A. Hadian; M. Bagherian; B. Fathi Vajargah
Abstract
Background: One of the most important concepts in cloud computing is modeling the problem as a multi-layer optimization problem which leads to cost savings in designing and operating the networks. Previous researchers have modeled the two-layer network operating problem as an Integer Linear Programming ...
Read More
Background: One of the most important concepts in cloud computing is modeling the problem as a multi-layer optimization problem which leads to cost savings in designing and operating the networks. Previous researchers have modeled the two-layer network operating problem as an Integer Linear Programming (ILP) problem, and due to the computational complexity of solving it jointly, they suggested a two-stage procedure for solving it by considering one layer at each stage.Aim: In this paper, considering the ILP model and using some properties of it, we propose a heuristic algorithm for solving the model jointly, considering unicast, multicast, and anycast flows simultaneously. Method: We first sort demands in decreasing order and use a greedy method to realize demands in order. Due to the high computational complexity of ILP model, the proposed heuristic algorithm is suitable for networks with a large number of nodes; In this regard, various examples are solved by CPLEX and MATLAB soft wares. Results: Our simulation results show that for small values of M and N CPLEX fails to find the optimal solution, while AGA finds a near-optimal solution quickly.Conclusion: The proposed greedy algorithm could solve the large-scale networks approximately in polynomial time and its approximation is reasonable.
H. Momeni; N. Mabhoot
Abstract
Interest in cloud computing has grown considerably over recent years, primarily due to scalable virtualized resources. So, cloud computing has contributed to the advancement of real-time applications such as signal processing, environment surveillance and weather forecast where time and energy considerations ...
Read More
Interest in cloud computing has grown considerably over recent years, primarily due to scalable virtualized resources. So, cloud computing has contributed to the advancement of real-time applications such as signal processing, environment surveillance and weather forecast where time and energy considerations to perform the tasks are critical. In real-time applications, missing the deadlines for the tasks will cause catastrophic consequences; thus, real-time task scheduling in cloud computing environment is an important and essential issue. Furthermore, energy-saving in cloud data center, regarding the benefits such as reduction of system operating costs and environmental protection is an important concern that is considered during recent years and is reducible with appropriate task scheduling. In this paper, we present an energy-aware task scheduling approach, namely EaRTs for real-time applications. We employ the virtualization and consolidation technique subject to minimizing the energy consumptions, improve resource utilization and meeting the deadlines of tasks. In the consolidation technique, scale up and scale down of virtualized resources could improve the performance of task execution. The proposed approach comprises four algorithms, namely Energy-aware Task Scheduling in Cloud Computing(ETC), Vertical VM Scale Up(V2S), Horizontal VM Scale up(HVS) and Physical Machine Scale Down(PSD). We present the formal model of the proposed approach using Timed Automata to prove precisely the schedulability feature and correctness of EaRTs. We show that our proposed approach is more efficient in terms of deadline hit ratio, resource utilization and energy consumption compared to other energy-aware real-time tasks scheduling algorithms.
C.5. Operating Systems
M. Tajamolian; M. Ghasemzadeh
Abstract
In order to achieve the virtual machines live migration, the two "pre-copy" and "post-copy" strategies are presented. Each of these strategies, depending on the operating conditions of the machine, may perform better than the other. In this article, a new algorithm is presented that automatically decides ...
Read More
In order to achieve the virtual machines live migration, the two "pre-copy" and "post-copy" strategies are presented. Each of these strategies, depending on the operating conditions of the machine, may perform better than the other. In this article, a new algorithm is presented that automatically decides how the virtual machine live migration takes place. In this approach, the virtual machine memory is considered as an informational object that has a revision number and it is constantly changing. We have determined precise criteria for evaluating the behavior of a virtual machine and automatically select the appropriate live migration strategy. Also in this article, different aspects of required simulations and implementations are considered. Analytical evaluation shows that using the proposed scheme and the presented algorithm, can significantly improve the virtual machines live migration process.
G.3.5. Systems
M. Rezvani
Abstract
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional ...
Read More
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud environments. This is because that such IDSs employ only the network information in their detection engine and this, therefore, makes them ineffective for the cloud-specific vulnerabilities. In this paper, we propose a novel assessment methodology for anomaly-based IDSs for cloud computing which takes into account both network and system-level information for generating the evaluation dataset. In addition, our approach deploys the IDS sensors in each virtual machine in order to develop a cooperative anomaly detection engine. The proposed assessment methodology is then deployed in a testbed cloud environment to generate an IDS dataset which includes both network and system-level features. Finally, we evaluate the performance of several machine learning algorithms over the generated dataset. Our experimental results demonstrate that the proposed IDS assessment approach is effective for attack detection in the cloud as most of the algorithms are able to identify the attacks with a high level of accuracy.