Document and Text Processing
A. Shojaie; F. Safi-Esfahani
Abstract
With the advent of the internet and easy access to digital libraries, plagiarism has become a major issue. Applying search engines is one of the plagiarism detection techniques that converts plagiarism patterns to search queries. Generating suitable queries is the heart of this technique and existing ...
Read More
With the advent of the internet and easy access to digital libraries, plagiarism has become a major issue. Applying search engines is one of the plagiarism detection techniques that converts plagiarism patterns to search queries. Generating suitable queries is the heart of this technique and existing methods suffer from lack of producing accurate queries, Precision and Speed of retrieved results. This research proposes a framework called ParaMaker. It generates accurate paraphrases of any sentence, similar to human behaviors and sends them to a search engine to find the plagiarism patterns. For English language, ParaMaker was examined against six known methods with standard PAN2014 datasets. Results showed an improvement of 34% in terms of Recall parameter while Precision and Speed parameters were maintained. In Persian language, statements of suspicious documents were examined compared to an exact search approach. ParaMaker showed an improvement of at least 42% while Precision and Speed were maintained.
H.8. Document and Text Processing
Sh. Rafieian; A. Baraani dastjerdi
Abstract
With due respect to the authors’ rights, plagiarism detection, is one of the critical problems in the field of text-mining that many researchers are interested in. This issue is considered as a serious one in high academic institutions. There exist language-free tools which do not yield any reliable ...
Read More
With due respect to the authors’ rights, plagiarism detection, is one of the critical problems in the field of text-mining that many researchers are interested in. This issue is considered as a serious one in high academic institutions. There exist language-free tools which do not yield any reliable results since the special features of every language are ignored in them. Considering the paucity of works in the field of Persian language due to lack of reliable plagiarism checkers in Persian there is a need for a method to improve the accuracy of detecting plagiarized Persian phrases. Attempt is made in the article to present the PCP solution. This solution is a combinational method that in addition to meaning and stem of words, synonyms and pluralization is dealt with by applying the document tree representation based on manner fingerprinting the text in the 3-grams words. The obtained grams are eliminated from the text, hashed through the BKDR hash function, and stored as the fingerprint of a document in fingerprints of reference documents repository, for checking suspicious documents. The PCP proposed method here is evaluated by eight experiments on seven different sets, which include suspicions document and the reference document, from the Hamshahri newspaper website. The results indicate that accuracy of this proposed method in detection of similar texts in comparison with "Winnowing" localized method has 21.15 percent is improvement average. The accuracy of the PCP method in detecting the similarity in comparison with the language-free tool reveals 31.65 percent improvement average.