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Abstract

The aim of image restoration is to obtain a higher quality desired image from a degredéd this
strategy, an image inpainting method fills the degraded or lost area of the imame appropriate
information. This isachievedn such a way that the imagbtainedis undistinguishable for a casual person
who is unfamiliar with the originalmage. In thiswork, different images are degraded by two procedures;
one is to blur and to add noise to the original image, and the other one is to lose a percentageifaihe
image pixels. Then the degraded image is restored by the proposed mettiodlsa two statef-art
methods. For image restoration, it is required tothe®ptimization methods. In thiwork, we use a linear
restoration method basegbon the total variation regularizer. The variable of optimization problem is split,
and the nevoptimization problem ishensolved usinghe Lagrangian augmented method. The experimental
resultsobtainedshow that the proposed method is faster, and the restored imagea higher quality

compared tahe other methods.

Keywords: Image Restoration, Imagenpainting, Deblurring, TotalVariation Regularizer, Lagrangian

Augmented.

1. Introduction

Image restoration is known as one of the most
important image processing techniquikds used

in various applications and areas such as medical,
astronomical imaging, image and video coding,
remote sensing, military, seismography, aerology,
andfilm restoration [1]. In space exploratiothe
image restoration systems have been used by
researchers since 1960 [2]. Providing the desired
image from the degradeohe is the aim of the
image restoration systemAn image restoration
system contains delurring, denoising, and
preserving fine details [3]. The information and
details of the image are lost when the image is
captured. The restoration not only removes the
noise of images but also is widely used in blind
deconvolution, image inpainting, and various
image processing methofls 6].

Image restoration may contain  several
applications such as blind deconvolution, image
deblurring, image inpainting and image
denoising. For each applicaticeaspecial method

is used for image degradation and restoration.

This paper focuses on image inpainting and
deblurring The image inpainting is a process of
reconstructingthe corrupted or lost parts of the
image that is undistinguishable for a casual
person who is unfamiliar with the original image.
The image inpaintinglays an important role in
various image processing applications such as
removal of scratches in old photographs and
videcs, filling in missing blocks in unreliably
transmitted images, and removal of overlaid text
or graphics [5]. Image demolitios causd by a
nonadjusted camera, object and camera motion,
reflection from uncontrollable sourcesnd non
ideal photographic and communication systems
[5]. The most common problems involved in
photography are the image blurring and noise.
The blurring occurs due to a localized averaging
of pixels, and significant in light limited
situations and resulting in a ruined photograph.
Image deblurring is the proces$ recovering a
sharp image from a corrupted one. The blurring
contains environmental blurs and motion blurs.
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The reason for the environmental blurs is a light
passing through the media environment with
different refractive indices. The motion blurs are
caused by the relative motion between a camera
and a scene [7]. In this paper, we assumed that
the motion blurs were distinguishable and
estimable, and that the noise was Gaussian
distribution with zero mean.The image
restoration system includes three intpat parts:
a) modelling the degraded image, b) formulating
the image resration problemandc) designing
anefficient and accurate methadorderto solve
the image restoration problem.
In the modelling part, the blurring and noise
information is usedto create a model of the
degraded image. In many receasearch works
a linear model is used to model the degraded
image. Common degradations include noise,
blurring, color imperfectionsand geometrical
distortions. The image restoration problems can
be modeled using the following expressed linear
degradation model:

1)

y =Bx H,

whereg B is a Point Spread FunctigRSH, x is the
original image, n isthe noise matrix, and y
represents the degraded imagete thatPSF is the
degree to which an optical system blurs (spreads)
a point of light. PSF is the inverse Fourier
transform of Optical Transfer Functiq®@TF) in
the frequency domain OTF describes the
Response of a linear, positiimvariant system to
animpulseOTF is theFourier transfer of the point
(PSB. If PSF is specified (PSF is tlgame for all
image pixels), Equation (1) indicates the
deconvolution problem, otherwisié presentsthe
blind deconvolution problem.

Blind Image Restoration: This technique allows
the reconstruction of original images frothe
degradedneseven whersa little or no knowledge

is availableabout PSFBIind Image Deconvolution
(BID) is an algorithm of this typ22].

Non-Blind Restoration: Thistechniqueaidsin the
reconstruction of original images frotine degraded
ones when the process of image degradation is
known, which means that thBSF information is
available [22].The imagerestoration problem is
more accurately expressed usirgg nortlinear
regularizer. Therefe, in thiswork, it wastried to
use this regularizern (1), x and y indicate the
original and degraded imagy@espectively, and B is
a linear operatdhatrepresents a blur matrix in case
of blurring image or losing a number of image
pixels in case foinpainting image. In order to
construct the degraded imageisitrequiredto add
the linear operator of B and noise to the original
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image. Dependingupon the linear operator, B,
which includes the blur or the lost pixels, the image
restoration problenwill differ. If B contains the
blur, the image restoration problem changes to the
deblurring and if B indicates the lost pixels, it
converts to the inpainting.

In the formulating part, the informatiofor the
degraded and original imagesused to formuite

the objective function and then to remove the noise
and blurring from the degraded image. This
function is solved using the inverse function or
optimization problem. The image restoration
problemthatis solved by convex optimization uses
unconstrainedptimization as follows:

mxinény- BX[. + (). 2

where A3 is p-norm andis given by:

L ©)

a.n
|Al, =28 lal" 5
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where n is the number of matrix elemeAtafter
reshaping.

