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Abstract 

In this work, a feature-based technique is proposed for the camera pose estimation in a sequence of wide-

baseline images. Camera pose estimation is an important issue in many computer vision and robotics 

applications such as augmented reality and visual SLAM. The developed method can track captured images 

taken by a hand-held camera in room-sized workspaces with a maximum scene depth of 3-4 m. This system 

can be used in unknown environments with no additional information available from the outside world 

except in the first two images used for initialization. Pose estimation is performed using only natural feature 

points extracted and matched in successive images. In wide-baseline images, unlike consecutive frames of a 

video stream, displacement of the feature points in consecutive images is notable, and hence, cannot be 

traced easily using the patch-based methods. To handle this problem, a hybrid strategy is employed to obtain 

accurate feature correspondences. In this strategy, first, initial feature correspondences are found using the 

similarity between their descriptors, and then the outlier matchings are removed by applying the RANSAC 

algorithm. Further, in order to provide a set of required feature matchings, a mechanism based on the 

sidelong result of robust estimator is employed. The proposed method is applied on indoor real data with 

images in VGA quality (640 × 480 pixels), and on average, the translation error of camera pose is less than 2 

cm, which indicates the effectiveness and accuracy of the developed approach. 

 

Keywords: Camera Pose Estimation, Feature Extraction, Feature Correspondence, Bundle Adjustment, 

Depth Estimation. 

1. Introduction 

Camera pose estimation is one of the key issues in 

computer vision. In many applications, it is 

critical to know where the camera is located. The 

accurate and robust estimation of the camera 

position and orientation is essential for a variety 

of applications including 3D reconstruction, 

augmented reality, and visual Simultaneous 

Localization and Mapping (visual SLAM). 

Camera tracking for a sequence of video frames is 

exactly the problem of camera pose estimation for 

each frame. For the adjacent frames of a video 

sequence, the camera pose has a negligible 

change. Moreover, the motion vector of the scene 

features between successive frames can be 

discovered using a simple patch-based similarity 

measure. Conversely, for wide-baseline 

sequences, estimation of the motion vector for 

feature points is not a simple task. In the computer 

vision literature, wide-baseline images refer to a 

condition where the distance between the camera 

center for adjacent images is noticeable or the 

camera orientation changes remarkably. 

Moreover, once the internal parameters of the 

camera change (i.e. zooming), the resulting 

images simulate the wide-baseline situation. In 

contrast, when the camera motion is smooth, the 

camera center for adjacent frames are close to 

each other. This leads to a negligible displacement 

of the points of interest in consecutive frames. 

This case is usually referred to as narrow-baseline.  

There are situations where it is more reasonable to 

estimate camera pose for a sequence of wide-

baseline images. Reducing the computational cost, 

some video tracking algorithms are based upon 

the selected key-frames. These key-frames often 

form a sequence of wide-baseline frames. Also for 



Kabiri & Hoseini/ Journal of AI and Data Mining, Vol 6, No 1, 2018. 
 

94 

 

low-quality images (like VGA), a quick 

movement of camera may result in a sequence of 

several blurred frames. Feature tracking along 

blurred frames is a challenging task. Hence, it is 

better to ignore them. The wide-baseline situation 

is resulted due to ignoring the successive frames. 

Furthermore, using a limited number of images 

may considerably speed up the reconstruction 

process. 

Nevertheless, it is worth noting that the wide-

baseline setting often allows a more accurate 

depth calculation. An increase in the depth 

accuracy is due to a larger, and hence, more 

reliable measurable disparities in the images. 

However, there are configurations (i.e. when the 

camera has rotation about its optical axis) in 

which the motion vector for tracked features 

varies significantly. In these situations, some 

features may introduce small disparities, while 

others have remarkable displacements. 

For a wide-baseline case, determining the feature 

correspondences is a challenging task. However, 

with the advent of local descriptors, finding 

similar regions within the images taken from 

different viewpoints became promising. In the 

subsequent sections, some outstanding descriptor-

based feature extractors will be introduced. 

