N. Taghvaei; B. Masoumi; M. R. Keyvanpour
Abstract
In general, humans are very complex organisms, and therefore, research into their various dimensions and aspects, including personality, has become an attractive subject of research. With the advent of technology, the emergence of a new kind of communication in the context of social networks has also ...
Read More
In general, humans are very complex organisms, and therefore, research into their various dimensions and aspects, including personality, has become an attractive subject of research. With the advent of technology, the emergence of a new kind of communication in the context of social networks has also given a new form of social communication to humans, and the recognition and categorization of people in this new space have become a hot topic of research that has been challenged by many researchers. In this paper, considering the Big Five personality characteristics of individuals, first, categorization of related work is proposed, and then a hybrid framework based on Fuzzy Neural Networks (FNN), along with, Deep Neural Networks (DNN) has been proposed that improves the accuracy of personality recognition by combining different FNN-classifiers with DNN-classifier in a proposed two-stage decision fusion scheme. Finally, a simulation of the proposed approach is carried out. The proposed approach is using the structural features of Social Networks Analysis (SNA), along with a linguistic analysis (LA) feature extracted from the description of the activities of individuals and comparison with the previous similar researches. The results, well-illustrated the performance improvement of the proposed framework up to 83.2 % of average accuracy on myPersonality dataset.
A. Salehi; B. Masoumi
Abstract
Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to researchers for simplicity of implementation, efficiency, and the low number of parameters. The BBO Algorithm in optimization problems is one of the new algorithms which have been developed based on the biogeography ...
Read More
Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to researchers for simplicity of implementation, efficiency, and the low number of parameters. The BBO Algorithm in optimization problems is one of the new algorithms which have been developed based on the biogeography concept. This algorithm uses the idea of animal migration to find suitable habitats for solving optimization problems. The BBO algorithm has three principal operators called migration, mutation and elite selection. The migration operator plays a very important role in sharing information among the candidate habitats. The original BBO algorithm, due to its poor exploration and exploitation, sometimes does not perform desirable results. On the other hand, the Edge Assembly Crossover (EAX) has been one of the high power crossovers for acquiring offspring and it increased the diversity of the population. The combination of biogeography-based optimization algorithm and EAX can provide high efficiency in solving optimization problems, including the traveling salesman problem (TSP). This paper proposed a combination of those approaches to solve traveling salesman problem. The new hybrid approach was examined with standard datasets for TSP in TSPLIB. In the experiments, the performance of the proposed approach was better than the original BBO and four others widely used metaheuristics algorithms.