H.3.7. Learning
Laleh Armi; Elham Abbasi
Abstract
In this paper, we propose an innovative classification method for tree bark classification and tree species identification. The proposed method consists of two steps. In the first step, we take the advantages of ILQP, a rotationally invariant, noise-resistant, and fully descriptive color texture feature ...
Read More
In this paper, we propose an innovative classification method for tree bark classification and tree species identification. The proposed method consists of two steps. In the first step, we take the advantages of ILQP, a rotationally invariant, noise-resistant, and fully descriptive color texture feature extraction method. Then, in the second step, a new classification method called stacked mixture of ELM-based experts with a trainable gating network (stacked MEETG) is proposed. The proposed method is evaluated using the Trunk12, BarkTex, and AFF datasets. The performance of the proposed method on these three bark datasets shows that our approach provides better accuracy than other state-of-the-art methods.Our proposed method achieves an average classification accuracy of 92.79% (Trunk12), 92.54% (BarkTex), and 91.68% (AFF), respectively. Additionally, the results demonstrate that ILQP has better texture feature extraction capabilities than similar methods such as ILTP. Furthermore, stacked MEETG has shown a great influence on the classification accuracy.
Z. Shojaee; Seyed A. Shahzadeh Fazeli; E. Abbasi; F. Adibnia
Abstract
Today, feature selection, as a technique to improve the performance of the classification methods, has been widely considered by computer scientists. As the dimensions of a matrix has a huge impact on the performance of processing on it, reducing the number of features by choosing the best subset of ...
Read More
Today, feature selection, as a technique to improve the performance of the classification methods, has been widely considered by computer scientists. As the dimensions of a matrix has a huge impact on the performance of processing on it, reducing the number of features by choosing the best subset of all features, will affect the performance of the algorithms. Finding the best subset by comparing all possible subsets, even when n is small, is an intractable process, hence many researches approach to heuristic methods to find a near-optimal solutions. In this paper, we introduce a novel feature selection technique which selects the most informative features and omits the redundant or irrelevant ones. Our method is embedded in PSO (Particle Swarm Optimization). To omit the redundant or irrelevant features, it is necessary to figure out the relationship between different features. There are many correlation functions that can reveal this relationship. In our proposed method, to find this relationship, we use mutual information technique. We evaluate the performance of our method on three classification benchmarks: Glass, Vowel, and Wine. Comparing the results with four state-of-the-art methods, demonstrates its superiority over them.