Occlusion is yet another problem for the wide-

baseline case. Some features may be occluded 

when the camera undergoes remarkable changes 

in viewpoint. Occlusion usually reduces the 

number of matched features. It may also lead to 

false matchings. Generally, mitigating the 

undesired effects of occlusion or any problem that 

produces false matchings, robust estimators such 

as Least Median (LMed) [1] or Random Sample 

Consensus (RANSAC) [2] is employed. As a 

result, the incorrect feature correspondences are 

eliminated. 

In this paper, the problem of camera pose 

estimation for a sequence of wide-baseline 

monocular images is addressed. The images are 

captured with a single camera from adjacent 

locations in such a way that the overlapping 

regions in consecutive images are adequate for 

obtaining the common features. On the other 

hand, the area of overlapping regions is not large 

enough to provide the feature point 

correspondences through correlation windows.  

Camera pose estimation and 3D reconstruction are 

tightly coupled, i.e. to estimate the parameters of 

the camera motion, it is necessary to have 

sufficient information about the 3D structure of 

the scene. On the other hand, triangulating depth 

of newly extracted features, it is necessary to have 

the camera pose from two or more views 

available. 

 

1.1. Pose parameters 

As depicted in figure 1, a moving camera captures 

images of the environment from arbitrary 

positions. For each view, pose of the camera is 

composed of two parts: the rotation matrix 
3 3

R


R , which is an orthogonal matrix with 

det( ) 1R   that describes the orientation of 

camera, and the translation vector 
3

tR  that 

indicates the distance between the origin of 

camera coordinate system and the world 

coordinate system. Accordingly, (1) is established 

for every 3D point in the scene [3]. 

c w
X RX t   (1) 

,c wX X are the coordinates of the 3D point with 

respect to the camera and world coordinate 

systems, respectively. 
 

 

Figure 1. Multi-view camera pose estimation. 

The structure of this paper is as what follows. The 

related works are discussed in Section 2. In 

Section 3, the proposed approach will be 

explained in details. The experimental results are 

presented in Section 4. Finally, the conclusions 

and future works are included in Section 5. 

 

2. Relative work 

Camera tracking or estimation of camera pose 

parameters for sequence of video frames that 

represents the narrow-baseline situation has been 

widely studied. In this research area, two main 

solution categories exist, i.e. Structure from 

Motion (SfM) and filtering. The SfM approach 

uses the epipolar geometry principles to solve the 

problem. Often to refine the estimated parameters 

of the camera and the depth of feature points, an 

additional optimization stage is required. Bundle 

Adjustment (BA) [4] and pose map [5] are two 

main strategies used for this purpose. Parallel 

Tracking and Mapping is a prominent work that 

uses BA to optimize the estimated camera Pose 

[6]. Some researchers have employed the pose 
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map optimization technique to improve the 

accuracy of the estimated camera trajectory [7, 8]. 

In filtering approaches, the problem is cast in the 

shape of a dynamic system in which the camera 

pose parameters constitute the internal state of the 

system. Furthermore, the state transition of the 

system is usually a non-linear relation based on 

the physical nature of rigid body motion in 3D 

space. Meanwhile, the projection of 3D features 

on image plane using current rotation and 

translation of camera introduces the observation 

model of the system. Mostly, due to the non-linear 

nature of transition and observation model, 

variants of Kalman filter such as Extended 

Kalman Filter (EKF) and Unscented Kalman 

Filter (UKF) are used for pose estimation [9, 10]. 

Particle Filter (PF) is another solution in the 

context of dynamic systems, which is utilized for 

this purpose [11-13]. As opposed to the narrow-

baseline case, the filtering techniques for wide-

baseline are not easily applicable. This is due to 

the fact that in filtering approaches, the motion 

model definition is usually meaningful for small 

changes in the system state. However, it is not the 

case for the wide-baseline condition. Hence, it is 

more realistic to exploit SFM to handle Camera 

pose estimation for the wide-baseline images. 

In any case, the necessary information to obtain 

orientation and translation of the camera is a set of 

point correspondences in two or more views. If 

these correspondences are given in 3D-3D 

matchings, then it is the subject of absolute 

orientation problem that can be solved easily 

using closed-form solutions proposed for this 

problem [14-16]. When the supplied 

correspondences are in the form of 3D-2D 

matchings, then the problem is known as 

Perspective n Point (PnP) in computer vision 

literature for which Several solutions are proposed 

[17, 18]. Sometimes the available information is 

only some 2D-2D correspondences. In such 

circumstances, using the notion of fundamental 

matrix and epipolar geometry, the camera pose 

parameters are estimated with ambiguity. On the 

other hand, multiple solutions are obtained. In 

order to achieve a unique solution, it is necessary 

to have extra information about the observed 

scene. 