The optimization problem contains two parts: data
fidelity and smooth reglarizer. In a practical
researchwork, the regularizer is completely unable
to model the characteristic diie original image.
Therefore, we should compromise betweibe
regularizer andhe data fidelity. Forinstance in
figure 1(a), the cameraman image is degraded by
the 9*9 uniform blur and additive Gaussian noise
with zero mean. Figure 1(b) shows that the
regularizer has small effect, andhe output noise

is amplified for a very small regularizer parameter
(z 18 M)PpOn the other handjgure 1(C) shows
that the large regularizer parameter, (p it
providesa much smoothed image and removes the
edges of image. Thus it is required that the
regularizer parameter is appropriately selected such
that the aforementioned probler@re avoided.

Figure 1. a)Degraded image by 9*9 uniform blur and
additive Gaussian noise with zero mean b) restored image
by small regularizer parameter ( 8 )c)restored
image by largeregularizer parameter ( ).
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2. Related works
The image restoration methods are classified into
three categories: 1) methods bas

ed on filtering 2) methods based on regularizer, and
3) methods based on Bayesian restoration. The
image processing systemermally use a lowass
filter to model the blurring of the image. The fikter
based methods contain the inverse filtering, pseudo
inverse filtering, and wiener filtering.

Equation(4) results in the restored image using (1)
in theFourier domain [2]:

-1aY (WI’ VY) 0

By 8

C
L4 N (w, w)
:f 1 W ) _+'—
ég( 7 B(w, w)
where &£ indicates the inverse Fourier transform.
Y(w, w), B(w,w), and X(w, w) are 2D

Fourier transforms of the degraded image, the blur
PSE and the original image, respectively. The
simple theory and low complexity are advantages of
the inverse filtering methods. However, the inverse
filtering method providesan accurate restoration
image when there is hadditive noise in the
degraded imagéut the degraded image normally
contains an additive noise in practice. Therefore, in
a noisy degraded image, the inverse filtering
method provides a weak performance and
unacceptable results [2].

The pseudeanverse filtering method uses the
matrix-vectorform of the degraded image in which
B isanorinvertible matrix. If the columnef B are
lineally independent,(1) can be modified and
approximated usingseudeinverse solvation as [8]:
x=(8"B) "B'y. ()

The mentioned advantages of inverse filter can be
enumerated for thepseudeanverse filter. This
method providesa better performance than the
inverse methodalthoughit is unable to provide
acceptable results famoisy degraded image [8].

As the namemplies the median filter is statistics
method. In this methgdhe median of the pixes
found and then the pixel iszplacel by median of
the gray levels inhieir neighborhood of that pixel
The median filter is used to remove the salt and
pepper n@e[23].

The Wiener filter method is basedipon
optimization of Mean Square Err¢MSE), and it
providesabetter performance than the inverse filter.
This filter is the base of many new restoration
methods because it & optimal filter to minimize
MSE. For example, the edge mapping Wiener filter
has been proposed to preserve the edges and the

X >

(4)
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details of images. The collaborative Wiener filter
has been reported to remove image noise in a sparse
3D transform domain [9]. Although the Wiener
filter is known as the most optimum method for
minimization of MSE and can be efficiently solved
in frequency domain, it is unable to providé@igh
quality for the restored image.

The regularizationmethods were developed to
make the image restoration problerall-posedby
introducing information about the original image. In
this situation thereis a large number of possible
solutions; additional information igequired to
choose the correct solution. Finallysince
discontinuities cause instability in many algorithms,
the solution must depend continuousiyon data.
The regularizationmethods solve this problem
using the prior information about thémage to
calculate the estimatét requires the selection of a
reqularization parameterU which controls the
tradeoff between fidelity to measurements and to
theprior information

The regularizebased method is the second
category of tB image restoration methods. This
method repeatedly combines additional
information, and a regularizer solvéise restoration
problem. These methods, such as TikhorAdilker
regularizer, are known as a frameworkusll-pose

the restoration problem. The traditional regularizers
such as Lzorm adversely affect the sharp edge
restoratbon because the images are piecewise
smoothed. Therefore, the advanced regularizers
model the characteristics of the original image using
nortlinear penalty functions [10].

The Bayesian approach provides the means to
incorporate prior knowledge in data aysis. The
Bayesian analysis revolves around the posterior
probability, whi ch
law states that the posterior probability is
proportional to the product of the likelihood ahe t
prior probability. The likelihood encompasses the
information contained in the new data. The prior
expresses the degree of certainty concerning the
situation before the dats taken. Although the
posterior probability completely describes the state
of certainty about any possible image, it is often
necessary to select a s
reconstruction. A typical choice i® choose an
image that maximizes the pdsrior probability,
which is called the MAP estimate. Other choices for
the estimator may be more desirable, for example,
the mean of the posterior density function. In
situations where onlya very limited datais
available, the data alone may not be sigfit to
specifya unigue solution to the problem. The prior
introduced with the Bayesian method can help

summar i
certainty concerning a given situatidtheBay e s 6 s

ng
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guide the result toward a preferred solution. As the
MAP solution differs from the maximum likelihood
(ML) solution solely because of the priorodsing

the prior is one of the most critical aspectshaf
Bayesian analysis.

