H.5. Image Processing and Computer Vision
A. Asilian Bidgoli; H. Ebrahimpour-Komle; M. Askari; Seyed J. Mousavirad
Abstract
This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, ...
Read More
This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help us obtain good performance by two schemes of task-parallelization and dataparallelization models. Parallel SPK algorithm ran over a cluster of computers and achieved less run time. A speedup value equal to 13 is obtained for a configuration with up to 5 Quad processors.