It is well-known that receiving no information 

about the depth of extracted scene features 

produces drift in camera trajectory, and increases 

the cumulative error, i.e. for a freely-moving 

camera, the captured images provide information 

about the geometry of the scene that can be 

recovered up to a scale factor using the multi-view 

geometry. Dealing with this problem, some 

researches put markers or fiducials with known 

structures in the scene to control the cumulative 

error [19, 20]. Using multiple markers in the scene 

could also increase the accuracy of camera pose 

parameters [21]. 

Exploiting reference calibrated images is another 

technique for camera tracking in unknown 

environments [22, 23]. The calibrated images are 

those with known 3D coordinate for a sparse set 

of features. With reference images, the process of 

pose estimation reduces to data association 

between each new image and the reference 

images. 

The two main contributions of this work are 

summarized as follow: 

1)  Feature correspondences. In order to 

provide a sufficient number of matched 

features, a combination of feature matchings 

based on similarity of feature descriptors and 

homography matrix is adopted. 

2) Propagation of depth information. In order 

to enable the proposed system for estimation 

of the camera pose of each incoming image, a 

novel strategy is adopted to propagate depth 

information of already extracted features to 

subsequent images. 

 

3. Proposed method 

An overview of the proposed framework is 

initially presented in figure 2. In the proposed 

method, after the arrival of each new image, the 

process of camera pose estimation is performed in 

two stages, obtaining the matched features and 

estimation of camera pose parameters. To provide 

robust matchings, the extraction of salient and 

repetitive feature points is necessary. The feature 

extraction step will be elaborated in section 3.2. 

Thereafter, the extracted feature points should be 

matched with those of the previous image. The 

matchings obtained that are robust enough are 

used for estimation of the camera pose 

parameters. In Section 3.3, the issue of finding the 

feature point correspondences and refining them 

will be discussed. In the next step, camera pose 

for the current image is retrieved by utilizing the 

obtained correspondences. Since retrieving the 

camera pose parameters is based upon 3D-2D 

matchings, it is required that the depth of 

sufficient number of feature points among the 

obtained correspondences already estimated. 

In the reported method, a collection of feature 

points with a known 3D coordinate is updated for 

each new image. We called this collection as fully 

active features. This means that with every new 

image, the newly extracted feature points that 

were matched in two recent images will be added 
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New incoming image 

Extract feature 

points 

Find matched 

features 
Refine 

matchings 

Estimate 

camera pose 

Previous image 

feature points 

Triangulate for new 

features 

Features with known 

3D coordinate 

to the previously collected feature set. 

Furthermore, estimating the pose parameters of 

the camera based on 3D-2D matchings, the feature 

points with known 3D coordinates are selected 

from this collection. It should be noted that the 3D 

position of fully active features is measured with 

respect to the world coordinate system. 

 

 

Figure 2. Overview of proposed approach. 

Since the unknown parameters for camera pose 

estimation and depth of feature points are 

estimated incrementally, the associated error is 

accumulative. Minimizing the accumulative error, 

in the final step, a windowed bundle adjustment is 

applied to optimize the estimated pose parameters 

for all the input images. 

In the proposed framework, there is no way to 

recover the depth of newly added features except 

using the structure of features with determined 3D 

position. From a set of 2D-2D matchings in two or 

more images, it is only possible to estimate the 

depth of corresponding features with a scale factor 

[24]. This limitation enforces the algorithm to 

start from a calibrated image, i.e. initially, a small 

amount of prior information about the scene in the 

form of known targets should be available. In the 

proposed system, a chessboard with known size is 

placed in front of the camera. This provides a set 

of feature points (corners of the chessboard cells) 

with known positions in the world coordinate 

system that allows us to estimate camera pose 

parameters for the first and second images. At the 

same time, natural features extracted and matched 

are triangulated using camera poses in the first 

and second images. Then the depth information of 

these features will be propagated to the 

subsequent images. 