The Bayesian restoration methods model the
restoration problem usinthe probability theory.
The Bayesian methods combine additional
information of new models of the image withe
prior image and can be iteratively solved. High
computational cost and being unable to provide a
specific  optimization framework are the
disadvantages of the Bayesian methods [11].

In this work, we usd the regularizer method to
restore the image. €he are several methods
availableto solve the linear inverse optimization by
minimization of the objective functiprwhich is
formulated as:

f(x)=minly Bx[; + () ©)

where B is a linear operator and (x) is a

regularizer [4]. This optimization equation should
find the best compromise betweéimre candidate

estimated, x, and the obtained datdyof Bx|;.

The undesired degree of equation is distinguished
by the f (x) paameter, and the relation between

two parts of (6) is identified by regulating parameter
(¢ ). The unsmooth and naquadratic regularizers

such as the Total Variant, TV, ariq -norm are

used in various image&ocessing applications [8]. If
B = |, where | is a unit vectdidentity matrix), the
denoising problenis confronted If 1 is suitable
and convex, the optimization problem is strictly
convex and haa unique minimizer. Therefore, the
denoising functions formulated by:

vo(y)=ar ahi ol (X @

For example, y . (y) =soft(y, ) if

foo #x], =&, [x| (the L, norm)
soft(w,t) =sign(w).(W} -)

0 if a<O0 -
where (a):ie )
ja if a>0

The soft function is shown iigure 2.

The Iterative Shrinkage Thresholding (IST) methods
have beerreported to efficiently and simply solve
the sparsisbased restoration problems. These
methods have firstly been developed as a proximal
forward-backward iterative scheme in [12, 13]. In
the IST method, x in the k+1 step is obtained by:
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Xk+1:Y% (kx_a_lk( T(B kB_)a) (8)

soft(w, T)

-10 -5 1] =1 10
w

Figure 2. Soft function

These methods are suitable and efficient when

multiplication of B andB" is dissolvable. These
methods converge to  minimum  when

[Bf; /2<4, <

Another method is Twastep lterative Shrinkage
Thresholding (TwolIST), in which each current
iterate incorporates to the previous two iterates. The
TwoIST method is faster than the IST methivd.
the TwolSTalgorithm, each iteratiodependsupon

the two preious iterates rather than only on the
previous one (as in IST). This algorithm may be
seen as a ndimear version of the scalled twe
step methods for linear problems. TwolST was
shown to be considerably faster than IST on a
variety of wavelebased imge restoration
problems; the speed gains can reach up to two
orders of magnitude in typical benchmark problems
[14].

An improvedtwo-step variant of the IST method is
called Fast IST AlgorithnfFISTA). FISTA is faster
than the TwoIST and IST methods. The non
smooth variation of Nesterovs optimal gradient
based algorithm is used in FISTA [15].

Sparse Reconstruction by Separakeroximation
Algorithm (SpaRSA) is another fast variant of IST
algorithm. This method uses a differgn in each
iteration which is updated by (wherepf| is a
step sie) [12]. This methodhas beernshown to
outperform standard IST by selecting an aggressive
stepsize at each iterationWhen theslowness is
caused by using small value of the regularization
parameter,the continuation schemes have been
found quite effective in speeding up the algorithm.
The key observation is thahe IST algorithm
benefits significantly from warratarting, i.e. from
being initialized neaa minimum of the objective
function.

Neural Network Approachlhe neurahetwork is a
form of multiprocessorcomputer systemwith
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simple processing elemeritgéerconnected group of
nodes[29, 30]. Theseinterconnecteccomponents
are called neurons, whicsend message to each
other. When an element of the neural network fails,
it can continue without any problem by their
parallel natur¢24].

Block-matching This is employed to find blocks
that contain high correlation because its accuracy is
significantly impaired by the presence of noise. We
utilize a blocksimilarity measurehat performs a
coarse initial denoising in local 2D transform
domain. In this methqdhe image is divided into
blocks and noise or blur is removed from each
block [23].

Since the reported methods in [25, 26] are based
upon nonblind deconvolution and use grayscale
images, same databasaad evaluation measures,
the proposed method is compareith them. The
reported method in2f is basedupon the genetic
algorithm and is briefly given as follows:

Stepl: Get Blurred Image (initial image)

Step2: Apply Fast Fourier Transform on blurred
Image

Step 3. Apply Inverse Fourier Transformand
create an initial population for applyingenetic
algorithm

Step4: Calculate the value of objective functions
for the current population

Step 5. Apply the cumulative fithess assignment
criteria and selection procedurdJse genetic
algorithmfor selection of new population.

Step6: Findthebest individuals

Step7: Apply crossover and Mutation on the new
population (obtaineéh Step_) in orderto createa
new population .

Step 8: Get the restored image usinghe best
individuals (obtaineéh Step6).

This method tries to mamiize all the objectives.
We proposd a fitness functin criterion that is
basedupon individual objective such adntensity,
entropy and edges. After evaluating fithess of all
individual ohjectives éntropy edge,andintensity),

the combined fitness or cumulative fitness is
calculated. The proposedmethod evaluatesand
maximizesall the objectives. This means thisie
image restoration criterios defined as dunction

of entropy, edgesnd ntensity.

