H.6.2.2. Fuzzy set
N. Mohammadkarimi; V. Derhami
Abstract
This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states ...
Read More
This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to improvement the above challenge. A zero order Sugeno fuzzy model used as fuzzy system structure. At first by using clustering obtains the number of rules and input membership functions. A set of candidate amounts for consequence parts of fuzzy rules is considered. Considering each pair of training data, according which rules fires and what is the output in the pair, the amount of probability of consequences candidates are change. In the next step, eligibility probability of each consequence candidate for all rules is determined. Finally, using these obtained probability, two probable outputs is generate for each input. The experimental results show superiority of the proposed approach rather than some available well-known approaches that makes reduce the number of rule and reduce system complexity.
F.2.7. Optimization
B. Safaee; S. K. Kamaleddin Mousavi Mashhadi
Abstract
Quad rotor is a renowned underactuated Unmanned Aerial Vehicle (UAV) with widespread military and civilian applications. Despite its simple structure, the vehicle suffers from inherent instability. Therefore, control designers always face formidable challenge in stabilization and control goal. In this ...
Read More
Quad rotor is a renowned underactuated Unmanned Aerial Vehicle (UAV) with widespread military and civilian applications. Despite its simple structure, the vehicle suffers from inherent instability. Therefore, control designers always face formidable challenge in stabilization and control goal. In this paper fuzzy membership functions of the quad rotor’s fuzzy controllers are optimized using nature-inspired algorithms such as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). Finally, the results of the proposed methods are compared and a trajectory is defined to verify the effectiveness of the designed fuzzy controllers based on the algorithm with better results.