H. Khodadadi; V. Derhami
Abstract
A prominent weakness of dynamic programming methods is that they perform operations throughout the entire set of states in a Markov decision process in every updating phase. This paper proposes a novel chaos-based method to solve the problem. For this purpose, a chaotic system is first initialized, and ...
Read More
A prominent weakness of dynamic programming methods is that they perform operations throughout the entire set of states in a Markov decision process in every updating phase. This paper proposes a novel chaos-based method to solve the problem. For this purpose, a chaotic system is first initialized, and the resultant numbers are mapped onto the environment states through initial processing. In each traverse of the policy iteration method, policy evaluation is performed only once, and only a few states are updated. These states are proposed by the chaos system. In this method, the policy evaluation and improvement cycle lasts until an optimal policy is formulated in the environment. The same procedure is performed in the value iteration method, and only the values of a few states proposed by the chaos are updated in each traverse, whereas the values of other states are left unchanged. Unlike the conventional methods, an optimal solution can be obtained in the proposed method by only updating a limited number of states which are properly distributed all over the environment by chaos. The test results indicate the improved speed and efficiency of chaotic dynamic programming methods in obtaining the optimal solution in different grid environments.
H.5. Image Processing and Computer Vision
H. Khodadadi; O. Mirzaei
Abstract
In this paper, a new method is presented for encryption of colored images. This method is based on using stack data structure and chaos which make the image encryption algorithm more efficient and robust. In the proposed algorithm, a series of data whose range is between 0 and 3 is generated using chaotic ...
Read More
In this paper, a new method is presented for encryption of colored images. This method is based on using stack data structure and chaos which make the image encryption algorithm more efficient and robust. In the proposed algorithm, a series of data whose range is between 0 and 3 is generated using chaotic logistic system. Then, the original image is divided into four subimages, and these four images are respectively pushed into the stack based on next number in the series. In the next step, the first element of the stack (which includes one of the four sub-images) is popped, and this image is divided into four other parts. Then, based on the next number in the series, four sub-images are pushed into the stack again. This procedure is repeated until the stack is empty. Therefore, during this process, each pixel unit is encrypted using another series of chaotic numbers (generated by Chen chaotic system). This method is repeated until all pixels of the plain image are encrypted. Finally, several extensive simulations on well-known USC datasets have been conducted to show the efficiency of this encryption algorithm. The tests performed showthat the proposed method has a really large key space and possesses high-entropic distribution. Consequently, it outperforms the other competing algorithms in the case of security