B. Computer Systems Organization
F. Hoseini; A. Shahbahrami; A. Yaghoobi Notash
Abstract
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of ...
Read More
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tracking Based on Virtual Grid (TTBVG), which integrates on-demand dynamic clustering into a cluster- based WSN for target tracking. This protocol converts on-demand dynamic clusters to scalable cluster-based WSNs, by using boundary nodes and facilitates sensors’ collaboration around clusters. In this manner, each sensor node has the probability of becoming a cluster head and apperceives the tradeoff between energy consumption and local sensor collaboration in cluster-based sensor networks. The simulation results of this study demonstrated that the efficiency of the proposed protocol in both one-hop and multi-hop cluster-based sensor networks.
F.2.7. Optimization
E. Khodayari; V. Sattari-Naeini; M. Mirhosseini
Abstract
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods ...
Read More
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimization technique based on the gravitational search algorithm (GSA). Finding flocking parameters using swarm behaviors is the main contributing of this paper to minimize the cost function. The cost function displays the average of Euclidean distance of the center of mass (COM) away from the moving target. One of the benefits of using GSA is its application in multiple targets tracking with satisfying results. Simulation results indicate that this scheme outperforms existing ones and demonstrate the ability of this approach in comparison with the previous methods.