 

3.1. Wide-baseline situation 

As explained earlier, in wide-baseline images, 

displacement of the corresponding feature points 

are noticeable with respect to the image size. This 

issue is illustrated in figure 3. The feature point 

displacement in two images depends upon the 

amount of changes in the pose parameters of the 

camera and the depth of the observed scene. If the 

camera undergoes a significant change in position 

or orientation for two consecutive poses, then the 

associated images will be less overlapped. Hence, 

using the traditional patch-based similarity 

measures such as the sum of squared differences 

or normalized cross-correlation are not practical 

for data association. This is due to the fact that 

these measures are convenient for small changes 

in the camera view, which is not the case in the 

wide-baseline situation. Moreover, in cases where 

the distance of the camera from the scene is 

notable, applying a slight motion to the camera 

results in a noticeable displacement of the feature 

points. The aforementioned issues in the wide-

baseline condition make the problem of feature 

matching a challenging task.  

In addition, each feature is only visible in a small 

number of images. This problem causes that the 

necessity for triangulation of newly extracted 

features occurs more frequently. 
 

 
Figure 3. Wide-baseline condition (a) and (b) sparse set of 

feature correspondences (c) displacement of 

corresponding features in X and Y directions. 
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3.2. Feature extraction 

In the proposed approach, in order to determine 

the relationship between images, a feature-based 

method is utilized. In the feature-based methods, 

different entities such as points, lines, region or 

objects can be selected as the feature. However, 

among them, the point features are better than the 

others since they are easier to detect and match. In 

addition, the number of detected feature points is 

usually more than the other types of features, and 

hence, it is more likely to observe them in the 

successive images. Many algorithms are presented 

to extract the feature points in images. The 

corners are well-known feature points. They are 

usually considered as the intersection of two 

edges. The corners may also be defined as a point 

where two dominant and different edge directions 

exist in its local neighbourhood.  

Harris [25] and SUZAN [26] are famous corner 

detectors used in many image processing and 

computer vision areas such as image registration, 

image mosaicing, panorama stitching, and object 

recognition. The corners are suitable features to 

track in video frames since they are easily 

detected in successive frames and can be matched 

using patch-based approaches with simple 

similarity measures such as the sum of absolute 

differences or normalized cross-correlation. In 

contrast, for wide-baseline images, as explained 

earlier, image pixels undergo a remarkable 

displacement. Hence, it is necessary to employ 

features that contain descriptor. Recently, several 

descriptor-based feature extraction approaches 

have been proposed. Scale Invariant Feature 

Transform (SIFT) [27], Speeded-Up Robust 

Features (SURF) [28], and Binary Robust 

Invariant Scalable Keypoints (BRISK) [29] are 

three strong and reliable ones. They first detect 

the location of the feature points and then 

construct the associated descriptor vector from the 

information of image in the neighborhood of the 

detected location. The related descriptor vectors 

are invariant to scale, rotation, viewpoint, and 

illumination changes. This allows us to find the 

corresponding features using the associated 

descriptors by means of a simple similarity 

measure. 

In the proposed method, the SIFT feature points 

were employed due to their high distinctiveness 

and repeatability. The generated descriptors for 

SIFT features are very powerful for match finding 

along enough overlapped images. 

 

3.3. Feature matching and refinement 

Providing accurate feature correspondences is a 

significant step for estimating a robust and precise 

camera pose parameters. As explained earlier, 

tracking feature points is highly susceptible to the 

production of incorrect matched features. 

Handling this problem, we require following the 

"detect and match" strategy to obtain the feature 

correspondences. In other words, initially, each 

incoming image SIFT features are detected, and 

then the presence of shared features in both the 

current and earlier images are matched. This task 

is achieved using a similarity measure between 

the feature descriptors. In the reported work, the 

cosine distance was used for this purpose, as 

given in (2). 

.
( , ) 1-

.

T

i j

i j

i j

D D
d D D

D D
  (2) 

where, ||.|| denotes the L2-norm. The L2-norm of 

descriptor difference is also possible but it is 

computationally more expensive. Since the SIFT 

descriptors have unit norm, the similarity measure 

between them is calculated by a simple dot 

product.  

The feature correspondences obtained by 

comparing the feature descriptors may include 

mismatched feature pairs, i.e. several features in 

the first image might be matched with a shared 

feature in the second image as the closest one with 

a minimum cosine distance. Deciding which 

matched feature in the second image is the correct 

one, the mutual consistency check is established. 

