B.3. Communication/Networking and Information Technology
Roya Morshedi; S. Mojtaba Matinkhah; Mohammad Taghi Sadeghi
Abstract
IoT devices has witnessed a substantial increase due to the growing demand for smart devices. Intrusion Detection Systems (IDS) are critical components for safeguarding IoT networks against cyber threats. This study presents an advanced approach to IoT network intrusion detection, leveraging deep learning ...
Read More
IoT devices has witnessed a substantial increase due to the growing demand for smart devices. Intrusion Detection Systems (IDS) are critical components for safeguarding IoT networks against cyber threats. This study presents an advanced approach to IoT network intrusion detection, leveraging deep learning techniques and pristine data. We utilize the publicly available CICIDS2017 dataset, which enables comprehensive training and testing of intrusion detection models across various attack scenarios, such as Distributed Denial of Service (DDoS) attacks, port scans, botnet activity, and more. Our goal is to provide a more effective method than the previous methods. Our proposed deep learning model incorporates dense transition layers and LSTM architecture, designed to capture both spatial and temporal dependencies within the data. We employed rigorous evaluation metrics, including sparse categorical cross-entropy loss and accuracy, to assess model performance. The results of our approach show outstanding accuracy, reaching a peak of 0.997 on the test data. Our model demonstrates stability in loss and accuracy metrics, ensuring reliable intrusion detection capabilities. Comparative analysis with other machine learning models confirms the effectiveness of our approach. Moreover, our study assesses the model's resilience to Gaussian noise, revealing its capacity to maintain accuracy in challenging conditions. We provide detailed performance metrics for various attack types, offering insights into the model's effectiveness across diverse threat scenarios.
B.3. Communication/Networking and Information Technology
S. Mojtaba Matinkhah; Roya Morshedi; Akbar Mostafavi
Abstract
The Internet of Things (IoT) has emerged as a rapidly growing technology that enables seamless connectivity between a wide variety of devices. However, with this increased connectivity comes an increased risk of cyber-attacks. In recent years, the development of intrusion detection systems (IDS) has ...
Read More
The Internet of Things (IoT) has emerged as a rapidly growing technology that enables seamless connectivity between a wide variety of devices. However, with this increased connectivity comes an increased risk of cyber-attacks. In recent years, the development of intrusion detection systems (IDS) has become critical for ensuring the security and privacy of IoT networks. This article presents a study that evaluates the accuracy of an intrusion detection system (IDS) for detecting network attacks in the Internet of Things (IoT) network. The proposed IDS uses the Decision Tree Classifier and is tested on four benchmark datasets: NSL-KDD, BOT-IoT, CICIDS2017, and MQTT-IoT. The impact of noise on the training and test datasets on classification accuracy is analyzed. The results indicate that clean data has the highest accuracy, while noisy datasets significantly reduce accuracy. Furthermore, the study finds that when both training and test datasets are noisy, the accuracy of classification decreases further. The findings of this study demonstrate the importance of using clean data for training and testing an IDS in IoT networks to achieve accurate classification. This research provides valuable insights for the development of a robust and accurate IDS for IoT networks.