H.3.8. Natural Language Processing
S. Lazemi; H. Ebrahimpour-komleh
Abstract
Dependency parser is one of the most important fundamental tools in the natural language processing, which extracts structure of sentences and determines the relations between words based on the dependency grammar. The dependency parser is proper for free order languages, such as Persian. In this paper, ...
Read More
Dependency parser is one of the most important fundamental tools in the natural language processing, which extracts structure of sentences and determines the relations between words based on the dependency grammar. The dependency parser is proper for free order languages, such as Persian. In this paper, data-driven dependency parser has been developed with the help of phrase-structure parser for Persian. The defined feature space in each parser is one of the important factors in its success. Our goal is to generate and extract appropriate features to dependency parsing of Persian sentences. To achieve this goal, new semantic and syntactic features have been defined and added to the MSTParser by stacking method. Semantic features are obtained by using word clustering algorithms based on syntagmatic analysis and syntactic features are obtained by using the Persian phrase-structure parser and have been used as bit-string. Experiments have been done on the Persian Dependency Treebank (PerDT) and the Uppsala Persian Dependency Treebank (UPDT). The results indicate that the definition of new features improves the performance of the dependency parser for the Persian. The achieved unlabeled attachment score for PerDT and UPDT are 89.17% and 88.96% respectively.
H.3.2.2. Computer vision
M. Askari; M. Asadi; A. Asilian Bidgoli; H. Ebrahimpour
Abstract
For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to ...
Read More
For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to run in high speed. One of the methods to increase the processing speed is to use the computer parallel processing power. This paper introduces one of the best feature extraction methods for the handwritten recognition, called DPP (Derivative Projection Profile), which is employed for isolated Persian handwritten recognition. In addition to achieving good results, this (computationally) light feature can easily be processed. Moreover, Hamming Neural Network is used to classify this system. To increase the speed, some part of the recognition method is executed on GPU (graphic processing unit) cores implemented by CUDA platform. HADAF database (Biggest isolated Persian character database) is utilized to evaluate the system. The results show 94.5% accuracy. We also achieved about 5.5 times speed-up using GPU.