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for the proposed method, which obtains the
optimal parameters using GSA (as in Table 1);
also figures 2 and 3, respectively, show the results
of the flocking control algorithm without COM
[11] and the extended flocking control algorithm
with Single-COM [20]. Figure 4 represents the
result of the multiple moving target trackings on
the semi-circular and semi-sine wave trajectories
using the parameters achieved by GSA for single
target tracking. The results reported in table 1 are
also applicable to the multiple mode. It is clearly
observable that the center of flocks precisely
tracks the moving targets. Figures 5 and 6,
respectively, illustrate the results of the flocking
control algorithm without COM [11] and the
extended flocking control algorithm with Single-
COM [20] in multiple moving target trackings.

In these figures, the path of target and the mean of
positions of all robots are displayed in red and
black, respectively. Also the initial and end
positions of all robots are indicated. As it can be
observed in figures 1 and 4, the targets are
followed precisely and surrounded by the flocks
of robots. In fact, the path of COMs coincides
with the path of targets in the proposed method,
while according to figures 2 and 5 that use the
method proposed by Olfati-Saber [11] and figures
3 and 6 that use the Single-COM method
presented by Hung La [20], the paths do not
coincide and the distance between the targets and
the center of flocks is high.

Figure 7(a) shows the mean progress of the cost
function (18) for 50 sensors during 100 iterations
by GSA. The results obtained are averaged over
10 independent runs, as the results reported in
table 1. Figure 7(b) shows the distance between
the center of flock and the moving target in
circular wave trajectory using GSA during 100
iterations of the algorithm.

Figures 8(a) and 8(b) compare the errors between
COM (center of mass) of the locations of robots
and the location of a moving target (following
performance) using three approaches, No-COM
[11], Single-COM without iteration forces [20],
and the proposed flocking protocol using the

optimal parameters of table 1 for 50 sensors.
Figures 8(a) and 8(b) evaluate three methods on a
single moving target and multiple dynamic
targets, respectively. These figures obviously
display the superiority of the proposed method in
comparison with the previous ones, and clearly
represent big errors between COM of locations of
all agents and the location of the dynamic target
for flocking control algorithm without optimal
parameters shown in [11] and [20].

Figure 9(a) displays the fitness values during 100
iterations for various numbers of sensors using
GSA; and figure 9(b) shows the error between
COM and single moving target during target
tracking using the data reported in table 1 for
various numbers of sensors.

Considering the results reported in figures 1 and 4
by using the optimal flocking control leads to a
better convergent speed, and errors reach zero
after a few seconds. Also the parameters obtained
for single target tracking as figures 4 and 7(b)
have optimal results for multiple target trackings.

6. Conclusion

In this work, we investigated the optimization
problem of Single-COM flocking control protocol
to track a dynamic target for a mobile sensor
network. The cost function was non-convex and
the optimization technique based on GSA was
developed. The optimal interaction forces for
different numbers of sensors in the Single-COM
flocking control protocol with single and multi-
target tracking were proposed. Evaluation of the
swarm robots-like act based dynamic target
following the free space is given. The numerical
results obtained validate the proposed method
performance in comparison with the other
approaches.

In the future, we have decided to work on the
flock behavior in free and obstacle spaces. Also we
would like to improve GSA with memetic as well
as discussing the flocking control in 3D. In
addition, the power consumption analysis is
deferred to the future work.

Table 1. Optimal forces of Single-COM flocking control for different sizes found by GSA for various numbers of sensors.

’c:lfusr:rt\)seorrs Cla C; Clm t c ;n t C1SC c ;c

10 5.48098 3.73038 4.61782 4.38692 8.45326 3.0838
30 8.24948 3.7478 3.77368 5.0691 5.44878 2.11092
50 8.90246 2.63806 7.05536 4.97568 5.46172 3.4584
70 6.95232 2.17282 3.92754 8.16904 7.35568 3.13232
90 7.71056 3.28264 3.7309 5.27358 6.52208 2.34054
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Center of mass
%
Rand %
andom Path of target
beginning o
locationsof &
mobile agents ¢
> iy i
>
> 59 > > _
N End locations of e
> > > mobile agents &
> > 000
> >
> > >
g > B>y »%&w;o S
b > > rk’ >y r »bp P <>r<><><><> r c :
o 50 100 150 200 250 300 350
X(pos)

Figure 2. Beginning and ending locations of 50 mobile agents that are following a moving target in circle wave path

without iteration forces using (4) [11].
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Figure 3. Beginning and ending locations of 50 mobile agents that are following a moving target in circle wave path with

extended flocking control algorithm using (9) [20].
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Figure 4. Beginning and ending locations of 30 mobile agents that are following two dynamic targets in semi-circular and
semi-sine wave paths with optimal parameters in table 1 by proposed flocking control algorithm using (11) and GSA.
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Figure 5. Beginning and ending locations of 30 mobile agents that are following two moving targets in semi-circular and semi-
sine wave paths without iteration forces using (4) [11].
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Figure 6. Beginning and ending locations of 50 mobile agents that are following two moving target in semi-circular and semi-
sine wave paths with extended flocking control algorithm using (9) [20].
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Figure 7. (a) Value of cost function during 100 iteration for 50 sensors, (b) errors between COM of locations of robots and
location of target during 100 iterationa for 50 sensors.
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Figure 8. (a) Errors between COM of locations of robots and location of target in circular trajectory, (b) errors between
COM of locations of robots and locations of two targets in semi-circular and semi-sine trajectory; all following processes for
three algorithms are done on 50 sensors.
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Figure 9. (a) Value of cost function for various numbers of sensors during 100 iterations, (b) errors between COM of
locations of robots and location of target in circular trajectory for different numbers of sensors.
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