H.3.8. Natural Language Processing
Nura Esfandiari; Kourosh Kiani; Razieh Rastgoo
Abstract
Chatbots are computer programs designed to simulate human conversation. Powered by artificial intelligence (AI), these chatbots are increasingly used to provide customer service, particularly by large language models (LLMs). A process known as fine-tuning LLMs is employed to personalize chatbot answers. ...
Read More
Chatbots are computer programs designed to simulate human conversation. Powered by artificial intelligence (AI), these chatbots are increasingly used to provide customer service, particularly by large language models (LLMs). A process known as fine-tuning LLMs is employed to personalize chatbot answers. This process demands substantial high-quality data and computational resources. In this article, to overcome the computational hurdles associated with fine-tuning LLMs, innovative hybrid approach is proposed. This approach aims to enhance the answers generated by LLMs, specifically for Persian chatbots used in mobile customer services. A transformer-based evaluation model was developed to score generated answers and select the most appropriate answers. Additionally, a Persian language dataset tailored to the domain of mobile sales was collected to support the personalization of the Persian chatbot and the training of the evaluation model. This approach is expected to foster increased customer interaction and boost sales within the Persian mobile phone market. Experiments conducted on four different LLMs demonstrated the effectiveness of the proposed approach in generating more relevant and semantically accurate answers for users.
H.3.8. Natural Language Processing
Nura Esfandiari; Kourosh Kiani; Razieh Rastgoo
Abstract
A chatbot is a computer program system designed to simulate human-like conversations and interact with users. It is a form of conversational agent that utilizes Natural Language Processing (NLP) and sequential models to understand user input, interpret their intent, and generate appropriate answer. This ...
Read More
A chatbot is a computer program system designed to simulate human-like conversations and interact with users. It is a form of conversational agent that utilizes Natural Language Processing (NLP) and sequential models to understand user input, interpret their intent, and generate appropriate answer. This approach aims to generate word sequences in the form of coherent phrases. A notable challenge associated with previous models lies in their sequential training process, which can result in less accurate outcomes. To address this limitation, a novel generative chatbot is proposed, integrating the power of Reinforcement Learning (RL) and transformer models. The proposed chatbot aims to overcome the challenges associated with sequential training by combining these two approaches. The proposed approach employs a Double Deep Q-Network (DDQN) architecture with utilizing a transformer model as the agent. This agent takes the human question as an input state and generates the bot answer as an action. To the best of our knowledge, this is the first time that a generative chatbot is proposed using a DDQN architecture with the embedded transformer as an agent. Results on two public datasets, Daily Dialog and Chit-Chat, validate the superiority of the proposed approach over state-of-the-art models involves employing various evaluation metrics.