In order to do so, the features in the second image 

are paired with the features in the first one, and 

those that are matched in both directions are 

selected. This routine guarantees the mutual 

consistency between the matched features. 

Thus the matched features may contain wrong 

matchings due to noise or repetitive textures. 

Wrong correspondences are called outliers that 

violate spatial consistency of image. For an 

accurate estimation of camera pose, these outliers 

should be rejected. The outlier removal is based 

upon the geometric constraints introduced by the 

motion model. RANSAC is a standard technique 

used for estimating the parameters of a model in 

the presence of outliers. The RANSAC algorithm 

produces the inlier correspondences as well as the 

parameters of the assumed model. These 

parameters are encoded into a 3 × 3 homography 

matrix (H), and for every feature correspondence 

1 2
u u , the following equation holds: 

2 1u Hu   (3) 

u1, u2 are in homogeneous coordinates, and λ is 

the projective scaling factor. Since H is computed 

using the inlier correspondences, given u1 and H, 

the approximate location of u2 in the second 
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image can be obtained. This issue will be 

exploited in the next section to find the paired 

features in specific situations. 

In figure 4, feature matchings by comparison of 

the descriptor vectors are marked with empty red 

circles. The refined matchings are also illustrated 

with blue asterisks surrounded by a red circle. 

Some matchings depicted with empty red circles 

are not selected after refinements, even though 

they are visually appeared correct matchings. It is 

due to the fact that during the matching 

refinement operation, some visually correct 

matchings are rejected to ensure that the selected 

matchings are reliable. 

 

 
Figure 4. Feature points marked with empty red circles 

are output of feature matching routine, and those marked 

with blue asterisks surrounded in red circles are refined 

matchings based on RANSAC algorithm. 

 

3.4. Providing 3D-2D matchings 

In the core of our system, the pose parameters are 

estimated using a set of 3D-2D feature 

correspondences. In the previous section, it was 

explained how the set of paired features were 

adopted. Now it is necessary to provide a 

collection of 3D-2D feature matchings. However, 

in order to be able to estimate camera pose for the 

current image, it is required to have at least four 

non-coplanar 3D-2D feature matchings. 

Moreover, to achieve more accurate and reliable 

results, it is better to include more matchings. 

Figure 5 shows the overall scheme of the adopted 

strategy to manage the obtained feature matchings 

to estimate the camera pose and to triangulate the 

partially active features. Let k  be the set of SIFT 

features extracted in the current image (Ik) and 

1 1,k k    be the set of fully active and partially 

active features in the previous image (Ik-1). With 

fully active features, we mean those features 

whose depths are already estimated, and the 

partially active features are those with unknown 

depth but potential for matching with extracted 

features of the next image. From the matchings 

obtained in the current image, we define FAk, PAk 

as the set of ordered pairs of matchings 

established with fully (red arrows) and partially 

(green arrows) active features of Ik-1, respectively. 

1

1

{( ) | , },

{( ) | , }

k 1 2 1 k 2 k

k 1 2 1 k 2 k

u ,u u u

u ,u u u

FA

PA

 

 





  

  
 (4) 

If the number of matchings in FAk is greater than a 

pre-defined threshold, then the camera pose is 

computed using a method that will be explained in 

the next section. Immediately after that, the 

features belonging to 1k   are triangulated, and 

therefore, added to k for the next stage. On the 

other hand, they are moved from the partially 

active to fully active features list. 

 

 
Figure 5. Overall scheme of adopted strategy followed to 

manage fully and partially active features. 

 

Conversely, if the cardinality of FAk is less than 

the aforementioned threshold, to recover more 

accurate pose parameters, we must provide more 

correct matchings. Doing so, the features 

belonging to 1k  that are not matched to any 

member of k are moved to the new image using 

the homography matrix obtained from the 
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correspondence refinement routine applied in the 

previous step. Some of these moved features may 

appear outside the image boundaries, which will 

be discarded. Moreover, the moved features may 

not accurately coincide with their true location but 

they can be searched within a window centred at 

the moved feature (blue window). Since the 

images are wide-baseline, searching for a precise 

location of matching feature within this window 

using simple patch-based similarity measures may 

lead to erroneous results. 

