H.3. Artificial Intelligence
Saiful Bukhori; Muhammad Almas Bariiqy; Windi Eka Y. R; Januar Adi Putra
Abstract
Breast cancer is a disease of abnormal cell proliferation in the breast tissue organs. One method for diagnosing and screening breast cancer is mammography. However, the results of this mammography image have limitations because it has low contrast and high noise and contrast as non-coherence. This research ...
Read More
Breast cancer is a disease of abnormal cell proliferation in the breast tissue organs. One method for diagnosing and screening breast cancer is mammography. However, the results of this mammography image have limitations because it has low contrast and high noise and contrast as non-coherence. This research segmented breast cancer images derived from Ultrasonography (USG) photo using a Convolutional Neural Network (CNN) using the U-Net architecture. Testing on the CNN model with the U-Net architecture results the highest Mean Intersection over Union (Mean IoU) value in the data scenario with a ratio of 70:30, 100 epochs, and a learning rate of 5x10-5, which is 77%, while the lowest Mean IoU in the data scenario with a ratio 90:10, 50 epochs, and a learning rate of 1x10-4 learning rate, which is 64.4%.
Oladosu Oladimeji; Olayanju Oladimeji
Abstract
Breast cancer is the second major cause of death and accounts for 16% of all cancer deaths worldwide. Most of the methods of detecting breast cancer are very expensive and difficult to interpret such as mammography. There are also limitations such as cumulative radiation exposure, over-diagnosis, false ...
Read More
Breast cancer is the second major cause of death and accounts for 16% of all cancer deaths worldwide. Most of the methods of detecting breast cancer are very expensive and difficult to interpret such as mammography. There are also limitations such as cumulative radiation exposure, over-diagnosis, false positives and negatives in women with a dense breast which pose certain uncertainties in high-risk population. The objective of this study is Detecting Breast Cancer Through Blood Analysis Data Using Classification Algorithms. This will serve as a complement to these expensive methods. High ranking features were extracted from the dataset. The KNN, SVM and J48 algorithms were used as the training platform to classify 116 instances. Furthermore, 10-fold cross validation and holdout procedures were used coupled with changing of random seed. The result showed that KNN algorithm has the highest and best accuracy of 89.99% and 85.21% for cross validation and holdout procedure respectively. This is followed by the J48 with 84.65% and 75.65% for the two procedures respectively. SVM had 77.58% and 68.69% respectively. Although it was also discovered that Blood Glucose level is a major determinant in detecting breast cancer, it has to be combined with other attributes to make decision as a result of other health issues like diabetes. With the result obtained, women are advised to do regular check-ups including blood analysis in order to know which of the blood components need to be worked on to prevent breast cancer based on the model generated in this study.
H.6.3.2. Feature evaluation and selection
E. Enayati; Z. Hassani; M. Moodi
Abstract
Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation ...
Read More
Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation for participating in mammography screening programs. Todays, intelligence systems could identify main factors on specific incident. These could help to the experts in the wide range of areas specially health scopes such as prevention, diagnosis and treatment. In this paper we use a hybrid model called H-BwoaSvm which BWOA is used for detecting effective factors on mammography screening behavior and SVM for classification. Our model is applied on a data set which collected from a segmental analytical descriptive study on 2256 women. Proposed model is operated on data set with 82.27 and 98.89 percent accuracy and select effective features on mammography screening behavior.
H.3. Artificial Intelligence
N. Emami; A. Pakzad
Abstract
Breast cancer has become a widespread disease around the world in young women. Expert systems, developed by data mining techniques, are valuable tools in diagnosis of breast cancer and can help physicians for decision making process. This paper presents a new hybrid data mining approach to classify two ...
Read More
Breast cancer has become a widespread disease around the world in young women. Expert systems, developed by data mining techniques, are valuable tools in diagnosis of breast cancer and can help physicians for decision making process. This paper presents a new hybrid data mining approach to classify two groups of breast cancer patients (malignant and benign). The proposed approach, AP-AMBFA, consists of two phases. In the first phase, the Affinity Propagation (AP) clustering method is used as instances reduction technique which can find noisy instance and eliminate them. In the second phase, feature selection and classification are conducted by the Adaptive Modified Binary Firefly Algorithm (AMBFA) for selection of the most related predictor variables to target variable and Support Vectors Machine (SVM) technique as classifier. It can reduce the computational complexity and speed up the data mining process. Experimental results on Wisconsin Diagnostic Breast Cancer (WDBC) datasets show higher predictive accuracy. The obtained classification accuracy is 98.606%, a very promising result compared to the current state-of-the-art classification techniques applied to the same database. Hence this method will help physicians in more accurate diagnosis of breast cancer.
F.4.17. Survival analysis
S. Miri Rostami; M. Ahmadzadeh
Abstract
Application of data mining methods as a decision support system has a great benefit to predict survival of new patients. It also has a great potential for health researchers to investigate the relationship between risk factors and cancer survival. But due to the imbalanced nature of datasets associated ...
Read More
Application of data mining methods as a decision support system has a great benefit to predict survival of new patients. It also has a great potential for health researchers to investigate the relationship between risk factors and cancer survival. But due to the imbalanced nature of datasets associated with breast cancer survival, the accuracy of survival prognosis models is a challenging issue for researchers. This study aims to develop a predictive model for 5-year survivability of breast cancer patients and discover relationships between certain predictive variables and survival. The dataset was obtained from SEER database. First, the effectiveness of two synthetic oversampling methods Borderline SMOTE and Density based Synthetic Oversampling method (DSO) is investigated to solve the class imbalance problem. Then a combination of particle swarm optimization (PSO) and Correlation-based feature selection (CFS) is used to identify most important predictive variables. Finally, in order to build a predictive model three classifiers decision tree (C4.5), Bayesian Network, and Logistic Regression are applied to the cleaned dataset. Some assessment metrics such as accuracy, sensitivity, specificity, and G-mean are used to evaluate the performance of the proposed hybrid approach. Also, the area under ROC curve (AUC) is used to evaluate performance of feature selection method. Results show that among all combinations, DSO + PSO_CFS + C4.5 presents the best efficiency in criteria of accuracy, sensitivity, G-mean and AUC with values of 94.33%, 0.930, 0.939 and 0.939, respectively.