I.3.6. Electronics
Samira Mavaddati; Mohammad Razavi
Abstract
Rice is one of the most important staple crops in the world and provides millions of people with a significant source of food and income. Problems related to rice classification and quality detection can significantly impact the profitability and sustainability of rice cultivation, which is why the importance ...
Read More
Rice is one of the most important staple crops in the world and provides millions of people with a significant source of food and income. Problems related to rice classification and quality detection can significantly impact the profitability and sustainability of rice cultivation, which is why the importance of solving these problems cannot be overstated. By improving the classification and quality detection techniques, it can be ensured the safety and quality of rice crops, and improving the productivity and profitability of rice cultivation. However, such techniques are often limited in their ability to accurately classify rice grains due to various factors such as lighting conditions, background, and image quality. To overcome these limitations a deep learning-based classification algorithm is introduced in this paper that combines the power of convolutional neural network (CNN) and long short-term memory (LSTM) networks to better represent the structural content of different types of rice grains. This hybrid model, called CNN-LSTM, combines the benefits of both neural networks to enable more effective and accurate classification of rice grains. Three scenarios are demonstrated in this paper include, CNN, CNN in combination with transfer learning technique, and CNN-LSTM deep model. The performance of the mentioned scenarios is compared with the other deep learning models and dictionary learning-based classifiers. The experimental results demonstrate that the proposed algorithm accurately detects different rice varieties with an impressive accuracy rate of over 99.85%, and 99.18% to identify quality for varying combinations of rice varieties with an average accuracy of 99.18%.
S. Mavaddati; S. Mavaddati
Abstract
Development of an automatic system to classify the type of rice grains is an interesting research area in the scientific fields associated with modern agriculture. In recent years, different techniques are employed to identify the types of various agricultural products. Also, different color-based and ...
Read More
Development of an automatic system to classify the type of rice grains is an interesting research area in the scientific fields associated with modern agriculture. In recent years, different techniques are employed to identify the types of various agricultural products. Also, different color-based and texture-based features are used to yield the desired results in the classification procedure. This paper proposes a classification algorithm to detect different rice types by extracting features from the bulk samples. The feature space in this algorithm includes the fractal-based features of the extracted coefficients from the wavelet packet transform analysis. This feature vector is combined with other texture-based features and used to learn a model related to each rice type using the Gaussian mixture model classifier. Also, a sparse structured principal component analysis algorithm is applied to reduce the dimension of the feature vector and lead to the precise classification rate with less computational time. The results of the proposed classifier are compared with the results obtained from the other presented classification procedures in this context. The simulation results, along with a meaningful statistical test, show that the proposed algorithm based on the combinational features is able to detect precisely the type of rice grains with more than 99% accuracy. Also, the proposed algorithm can detect the rice quality for different percentages of combination with other rice grains with 99.75% average accuracy.
H.5. Image Processing and Computer Vision
S. Mavaddati
Abstract
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification ...
Read More
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts including sparse representation and dictionary learning techniques to yield over-complete models in this processing field. There are color-based, statistical-based and texture-based features to represent the structural content of rice varieties. To achieve the desired results, different features from recorded images are extracted and used to learn the representative models of rice samples. Also, sparse principal component analysis and sparse structured principal component analysis is employed to reduce the dimension of classification problem and lead to an accurate detector with less computational time. The results of the proposed classifier based on the learned models are compared with the results obtained from neural network and support vector machine. Simulation results, along with a meaningful statistical test, show that the proposed algorithm based on the learned dictionaries derived from the combinational features can detect the type of rice grain and determine its quality precisely.