Edges can be defined as rapid changes in image
intensity over a small regiofin order to measure
these changes,ne methodis to use discrete
difference operators. It consists of two matiet
calculate the changein both directionsi.e. x
direcion and ydirection

We took different imageswith the same sizeThe
maximumnumber of generation to run the program
waschosen as 20; this also Weras a criterioto
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end the evolution. Mutation has to be taken as
simple mutation having probégity = 0.1, arithmetic
crossover has to be taken havirthe crossover
probability = 0.8, selectiorwas taken asthe
tournament selection, and finallyhe population
sizehadto be taken as 48.

The reported method in [26] is basedon the
Wavelet trasform and is given by:

Step 1:0Obtain an initial devlurred result viathe
IDD-BM3D method, which will beused as the
reference image f@upport estimatian

Step2Sol ve t he r elsnedularized g
problem

In this work, we justookt h e
as anexample to illustrate the benefit of new
regularization, though it can balso readily
extended to the
Ones just
optimization problemi.e. each frame coefficient
wastreated equally and penalized uniformly. In this
case, it generates the bias, which means that the
large coefficients are penalized more heavily than
the smaller ones.
regularized model often achieve suboptimal
performance. 1 practice, if the positions ahe
frame coefficients with large nerero absolute
values (we term the locations of large frame
coefficients in magnitudes as support information)
are known we needto remove these coefficients
out of
instead in the restoration model.

The GaussianScale Mixture (GSM) model is
developed usinghe simultaneous sparse coding
(SSC) and its applications into image restoration
are explored. It is shown that the variances of
sparse cdécients (the field of scalar multipliers

of Gaussians) can be jointly estimated along with
the unknown sparse coefficients via the method
of alternating optimization [27].

The socalled nonlocally centralized sparse
representation (NCSR) model is as gieas the
standard sparse representation model, while our
extensive experiments on various typesnuge
restoration problems including denoising,
deblurring and superesolution validate the
generality and statef-the-art performance of the
proposed ICSR algorithm.

The patches of image are clusteredinto K
clusters and a PCA sudictionary kis learntfor
each cluster. For a given patch, is firstly
checled which cluster it falls into by calculating
its distances to means of the clusters, thedthe
PCA subdictionary of this clusteris selected
[28].The mentioned methods are wunable to
converge very fasgndtherefore, in this papgwe

ani sotropic

i sotropic
s o-flegularided eonvgx| ai n

Therefo

t hetouasle naortnr uanncdat e d
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propose a new method to incredke speed and
also improvehequality of the restored image.

3. Proposedmethod

We presented a new algorithno solve the
optimization formulation of regularized image
restoration. The approadhat can be usedvith
different types of regularization is basegbn the
variable splitting techniqueThen it solves the
problem with the Lagrangian augmented
optimization.

original

ariginal

Blurred and noisy

Figure 3. DegradedCameraman andLif ting-body: A)
Original Image and B) degraded image with uniform blur
and Gaussiannoise
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3.1. Construction of degraded images for
deblurring and inpainting

Assume that the aim of the proposed method is to
degrade an image withsize of N*N by an m*m
uniform blur, where m< N. First, a vector witlihe
length of N is constructed so that the first m
elements have the value of 1/m and the oéshe
elements are zero. Next, the vector obtained is
shifted to left withthe size of (m1)/2, and then it is
multiplied by its transpose. Thereforthe m*m
matrix is constructedwhich is called the blur
matrix. In order to obtain the blurred image, it
requires to multiply the Fourier transform of the
blurred matrix by the Fourier transform of the
original image, and then to use inverse Fourier
transform. The matrix obtained is Bx indicated in
(). Next, a desired noise is added to Bxd
therefore the blured/noisy image is constructed. In
order to construct the degraded image fioe
inpainting case, it requires losing a number of
pixels. Losing the pixels is randomly performéd.
order b obtain the degraded image in (1), the
random matrix is constructexiich as a percentage
of the original image pixels that is lost.

Note that the size of random matrixtie same as
the original image. Some degraded images
shown infigures3 and 4.

3.2. Solving problem of Lagrangian augmented
optimization
In order to obtain the estimated image, X, (2) is
used. The proposed method is bagpah variable
splitting for anoptimization problem. The objective
function in (2) isthe sum of two functions. The
main idea in the proposed method is to split the
varialde of x intothe variable pairs of x and v such
that each of them is an argument of one part in the
objective function. Then the objective function is
minimized under one constrainwhich results in
being equally the new problem with the problem in
(2), given by:

1 2
min ~[Bx- yf, + ()

subject to x= v

(9)

The new determined optimization problem is solved
by the Lagrangian augmentedmnethod The
formulation of undetermined optimization for
regulated image restoration is given by:

1
f(x)=lBx

f,(x)= t(k)

2
G=1 ie. v=Gx

(10)
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Original
s

Missing Samples - 40%
T 2

Figure 4. DegradedCir and Peppers: A) Original Image
and B) degraded image withlosing 40% of pixels and
Gaussian noise

