M. Banejad; H. Ijadi
Abstract
This paper presets a method including a combination of the wavelet transform and fuzzy function approximation (FFA) for high impedance fault (HIF) detection in distribution electricity network. Discrete wavelet transform (DWT) has been used in this paper as a tool for signal analysis. With studying different ...
Read More
This paper presets a method including a combination of the wavelet transform and fuzzy function approximation (FFA) for high impedance fault (HIF) detection in distribution electricity network. Discrete wavelet transform (DWT) has been used in this paper as a tool for signal analysis. With studying different types of mother signals, detail types and feeder signal, the best case is selected. The DWT is used to extract the best features. The extracted features have been used as the FFA Systems inputs. The FFA system uses the input-output pairs to create a function approximation of the features. The FFA system is able to classify the new features. The combined model is used to model the HIF. This combined model has the high ability to model different types of HIF. In the proposed method, different kind of loads including nonlinear and asymmetric loads and HIF types studied. The results show that the proposed method is able to distinguish no fault and HIF state with high accuracy.
Morteza Haydari; Mahdi Banejad; Amin Hahizadeh
Abstract
Restructuring the recent developments in the power system and problems arising from construction as well as the maintenance of large power plants lead to increase in using the Distributed Generation (DG) resources. DG units due to its specifications, technology and location network connectivity can improve ...
Read More
Restructuring the recent developments in the power system and problems arising from construction as well as the maintenance of large power plants lead to increase in using the Distributed Generation (DG) resources. DG units due to its specifications, technology and location network connectivity can improve system and load point reliability indices. In this paper, the allocation and sizing of distributed generators in distribution electricity networks are determined through using an optimization method. The objective function of the proposed method is based on improving the reliability indices, such as a System Average Interruption Duration Index (SAIDI), and Average Energy Not Supplied (AENS) per customer index at the lowest cost. The optimization is based on the Modified Shuffled Frog Leaping Algorithm (MSFLA) aiming at determining the optimal DG allocation and sizing in the distribution network. The MSFLA is a new mimetic meta-heuristic algorithm with efficient mathematical function and global search capability. To evaluate the proposed algorithm, the 34-bus IEEE test system is used. In addition, the finding of comparative studies indicates the better capability of the proposed method compared with the genetic algorithm in finding the optimal sizing and location of DG’s with respect to the used objective function.