuracy of time-series clustering while reducing execution time is a primary challenge in the field of time-series clustering. Researchers have recently applied approaches, such as the development of distance metrics and dimensionality reduction, to address this challenge. However, using segmentation and ensemble clustering to solve this issue is a key aspect that has received less attention in previous research. In this study, an algorithm based on the selection and combination of the best segments created from a time-series dataset was developed. In the first step, the dataset was divided into segments of equal lengths. In the second step, each segment is clustered using a hierarchical clustering algorithm. In the third step, a genetic algorithm selects different segments and combines them using combinatorial clustering. The resulting clustering of the selected segments was selected as the final dataset clustering. At this stage, an internal clustering criterion evaluates and sorts the produced solutions. The proposed algorithm was executed on 82 different datasets in 10 repetitions. The results of the algorithm indicated an increase in the clustering efficiency of 3.07%, reaching a value of 67.40. The obtained results were evaluated based on the length of the time series and the type of dataset. In addition, the results were assessed using statistical tests with the six algorithms existing in the literature.
V. Ghasemi; M. Javadian; S. Bagheri Shouraki
Abstract
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional ...
Read More
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the data points as one-dimensional ink drop patterns, in order to summarize the effects of all data points, and then applies a threshold on the resulting vectors. It is based on an ensemble clustering method which performs one-dimensional density partitioning to produce ensemble of clustering solutions. Then, it assigns a unique prime number to the data points that exist in each partition as their labels. Consequently, a combination is performed by multiplying the labels of every data point in order to produce the absolute labels. The data points with identical absolute labels are fallen into the same cluster. The hierarchical property of the algorithm is intended to cluster complex data by zooming in each already formed cluster to find further sub-clusters. The algorithm is verified using several synthetic and real-world datasets. The results show that the proposed method has a promising performance, compared to some well-known high-dimensional data clustering algorithms.