The formulation of the determined optimization
using variable splitting is given by:

objective fun= min%” Bx-f, +(tVf 1)

x,vi R"

subject to x= v

|objective fur k+ 3 - objective fu K

In order to solve the determined optimization
problem, it is better to usdéhe Lagrangian
augmented methodhich is given by:

o1 2 m 2
(Vi T arg=lBx-ylp + € —flx v 4l
X,V 2 2
(12)
Oger = (GXc g ¥ o)
where mis a positive valudhat is given bythe

user It has been shown that the performancthef
leastsquares penalty is better théme Lagrangian
method. In additionthe Lagrangian augmented
method is converged under more principle
conditions. Therefore, we propose a new method
orderto solve the optimization problems follows:

First, k is set to zer@ndp > 0, d,, and v, are set

to theinitial valuesthatare zeroandthen it requires
to solve the optimization problem given: b

X =argmin| Bx of, A y- gl (43

Here, X, is a strictly convex functigrwhich has

to be minimized. This corresponds to a linear

systemthatis given by:
-1

X.=(B"B +1)n (B"Y fvmd)} (14

By obtaining X, from the previous step, it is

inserted in (15)and thereforgit requires solving

the optimization problem as:

V,,, =argmin t (fv) r—an'X( .V —ct||§ (15)

This can be solved using (7). Thel,,is obtained

by X,,, andv,,, intheprevious step
dk+l=dk -(Xk-ll Vk l)

Next, one is added to k (k k + 1), andthe stop
criterion is measureavhich is given by:

(16)

a7

19

< tolerance
|objective fur( @|

This criterion is equal to the changes of the

objective function. If the stop criterion is satisfied,

the procedure is stopped; otherwise the previous

steps are repeated until the stop criterion is satisfied.

321 Variable spliting:  Consider the
undetermined optimization problemhich contains
two terms:

minf, (x)+f,(g(x)),

xi R"

(18)
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where the g:R" - R variable spliting includes | (xv.e)=R(x) + (#) & 6x) %"+ v (24)
4 2

construction of a new variable :g;(x) =V that

corresponds to a new optimization problegiven wherg [ is the Lagrangian coefficients vector and is

by: a constanthatis selected by a user [21]. We uise
min_f (x)+f,(v) GaussSeidel method for minimization. Therefore,
X" viR® , (19) the minimization problem is formulated as
stig(x)=v X, =argmin L (X, v,g ), (25)

This is equal to the optimization problem in (18). |, =arg minL (x Ve ) (26)

We usethevariable splitting method reported in [7] A PAT e e

to provide a fast restoration image. In [4, 10], the - '+ (27)

optimization problem in (19) is changed to (20) i T8 ( L GQ*S) '

with consideration of the second orgemalty and

the periodical minimization with respecttoxand v. 324, Total variation regularizer: Total variation

(20) regularizers, due to having the ability for noise

. a 2
xig”],lvri]“fl(x)-'-fZ(v) +5||g(x) V”2 cancellation and maintaining image edges, are

widely used inthe image restoration methods [7].
These regularizers have improved under this
. LI assumption that the image has bounded variations.
tf;e deteth[[nedhopt|m|zgt|on [?_roblemf. It ?as b_een If the variations of the image inside are bounded,
shown that when g IS a linear function, 1.€. thenthe sum ofthe absolute variations of the image
g(x)sz,theBr egmanags mettheod iinsidesvill bBiinitedr t o

The function of variable splitting is as the one
reported by Bregmafi8, 19]. This directly solves

Lagrangian augmentedethod Therefore, the total variation regularizers are
designed to restrict the variations of the image
322 Lagrangian augmented: Consider the inside. The variation is defined by
optimization problem with constraint as follows: . 2 2
i f (X) a iﬁxw) +(Dw) ! (28)
el @ &) |
st Hz- b =0 where B, (x,) and B,(x, ) are the first-order
whereb=0 .= andH =[c 4] vertical and horizontal difference ithei™ pixel,
-V ’ respectively. On the other hand, the sparsity
In this casetheLagrangian function is given by: regularizer causes the transform coefficients of the
T . 5 restored images to be scattered. These regularizers
La(ze)s (B4 (a- )b /g A | (22 reduce the noise without amlestructive effect on
the edges.
where o is a valuefor the Lagrangian coefficient _ o
and p> 0 is calledthe penalty parameter. In this 3.2.5. Calculation of Xyt - In (14), the initial vales
method,L, (z,a ) is minimized with respect to z for x,,d,, and v, are set to zero. Thus in (28),
and maintaininge- as a constant valuandthen & f(v,)that is related to the total variation

is updated and the minimization bfA(Z,& ) is

repeated. This procedure continues untl the
convergence criterion is satisfied [20].

regularizer can be solved af@x, - Y|, can be
calculated using (3). The initial objective function is

then calculated using (v,) and [Bx,- y|.. In
3.2.3. Variable spliting wusing Lagrangian

augmentedmethod Consider the variable splitting what follows, calculation of x,., is distinctly
problem given by explained for the deblurring/denoising and
min RX)+ t (%) st v=G. (23) inpainting problems.

where R(.) isthefidelity termthatguaranteethatx A) Calculation of x,,, for deblurring/denoising:

ils Cﬁ_mpatibler/\]/ithl_theobserved y- agethodi First, the absolute of Fourier transform of blur
n this casethe Lagrangian augmentemetnodis matrix, B, is obtained and each element is squared

given by and added with:

20
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29
(B"B+e | (29
The matrix element®btainedare then inversed.
Next, the Fourier transform oB"y + v, d;)

is obtained and multiplied by (20)x,,, is the
inverse Fourier transform of tesuling matrix.

