A. Omondi; I.A. Lukandu; G.W. Wanyembi
Abstract
Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search ...
Read More
Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of relevant features and the exploration of features that have the potential to be relevant. In doing so, the study evaluated how effective the manipulation of the search component in feature selection is on achieving high accuracy with reduced dimensions. A control group experimental design was used to observe factual evidence. The context of the experiment was the high dimensional data experienced in performance tuning of complex database systems. The Wilcoxon signed-rank test at .05 level of significance was used to compare repeated classification accuracy measurements on the independent experiment and control group samples. Encouraging results with a p-value < 0.05 were recorded and provided evidence to reject the null hypothesis in favour of the alternative hypothesis which states that meta-heuristic search approaches are effective in achieving high accuracy with reduced dimensions depending on the outcome variable under investigation.
Mohsen Zare-Baghbidi; Saeid Homayouni; Kamal Jamshidi; A. R. Naghsh-Nilchi
Abstract
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms ...
Read More
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of three popular linear dimensionality reduction methods on the performance of three benchmark anomaly detection algorithms. The Principal Component Analysis (PCA), Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT) as DR methods, act as pre-processing step for AD algorithms. The assessed AD algorithms are Reed-Xiaoli (RX), Kernel-based versions of the RX (Kernel-RX) and Dual Window-Based Eigen Separation Transform (DWEST). The AD methods have been applied to two hyperspectral datasets acquired by both the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperspectral Mapper (HyMap) sensors. The evaluation of experiments has been done using Receiver Operation Characteristic (ROC) curve, visual investigation and runtime of the algorithms. Experimental results show that the DR methods can significantly improve the detection performance of the RX method. The detection performance of neither the Kernel-RX method nor the DWEST method changes when using the proposed methods. Moreover, these DR methods increase the runtime of the RX and DWEST significantly and make them suitable to be implemented in real time applications.