As depicted in figure 6, 1u  is moved to 
'

1u  using 

the homography matrix, while 2u  is its true 

correspondence. Hence, in order to obtain correct 

matchings, a square patch around the feature in Ik-1 

is warped using the homography matrix (red 

patch), and then this warped patch is searched in 

the foregoing window using normalized cross 

correlation. 

 

 
Figure 6. Obtaining correspondence based on 

homography matrix. 

 

3.5. Pose estimation 

After determination of matched points, we 

proceed to estimate the camera pose parameters. 

As explained in the algorithm outline, the camera 

orientation and translation for each incoming 

image is estimated directly with respect to the 

world referential system. As illustrated in figure 7, 

given a set of 3D-2D feature correspondences, we 

aim at finding camera pose parameters embedded 

in the camera projection matrix. Let Xw be the 

world coordinate of a scene point and u be its 

projection on image plane; then (5) holds. 

( )w wu PX K RX T    , with 

0

0K 0

0 0 1

x

y

u

v

 



 
 


 
  

 
(5) 

where, P is the camera matrix, and R and T are the 

rotation matrix and translation vector, 

respectively. K is the calibration matrix that 

contains intrinsic parameters of the camera. 

,x y   represent the focal length in terms of 

pixels, and   is the skew coefficient between the 

x, y axes and is often zero. 0 0,u v  are the principal 

point of the camera, which would be ideally at the 

centre of the image.  

In this paper, in order to estimate the parameters 

of the camera pose in each step, the EPnP method, 

which has been proposed by Lepetit et al. [30] is 

used. EPnP is a non-iterative method with 

computation complexity of order O(n). As most of 

the solutions to the PnP problem, it tries to 

estimate the coordinate of reference points in the 

camera coordinate system. Then the orientation 

and translation of the camera with respect to the 

world coordinate is computed based on a series of 

3D-3D matchings using the solutions proposed for 

absolute orientation problem. 

 

 
Figure 7. Camera pose estimation using 3D-2D feature 

points matchings. 

 

3.6. Depth Estimation for new features 

Given a feature correspondence 1i iu u   and 

camera poses encoded in camera projection 

matrices Pi and Pi+1, we are going to estimate the 

3D coordinate of the associated features in the 

world coordinate system. According to (5), we 

have: 

,1

,2

,3

T

i

T

i i i w i

T

i

w

P

u PX P

P

X  

 
 
 
 
 

, (6) 

where, ,
i w

u X are in homogenous coordinate, and 

,1 ,2 ,3, ,T T T

i i iP P P  are rows of the camera matrix Pi. 

Expanding (6), three equations with respect to 

unknown components of Xw are constructed, 

which are not linearly independent. Actually, two 

of them are independent, as given in (7). 

,3 ,1

,3 ,2

T T

i i i w

T T

i i i w

P x P X

P y P X

 



 (7) 

 

The same equations hold for 
1i

u


, as follow: 
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1,3 1 1,1

1,3 1 1,2

T T

i i i w

T T

i i i w

P x P X

P y P X

  

  

 



 (8) 

 

Putting together (7) and (8) and writing them in 

the matrix form, a linear system with four 

equations in the form of AX = 0 is obtained. This 

matrix equation can be solved using Singular 

Value Decomposition (SVD). It is worth noting 

that if a feature appears in more than two images, 

then the number of equations in the AX = 0 

equation increase by the number of two for any 

added image. Considering the appearance of a 

feature in more than two images, the estimated 

depth for the corresponding point in the scene is 

more robust. 

The above computations are applied to all new 

feature correspondences that are selected for 

inclusion in fully active features. This increases 

the possibility of finding enough matchings for 

the next incoming image. 

 

4. Experimental results 

We used a freely moving hand-held camera to 

capture images of a calibrated scene. The captured 

images were selected so that they properly 

represented a wide-baseline situation. Resolution 

of the captured images was 480 × 640 pixels and 

the algorithm works with greyscale images. It was 

assumed that the camera was calibrated in 

advance. The camera calibration was performed 

utilizing a flexible technique presented by 

zhengyou [31]. To this end, a collection of images 

of a chessboard with a known size taken from 

different viewpoints were used to estimate the 

intrinsic parameters of the camera. The 

correspondence between corners of chessboard 

cells and their projection on each image were then 

detected. Thereafter, the internal parameters of the 

camera were estimated by means of a closed-form 

solution using the correspondences obtained 

between the planar model and its image. The 

parameters obtained were then refined using a 

non-linear refinement based on the maximum 

likelihood. 