B) Calculation of x,,, for inpainting: In order to

obtain the inverse of B"B+¢ I, the Sherman
MorrisonWoodbury equation is usedyhich is

given by:
1 13 1
(8'B+ n)* =% —bB'B | (30)
m¢ mi
where BHB is a number of zeros in the main

diagonal. These zeros indicate the lost positions in
the image.

Thus X,,, Iis obtained by multiplication of

B"y+ ifv, d )with (30).

3.2.6. Calculation of v,,,: v,,, can be calculated

by the Moreau proximalmapping for x,,, - d, .
This means that

Vi = )'(Xk t dk) , (31)

where y is given byequation(9). If this mapping
is accurately calculated the closed formthen it is
guaranteed thatétproposed method is converged.

4. Results

All  experiments were executed using the
MATLAB software, applied on a personal
computer containing a microprocessor of Intel
(R) i5CPU:2.53 GHz and 4 GB RAM. The value
for p in (13) was selected as 10% othe

regularizer parameter dy10.

The number of iterations, the processing time
(CPU time), ISNR and MSEwere used ashe
evaluation measures. We used various images
such as cameraman, Lena, moon, liftbayly,
tire, coins, and peppers. For blurring, we used a
uniform blur witha size of 9*9 and white normal
Gaussian noise with differewvariancesand for
inpainting, 30%, 40%and 50% of the original
pixelswerelost.

4.1. Evaluation measures

In order to compare the performance tbie
different image restoration methods,the
guantitative measurethat evaluate the quality of
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the restored image are very important. These
measures include Improvement in SNR, ISNR, and
Mean Square ErrdiMSE), which are calculated by
[2, 9]:

e 2
X_
ISNR = 10 Iogow (32
é KHX - Xk
’ (33

MSE=ﬁ'a;‘HX i

where M and N argheimage dimensions, X is the
original image, and/, and X« are the observed and

the estimated image ithe k™ iteration. In this
work, in addition to these two measurdbe
processing timewas also considered which
indicates the speed of convergence for capability of
the methods.

4.2. Indexing results

4.2.1. Results obtainedfor deblurring

Table 1 shows the evaluation measures for the
aforementioned images. The resulbbtained
show that the proposed method improves ISNR,
decreases MSEand reduces the processing time
considerably compared tahe TwolST and
SpaRSA methods.

Table 1.Results of deblurring images degraded by

Gaussian noise with 8 and Uniform blur 9*9 in
size.
CPU
Image Method Iterations  time ISNR MSE
) (dB)
TwolST 69 16.2 7.63 941
c SpaRSA 123 25.7 7.86 89.2
ameraman Proposed
method 20 367 843 782
TwolST 46 51.1 656 374
Lena g?:%iéd 56 52 6.36 39.1
p 16 131 759 295
method
TwoIST 41 453 864 123
Lifting-body g?;%i:d 53 49,5 8.88 11.6
p 24 203 104 814
method
TwoIST 61 138 887 544
Coi SpaRSA 115 23.1 871 565
oins Proposed
method 22 406 975 445
TwolST 25 13.1 3.86 62.8
Moon ﬁ;rac?r\;i:d 22 9.14 373 702
p 17 6.18 391 67.4
method
TwoIST 51 555 7.93 318
Peppers ﬁ;r);r\(’;:d 78 734 797 301
p 18 148 845 27
method

As observed inable 1, br instance, fothe Lena
image, ISNRwas improved by the proposed
method 1.03 dB and 1.28B compared tdhe
TwolST and SpaRSA methods, respectively, and
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the processing timavas nearly 25% of the one
provided bythe TwolST and SpaRSA methods.
In addition, MSE obtained by the proposed
methoddecrease 10 units. Forthe Lifting-body
image, the mcessingtime required by the
proposed methowvas less than half of the ones
resulted bythe other two methods and ISNR
improved around 1.5dB. In addition, MSE
decreasg to 3.46 and 4.16 compared tihe
SpaRSA and TwolST methods, respectively.
Figure5 shows the objective function indicated in
(8) for the aforementioned images. As observed,
the objective function compared the SpaRSA
and TwolST methods is faster converged. For

Objective fnction 0, S\V—Ax\ﬁﬂ, T i) 10

——TwelST

== 5paRSA
———Propesed method

"

instance, fothe cameraman image, the objective
function is converged to thenal value in less
than 4 swhereas 30 s is required ftwe other
two methods at least. Fahe Lena image, the
proposed method is converged in, 8veereaghe
SpaRSA and TwolST methodsquire30 s and

50 s, respectively, for convergence. The same
results can be observed fitre other images. As
an examplefigures6-9 showthe restored image
by the proposed method. As observed, the blurred
effect has been highly removed in the restored
image by the propodemethod.

