H.3.15.3. Evolutionary computing and genetic algorithms
Mahdieh Maazalahi; Soodeh Hosseini
Abstract
Detecting and preventing malware infections in systems is become a critical necessity. This paper presents a hybrid method for malware detection, utilizing data mining algorithms such as simulated annealing (SA), support vector machine (SVM), genetic algorithm (GA), and K-means. The proposed method combines ...
Read More
Detecting and preventing malware infections in systems is become a critical necessity. This paper presents a hybrid method for malware detection, utilizing data mining algorithms such as simulated annealing (SA), support vector machine (SVM), genetic algorithm (GA), and K-means. The proposed method combines these algorithms to achieve effective malware detection. Initially, the SA-SVM method is employed for feature selection, where the SVM algorithm identifies the best features, and the SA algorithm calculates the SVM parameters. Subsequently, the GA-K-means method is utilized to identify attacks. The GA algorithm selects the best chromosome for cluster centers, and the K-means algorithm has applied to identify malware. To evaluate the performance of the proposed method, two datasets, Andro-Autopsy and CICMalDroid 2020, have been utilized. The evaluation results demonstrate that the proposed method achieves high true positive rates (0.964, 0.985), true negative rates (0.985, 0.989), low false negative rates (0.036, 0.015), and false positive rates (0.022, 0.043). This indicates that the method effectively detects malware while reasonably minimizing false identifications.
H.3. Artificial Intelligence
Ali Zahmatkesh Zakariaee; Hossein Sadr; Mohamad Reza Yamaghani
Abstract
Machine learning (ML) is a popular tool in healthcare while it can help to analyze large amounts of patient data, such as medical records, predict diseases, and identify early signs of cancer. Gastric cancer starts in the cells lining the stomach and is known as the 5th most common cancer worldwide. ...
Read More
Machine learning (ML) is a popular tool in healthcare while it can help to analyze large amounts of patient data, such as medical records, predict diseases, and identify early signs of cancer. Gastric cancer starts in the cells lining the stomach and is known as the 5th most common cancer worldwide. Therefore, predicting the survival of patients, checking their health status, and detecting their risk of gastric cancer in the early stages can be very beneficial. Surprisingly, with the help of machine learning methods, this can be possible without the need for any invasive methods which can be useful for both patients and physicians in making informed decisions. Accordingly, a new hybrid machine learning-based method for detecting the risk of gastric cancer is proposed in this paper. The proposed model is compared with traditional methods and based on the empirical results, not only the proposed method outperform existing methods with an accuracy of 98% but also gastric cancer can be one of the most important consequences of H. pylori infection. Additionally, it can be concluded that lifestyle and dietary factors can heighten the risk of gastric cancer, especially among individuals who frequently consume fried foods and suffer from chronic atrophic gastritis and stomach ulcers. This risk is further exacerbated in individuals with limited fruit and vegetable intake and high salt consumption.
H.5. Image Processing and Computer Vision
Fatemeh Zare mehrjardi; Alimohammad Latif; Mohsen Sardari Zarchi
Abstract
Image is a powerful communication tool that is widely used in various applications, such as forensic medicine and court, where the validity of the image is crucial. However, with the development and availability of image editing tools, image manipulation can be easily performed for a specific purpose. ...
Read More
Image is a powerful communication tool that is widely used in various applications, such as forensic medicine and court, where the validity of the image is crucial. However, with the development and availability of image editing tools, image manipulation can be easily performed for a specific purpose. Copy-move forgery is one of the simplest and most common methods of image manipulation. There are two traditional methods to detect this type of forgery: block-based and key point-based. In this study, we present a hybrid approach of block-based and key point-based methods using meta-heuristic algorithms to find the optimal configuration. For this purpose, we first search for pair blocks suspected of forgery using the genetic algorithm with the maximum number of matched key points as the fitness function. Then, we find the accurate forgery blocks using simulating annealing algorithm and producing neighboring solutions around suspicious blocks. We evaluate the proposed method on CoMoFod and COVERAGE datasets, and obtain the results of accuracy, precision, recall and IoU with values of 96.87, 92.15, 95.34 and 93.45 respectively. The evaluation results show the satisfactory performance of the proposed method.
H.3.15.3. Evolutionary computing and genetic algorithms
Sh. Lotfi; F. Karimi
Abstract
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving ...
Read More
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This improved hybrid algorithm, namely MOEA/D-TS, uses the parallel computing capacity of MOEA/D along with the neighborhood search authority of TS for discovering Pareto optimal solutions. Our goal is exploiting the advantages of evolutionary algorithms and TS to achieve an integrated method to cover the totality of the Pareto front by uniformly distributed solutions. In order to evaluate the capabilities of the proposed method, its performance, based on the various metrics, is compared with SPEA, COMOEATS and SPEA2TS on well-known Zitzler-Deb-Thiele’s ZDT test suite and DTLZ test functions with separable objective functions. According to the experimental results, the proposed method could significantly outperform previous algorithms and produce fully satisfactory results.