A significant problem in evaluating the accuracy 

of the camera pose estimation methods is the lack 

of ground-truth data. Obtaining true pose of a 

moving camera w.r.t. world coordinate system is 

not a simple task. Using an accurate motion 

capture system with multiple high speed cameras 

is a good choice for generation of the ground-truth 

data. As an example of this method, Sturm et al. 

[32] have employed a motion capture system to 

construct a benchmark for the evaluation of RGB-

D SLAM systems. It is also possible to generate 

the translation part of the camera pose manually. 

Davison et al. [33] have used a hand-held camera 

equipped with a plump-line of known length and a 

hanging weight skimmed to a pre-prepared 

rectangular track on a cluttered desk to measure 

the ground-truth 3D coordinate of camera at 

corners of track. It is clear that measuring 

orientation of the camera manually is not very 

accurate. In order to overcome this limitation, a 

marker-based method was employed to generate 

the Ground-Truth data for camera pose. 

Calculation of the camera pose parameters is 

accompanied by correspondence of easily 

detectable marker points on a planar surface and 

their projections on image plane. In our 

experiments, the scene was a computer desk 

cluttered with various objects. A planar 

chessboard pattern (our marker) was stuck on it 

that was used for calculation of ground-truth 

camera pose. 

At the beginning, for the first two frames, the 

camera pose parameters were calculated using 

planar chessboard markers. From the third frame 

onwards, estimation of camera pose parameters 

was carried out exploiting the natural features that 

were correctly matched as explained earlier. 

Figure 8(a) shows the visibility of the extracted 

features in the input images. As it could be seen, 

most of the features were visible only in small 

numbers of images (four images in our 

experiment). In figure 8(b), the number of 

matched features before refinement after 

refinement and the matchings with a known depth 

is shown. It is obvious that the number of refined 

matchings is less than the number initial 

matchings and greater than the number of 

matchings with a known depth, which is an 

expected result. 

Figure 9 illustrates the trajectory of camera in a 

3D space as well as its projection on the XY 

plane. In spite of getting no information from the 

environment, the camera was tracked with 

sufficient precision, and its pose was estimated 

very close to the ground-truth data. Assume that 

,k k

est truet t  is the estimated and Ground-Truth 

translation part of camera pose and 
k

te  is the 

associated error computed for Ik, as given in (9). 

, , ,( - ) ( , , )k k k k k k T

t est true t x t y t ze abs t t e e e   (9) 
 

where, abs(.) denotes the absolute value function. 

Similarly, , ,k k k

est true rr r e are defined for the rotation 

part of camera pose. It is worth noting that the 

components of rotation error were given in Euler 

angle representation and measured in radian. 
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Figure 8. (a) Visibility of extracted features in images (b) 

Number of matched features before RANSAC after 

RANSAC and those matched with features whose depth is 

known. 

 

 
Figure 9. Ground-Truth and estimated trajectory of 

camera (a) in 3D and (b) projection on XY plane. 

 
Figure 10. Estimated camera translation vector against 

Ground-Truth data. 

 

Accordingly, the statistics of translation and 

rotation errors over all images are detailed in table 

1. In figure 10, the translation components of 

camera pose are visualized against the computed 

Ground-Truth data. As it is shown, camera pose 

drift is negligible and the true trajectory of the 

camera has properly been followed. 

Figure 11(a) shows the relative translation of 

camera center between successive images 

obtained from the Ground-Truth data. Figure 

11(b) depicts the number of refined matchings. As 

illustrated in these two figures, there is a close 

relationship between the number of refined 

matchings and the translation part of camera 

relative pose. On the other hand, with increase in 

the distance of camera center in two consecutive 
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images, the number of correct matchings was 

reduced. 

 

 
Figure 11. (a) Ground-Truth relative translation (b) 

Number of refined matched features between successive 

frames. 

 

Table 1. Tranlation and rotation error. 

