H.3. Artificial Intelligence
M. Moradi Zirkohi
Abstract
In this paper, a high-performance optimal fractional emotional intelligent controller for an Automatic Voltage Regulator (AVR) in power system using Cuckoo optimization algorithm (COA) is proposed. AVR is the main controller within the excitation system that preserves the terminal voltage of a synchronous ...
Read More
In this paper, a high-performance optimal fractional emotional intelligent controller for an Automatic Voltage Regulator (AVR) in power system using Cuckoo optimization algorithm (COA) is proposed. AVR is the main controller within the excitation system that preserves the terminal voltage of a synchronous generator at a specified level. The proposed control strategy is based on brain emotional learning, which is a self-tuning controller so-called brain emotional learning based intelligent controller (BELBIC) and is based on sensory inputs and emotional cues. The major contribution of the paper is that to use the merits of fractional order PID (FOPID) controllers, a FOPID controller is employed to formulate stimulant input (SI) signal. This is a distinct advantage over published papers in the literature that a PID controller used to generate SI. Furthermore, another remarkable feature of the proposed approach is that it is a model-free controller. The proposed control strategy can be a promising controller in terms of simplicity of design, ease of implementation and less time-consuming. In addition, in order to enhance the performance of the proposed controller, its parameters are tuned by COA. In order to design BELBIC controller for AVR system a multi-objective optimization problem including overshoot, settling time, rise time and steady-state error is formulated. Simulation studies confirm that the proposed controller compared to classical PID and FOPID controllers introduced in the literature shows superior performance regarding model uncertainties. Having applied the proposed controller, the rise time and settling time are improved 47% and 57%, respectively.
H.6.2.2. Fuzzy set
M. Moradizirkohi; S. Izadpanah
Abstract
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID ...
Read More
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the control design parameters to achieve a desired performance. It is worthy of note that to form control law by considering practical considerations just the available feedbacks are used. It is beneficial for industrial applications wherethe real-time computation is costly. The proposed control approach has a fast response with a good tracking performance under the well-behaved control efforts. The stability is guaranteed in the presence of both structured and unstructured uncertainties. As a result, all system states are remained bounded. Simulation results on a two-link flexible-joint robot show the efficiency of the proposed scheme.