Zahra Asghari Varzaneh; Soodeh Hosseini
Abstract
This paper proposed a fuzzy expert system for diagnosing diabetes. In the proposed method, at first, the fuzzy rules are generated based on the Pima Indians Diabetes Database (PIDD) and then the fuzzy membership functions are tuned using the Harris Hawks optimization (HHO). The experimental data set, ...
Read More
This paper proposed a fuzzy expert system for diagnosing diabetes. In the proposed method, at first, the fuzzy rules are generated based on the Pima Indians Diabetes Database (PIDD) and then the fuzzy membership functions are tuned using the Harris Hawks optimization (HHO). The experimental data set, PIDD with the age group from 25-30 is initially processed and the crisp values are converted into fuzzy values in the stage of fuzzification. The improved fuzzy expert system increases the classification accuracy which outperforms several famous methods for diabetes disease diagnosis. The HHO algorithm is applied to tune fuzzy membership functions to determine the best range for fuzzy membership functions and increase the accuracy of fuzzy rule classification. The experimental results in terms of accuracy, sensitivity, and specificity prove that the proposed expert system has a higher ability than other data mining models in diagnosing diabetes.
F.2.7. Optimization
B. Safaee; S. K. Kamaleddin Mousavi Mashhadi
Abstract
Quad rotor is a renowned underactuated Unmanned Aerial Vehicle (UAV) with widespread military and civilian applications. Despite its simple structure, the vehicle suffers from inherent instability. Therefore, control designers always face formidable challenge in stabilization and control goal. In this ...
Read More
Quad rotor is a renowned underactuated Unmanned Aerial Vehicle (UAV) with widespread military and civilian applications. Despite its simple structure, the vehicle suffers from inherent instability. Therefore, control designers always face formidable challenge in stabilization and control goal. In this paper fuzzy membership functions of the quad rotor’s fuzzy controllers are optimized using nature-inspired algorithms such as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). Finally, the results of the proposed methods are compared and a trajectory is defined to verify the effectiveness of the designed fuzzy controllers based on the algorithm with better results.