F. Baratzadeh; Seyed M. H. Hasheminejad
Abstract
With the advancement of technology, the daily use of bank credit cards has been increasing exponentially. Therefore, the fraudulent use of credit cards by others as one of the new crimes is also growing fast. For this reason, detecting and preventing these attacks has become an active area of study. ...
Read More
With the advancement of technology, the daily use of bank credit cards has been increasing exponentially. Therefore, the fraudulent use of credit cards by others as one of the new crimes is also growing fast. For this reason, detecting and preventing these attacks has become an active area of study. This article discusses the challenges of detecting fraudulent banking transactions and presents solutions based on deep learning. Transactions are examined and compared with other traditional models in fraud detection. According to the results obtained, optimal performance is related to the combined model of deep convolutional networks and short-term memory, which is trained using the aggregated data received from the generative adversarial network. This paper intends to produce sensible data to address the unequal class distribution problem, which is far more effective than traditional methods. Also, it uses the strengths of the two approaches by combining deep convolutional network and Long Short Term Memory network to improve performance. Due to the inefficiency of evaluation criteria such as accuracy in this application, the measure of distance score and the equal error rate has been used to evaluate models more transparent and more precise. Traditional methods were compared to the proposed approach to evaluate the efficiency of the experiment.
J.10.3. Financial
S. Beigi; M.R. Amin Naseri
Abstract
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method ...
Read More
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-sensitive learning for credit card fraud detection. In the first step, useful features are identified using genetic algorithm. Next, the optimal resampling strategy is determined based on the design of experiments (DOE) and response surface methodologies. Finally, the cost sensitive C4.5 algorithm is used as the base learner in the Adaboost algorithm. Using a real-time data set, results show that applying the proposed method significantly reduces the misclassification cost by at least 14% compared with Decision tree, Naïve bayes, Bayesian Network, Neural network and Artificial immune system.
H.3. Artificial Intelligence
Z. Karimi Zandian; M. R. Keyvanpour
Abstract
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods ...
Read More
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based on network level. In this paper a method called MEFUASN is proposed to extract features that is based on social network analysis and then both of obtained features and features based on user level are combined together and used to detect fraud using semi-supervised learning. Evaluation results show using the proposed feature extraction as a pre-processing step in fraud detection improves the accuracy of detection remarkably while it controls runtime in comparison with other methods.