Objective function 0.5[y- A+ 1, (=1
T T T T

— TwolST

- =SpaRSA
-~=~Proposed method

(€)

|
60

40 50

Objective function 0.5y~ + & _ (<)

T T T
—TwoIST

——-8paRsA E
~~~Proposed method

(d)

——TwolST

——-SpaRSA
Proposed method

L L L L ]
30 40 S0 60 70 80
il

Figure 5. Output of deblurring for objective function related to equation (8) obtained by TwolST, SpaRSAand proposed
method for images: A) Cameraman, B) Lena, C) Liftingbody, D) Coins, E) Moon,and F) Peppers.
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C

Figure 7. Deblurring results for Cameraman, Coins, Lena, and Peppers: A) Original Image, B) degraded image, and C)
restored image by proposed method.

In the next experimentthe effect of different
blurs with additive Gaussian noigs =0.3080)
wasinvestigated. The resultsbtainedare shown
in table 2. As observed, the processing time (CPU
time), ISNR and MSEwereimproved compared
to the other methods. Wasalso observed that the
best results with respect to ISNR and MBE&re
achieved by uniform blur witla size of 9*9. In
addition, the resultsobtained for the case of
Gaussian blur wits =1.41 were better than the
one withs =2.83 . In the case of blur matrix in

which h, =1+ +f) forij=7...7  the results

obtained provide higher ISNRand lower MSE
and CPU time compared to the other cases.

In another experiment, the effect of different
additive noises with uniform blur with size of

9*9 was examined. As expected, the results
obtained show that when the variance of

Gaussian noise increases, ISNR decreases, MSE

increasesand the quality ofilte restored image
degrades. As an exampl@bles 37 show the
results obtained for different images using
different blurs and Gaussian noise with
™ hA mhandl  ca

In tables 5 and 7, the valuésr Peak Signal for
the restored images by the posed method and
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other methods are shown. The PSNR values by
the proposed method are higher than the results
obtained by the TwolIST, SpaRSA, Genetic
Algorithm, Wavelet Frame Truncated, NCSR
and SSAGSM methods. As shown, the results
obtained by the proped method are better in
terms ofthe Peak Signal to Noise Ratio.

In tables 5and 6,the MSE values fotherestored
images by different images are shown. The MSE
values by the proposed method are less than the
results obtained by the TwoIST, SpaRSA,
Geneic Algorithm, Wavelet Frame Truncated,
NCSR and SSE&GSM methods.

Similar results were obtained for the other
images which seem to be unnecessary to be
shown.

4.2.2. Resultsobtained for inpainting

In the inpainting problem, the aim ishe
restoration of the degraded image in which a
percentage of the pixels $iaeen lost and noise
has been added. In this experiment, 40%hef
image pixels were lost and a normal white
Gaussian noisevas added to the image. For
evaluation, the aforementiothémageswvereused
and the proposed methadas compared tathe
TwoIST and FISTA methods. The results
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obtainedwereshown intable 8. As observed, the
proposed method resett in a higher ISNR,a
lower MSE and alsoa shorter processingime
compared tothe TwoIST and FISTA methods.
For instance, fothe Lena image, the processing
time wasalmost 10% of the one provided thye
othertwo methods andﬁSNR and MSE
a least 0.3 dB and T°Z pectively. Rbe
lifting-body image, the processing timeas
around 1000s and 845s less the ones obtained
for the TwolST and FISTA methods,
respectively. Also ISNR obtained by the
proposed methodas0.64dB and 0.9@B higher
than the ones resulted bye TwolST and FISTA
methods, respectively. In this cases froposed
method providd 0.4 and 0.5 reduction in MSE

ariginal

compared tothe FISTA and TwolST methods,
respectively. The same resultould also be
concludedor other images.

Figure 10 shows the objective function resulted
by inpainting for the aforementioneghages. As
observed, the resuig objective function by the
proposed method can converge to the final value
in a shorter time compared tihe TwolST and
FISTA methods. For instance, iiigure 10(a)
which is related tothe cameraman image, the
objective finction converges in 58, 200s, and
300s for the proposed method, TwolST, ahe
FISTA method, respectively. The same results
can be observed fdhe other images. Therefore,
the objective function by the proposed method
converges faster thahe othertwo methods.

original

Blurred and noisy

Blurred and noisy

Estimated using Proposed method

Figure 8. Deblurring results for Lifting -body: A)
Original Image, B) degraded image, and C) restored
image by proposedmethod.

Estimated using Proposed method

Figure 9. Deblurring results for Moon: A) Original
