H.3. Artificial Intelligence
Farid Ariai; Maryam Tayefeh Mahmoudi; Ali Moeini
Abstract
In the era of pervasive internet use and the dominance of social networks, researchers face significant challenges in Persian text mining, including the scarcity of adequate datasets in Persian and the inefficiency of existing language models. This paper specifically tackles these challenges, aiming ...
Read More
In the era of pervasive internet use and the dominance of social networks, researchers face significant challenges in Persian text mining, including the scarcity of adequate datasets in Persian and the inefficiency of existing language models. This paper specifically tackles these challenges, aiming to amplify the efficiency of language models tailored to the Persian language. Focusing on enhancing the effectiveness of sentiment analysis, our approach employs an aspect-based methodology utilizing the ParsBERT model, augmented with a relevant lexicon. The study centers on sentiment analysis of user opinions extracted from the Persian website 'Digikala.' The experimental results not only highlight the proposed method's superior semantic capabilities but also showcase its efficiency gains with an accuracy of 88.2% and an F1 score of 61.7. The importance of enhancing language models in this context lies in their pivotal role in extracting nuanced sentiments from user-generated content, ultimately advancing the field of sentiment analysis in Persian text mining by increasing efficiency and accuracy.
H. Sadr; Mir M. Pedram; M. Teshnehlab
Abstract
With the rapid development of textual information on the web, sentiment analysis is changing to an essential analytic tool rather than an academic endeavor and numerous studies have been carried out in recent years to address this issue. By the emergence of deep learning, deep neural networks have attracted ...
Read More
With the rapid development of textual information on the web, sentiment analysis is changing to an essential analytic tool rather than an academic endeavor and numerous studies have been carried out in recent years to address this issue. By the emergence of deep learning, deep neural networks have attracted a lot of attention and become mainstream in this field. Despite the remarkable success of deep learning models for sentiment analysis of text, they are in the early steps of development and their potential is yet to be fully explored. Convolutional neural network is one of the deep learning methods that has been surpassed for sentiment analysis but is confronted with some limitations. Firstly, convolutional neural network requires a large number of training data. Secondly, it assumes that all words in a sentence have an equal contribution to the polarity of a sentence. To fill these lacunas, a convolutional neural network equipped with the attention mechanism is proposed in this paper which not only takes advantage of the attention mechanism but also utilizes transfer learning to boost the performance of sentiment analysis. According to the empirical results, our proposed model achieved comparable or even better classification accuracy than the state-of-the-art methods.
A. Lakizadeh; Z. Zinaty
Abstract
Aspect-level sentiment classification is an essential issue in sentiment analysis that intends to resolve the sentiment polarity of a specific aspect mentioned in the input text. Recent methods have discovered the role of aspects in sentiment polarity classification and developed various techniques to ...
Read More
Aspect-level sentiment classification is an essential issue in sentiment analysis that intends to resolve the sentiment polarity of a specific aspect mentioned in the input text. Recent methods have discovered the role of aspects in sentiment polarity classification and developed various techniques to assess the sentiment polarity of each aspect in the text. However, these studies do not pay enough attention to the need for vectors to be optimal for the aspect. To address this issue, in the present study, we suggest a Hierarchical Attention-based Method (HAM) for aspect-based polarity classification of the text. HAM works in a hierarchically manner; firstly, it extracts an embedding vector for aspects. Next, it employs these aspect vectors with information content to determine the sentiment of the text. The experimental findings on the SemEval2014 data set show that HAM can improve accuracy by up to 6.74% compared to the state-of-the-art methods in aspect-based sentiment classification task.
H.3.15.3. Evolutionary computing and genetic algorithms
H.R Keshavarz; M. Saniee Abadeh
Abstract
In Web 2.0, people are free to share their experiences, views, and opinions. One of the problems that arises in web 2.0 is the sentiment analysis of texts produced by users in outlets such as Twitter. One of main the tasks of sentiment analysis is subjectivity classification. Our aim is to classify the ...
Read More
In Web 2.0, people are free to share their experiences, views, and opinions. One of the problems that arises in web 2.0 is the sentiment analysis of texts produced by users in outlets such as Twitter. One of main the tasks of sentiment analysis is subjectivity classification. Our aim is to classify the subjectivity of Tweets. To this end, we create subjectivity lexicons in which the words into objective and subjective words. To create these lexicons, we make use of three metaheuristic methods. We extract two meta-level features, which show the count of objective and subjective words in tweets according to the lexicons. We then classify the tweets based on these two features. Our method outperforms the baselines in terms of accuracy and f-measure. In the three metaheuristics, it is observed that genetic algorithm performs better than simulated annealing and asexual reproduction optimization, and it also outperforms all the baselines in terms of accuracy in two of the three assessed datasets. The created lexicons also give insight about the objectivity and subjectivity of words.