 

Translation error 

(mm) 
Rotation error (radian) 

,t xe   ,yte  ,zte  ,r xe  ,r ye  ,r ze  

Mean 8.41 11.89 21.46 0.17 0.26 0.08 

Std 5.08 6.79 13.34 0.12 0.11 0.07 

Min 0.94 0.34 0.13 0.03 0.01 0.01 

Max 24.19 21.05 51.46 0.51 0.46 0.29 

 

5. Conclusions and future works 

In this work, a camera pose estimation approach 

was proposed for a sequence of wide-baseline 

images. It was considered that the camera was 

calibrated, and the overlapping area of the 

successive images was enough for acquiring a 

sufficient number of corresponding feature points. 

In the reported work, the experiments show that at 

least 60% of the consecutive images should be 

overlapped to ensure that a sufficient number of 

matchings are obtained. 

Finding feature correspondences is the main 

challenge. This challenge is due to the inherent 

nature of wide-baseline images, in which the 

feature points have considerable displacement in 

consecutive images. In the reported work, with the 

exception of the first two images, no additional 

information about pose of the camera or position 

of any landmark in the scene is fed into the 

system. For each new image, pose of the camera 

was estimated according to a set of 3D-2D 

correspondences. 

A problem that should be kept in mind is that 

when the number of images increases, the 

cumulative error for orientation and translation of 

camera will increase as well. If the system 

receives no information from the environment, 

then at a point in the future the error will 

overshoot, and as a result, the trajectory of camera 

undergoes an uncontrolled drift. In order to 

overcome this problem, it is required to either 

acquire some information from the scene or try to 

close the loop. We planned to consider the latter 

case in our future works. One can also investigate 

other feature point extractors other than SIFT and 

then compare the results. 
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 چکیده:

تخمنین ای از تصاویر خط پایه عریض پیشننهاد دن ا اسنت  دوربین در دنباله و جهت مبتنی بر ویژگی برای تخمین موقعیت راهکاردر این پژوهش یک 

ینابی همدمنا  سنازی و مکنا واقعینت ازندودا و نهشنه نظینررباتیک  بینایی مادین ودر بسیاری از کاربردهای  مساله مهمیک موقعیت و جهت دوربین 

متنر  ردینابی  4تنا  1ان ازا یک اتاق و با ح اکثر عمن  حن ود  ه د ا توسط یک دوربین در محیطی بهدر روش ارائه د ا تصاویر گرزت  باد می دی اری

ب و  دریازت اطلاعاتی از محیط مورد استفادا قرار بگیرد  البتنه بنرای مهن اردهی اولینه  اس وتوان  در محیطهای نادنمی پیشنهاد د ادون   سامانه می

زراینن  تخمنین موقعینت و جهنت از مه ار عم  تع ادی ویژگی با عم  مشخص استفادا دن ا اسنت    های استخراج د ا در دو تصویر اولعم  ویژگی

هنای متنوالی ینک تصنویر در تصاویر خط پایه عریض برخلاف زنریمدود  استخراج د ا از صحنه انجام میهای طبیعی صرزا با استفادا از ویژگی دوربین

بنه همنین جهنت از پذیر نیسنت  های مبتنی بر وصله امکا ا کمک روشوی ئویی مه ار جابجایی نهاط ویژگی قابل توجه بودا و لذا تعیین نهاط متناظر ب

در این روش ابت ا تناظرهای احتمالی بنا اسنتفادا از میندا  مشنابهت بنردار ر تصاویر متوالی استفادا د ا است  یک روش ترکیبی برای تعیین تناظرها د

ارائنه دن ا بنر روی  راهکنار  دنون ها ب ست آم ا و سپس با استفادا از الگوریتم تواز  عام نمونه تصادزی  تناظرهای نادرست حذف میتوصیفگر ویژگی

از  سانتیمتر بنودا کنه نشنا  0پیکسل آزمایش د ا و به طور میانگین خطای موقعیت دوربین کمتر از  482 × 242با کیفیت تصاویر واقعی گرزته د ا 

 است  بالای آ  دقت و کارایی

 ای  تخمین عم  ها  تع یل دستهدوربین  استخراج ویژگی  تناظریابی ویژگی و جهت تخمین موقعیت :کلمات کلیدی

 