Image, B) degraded image, and C) restored image b
proposed method.
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Table 2. Results of restored images degraded by Gaussian noise with

38 and different blurs.

Uniform blur with size of 9*9

Gaussian blur with s =1.41

Image Method CPUtme(s) __ ISNR (dB) MSE CPUtime(s) _ ISNR (dB) MSE
TwolST 6245 5.24 9f1 26.59 3.65 11327
Cameraman SpaRSA 64.5 5.92 891 2273 371 107.78
Proposed method 11.01 843 782 1.45 4.19 92.76
TwolST 511 656 374 254 2.87 99.1
Lena SpaRSA 52 636 391 26.7 2.34 63.7
Proposed method 131 759 295 3.9 3.42 49.8
TwolIST 453 864 123 19.9 4.52 341
Lifting-body SpaRSA 495 g88 1T6 214 4.69 289
Proposed method 203 104 g§14 119 573 22.7
TwolST 138 g87 544 16.2 4.95 67.7
Coins SpaRSA 231 g71 565 295 4.99 65.4
Proposed method 406 975 445 1.36 5.74 50.2
TwoIST 131 386 682 17.7 1.27 794
Moon SpaRSA 914 373 702 2401 131 90.7
Proposednethod 618 3ol 67 4 1.47 2.07 709
TwolIST 555 773 378 29.78 3.75 448
Peppers SpaRSA 734 797 301 36.6 3.81 429
Proposed method 148 845 27 4.39 4.49 37.7
Gaussian blur with s =2.83 Blur matrix h, =1/(1+F +f) forij=7,..7
CPU time(s) ISNR (dB) MSE CPUtime(s)  ISNR (dB) MSE
TwoIST 24.21 2.57 797 19.25 4.64 1006
Cameraman SpaRSA 2318 2.69 69.8 17.45 4.61 98.2
Proposed method 2.67 3.35 58.98 141 6.05 813
TwoIST 23.64 1.36 110 19.47 3.45 453
Lena SpaRSA 2501 1.70 75 24.88 3.49 437
Proposed method 4.12 3.29 50.45 3.25 6.21 354
TwoIST 15.89 3.44 59.2 14.35 541 383
Lifting -body SpaRSA 19.46 355 54.3 1518 5.56 321
Proposed method 1210 5.41 439 9.42 8.35 216
TwoIST 14.75 3.81 79.1 13.89 4.99 60.7
Coins SpaRSA 2340 3.86 63.7 2270 5.01 629
Proposed method 241 5.24 46.7 1.32 8.31 554
TwoIST 15.14 0.904 951 12.36 2.35 713
Moon SpaRSA 18.95 0.915 91.35 16.87 247 84.7
Proposed method 2.56 1.86 79.4 1.48 4.95 61.6
TwoIST 2127 2.62 76 2112 4.26 394
Peppers SpaRSA 3049 2.76 752 28.64 4.95 40.8
Proposed method 5.17 4.24 60.9 3.39 7.12 30.7

Table 3.Results of restored cameraman image degraded by uniform blur with size of 9*9 and different noises.

MSE ISNR
Method Poisson Gaussian Gaussian  Gaussian noise Poisson Gaussian Gaussian rﬁ)?:;i\'ﬁ?‘
noise noise with noise with with variance noise noise with noise with variance
variance 2 variance 1 0.308033 variance 2 variance 1
0.308033
TwolST 1.07E 10 166 148 9f1 -10.6 5.17 5.21 7.63
SpaRSA 2.86% 16 141 138 891 -4.83 5.87 5.95 7.86
Wiener filter 1183 16 89310 8.9% 16 8.93 10 -10.7 0.629 0.633 1.28
Inverse filter 1.066 1 2510 5.58 10 2.43 16 -60.5 -35.8 -30 -14.6
Proposed method 1.9% 16 134 132 782 -3.27 6.08 6.14 8.43

Table 4. Results of restored Lena image degraded by uniform blur with size of 9*9 and different noises.

MSE ISNR
Method Poisson Gaussian Gaussian  Gaussian noise Poisson Gaussian Gaussian  Gaussian noise
noise noise with noise with with variance noise noise with noise with with variance
variance 2  variance 1 0.308033 variance 2 variance 1 0.308033
TwolST 7.14 16 101 100 374 -10.6 5.42 5.45 656
SpaRSA 1.7 16 100 99.6 391 -4.83 5.45 5.48 636
Wiener filter 941 16 394 16 3.94 16 3.94 16 -10.7 0.435 0.438 0.891
Inverse filter 447 16 1.2 16 7.23 16 491 10 -60.5 -35.4 -30.31 -15.01
Proposed method 1.273 16 95 80.2 295 -3.27 5.92 6.08 759
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Table 5. Results of MSE and PSNR restored images degraded by Gaussian noise with

and different blurs.

Genetic Wavelet Frame SSG Proposed
Image Blur TWoIST ~ SpaRSA Algorithm Truncated NCSR GSM method
PSNR
9 x 9 uniform blur 25.45 2597 27.94 27.97 2862 28.82 28.89
Gaussian bl 26.27 26.35 2748 2778 28.33 28.39 2853
Cameraman Motion blur: fspecial
o) :
( 6 mo t15,30) 6 , 27.78 2787 2954 2977 29.80 29.86 2993
9 x 9 uniform blur 27.09 27.683 29 29.04 29.87 29.94 30.10
Lena Gaussian bl 2662 26.76 30.87 3093 30.90 31.04 3129
Motion blur: fspecial
( 6 mo t15,300 6 , 28.81 28.91 31.17 31.20 31.41 31.79 3291
MSE
9 x 9 uniform blur 185.39  164.48 104.49 103.77 89.35 85.33 83.96
Gaussianl®l 153.49 150.68 116.16 108.41 95.52 94.21 91.21
Cameraman Motion blur: fspecial
p ) A 110.17 106.19 72.30 6856 68.09 67.15 66.08
( 6 mo t15,30n 6 ,
9 x 9 uniform blur 129.74 112.22 81.86 81.1 67.00 65.93 66.84
Lena Gaussian bl 141.60 137.1 53.22 5249 52.85 51.19 48.31
Motion blur: fspecial —gq 15 g357 49.67 49.33 46.99  43.06 3327
(6moti ond,
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Figure 10. Output of inpainting for objective function related to equation(8) obtained by TwolST, FISTA, and proposed
methods for images: A) Cameraman, B) Lena, C) Liftingbody, D) Coins, E) Moon, F)Tire, and G) Peppers.
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