

Journal of AI and Data Mining

Vol 6, No 1, 2018, 191-205

 Chaotic Genetic Algorithm based on Explicit Memory with a new Strategy

for Updating and Retrieval of Memory in Dynamic Environments

M. Mohammadpour

1
, H. Parvin

2,3*
 and M. Sina

2

1. Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran.

2. Department of Computer Engineering, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani, Iran.

3. Young Researchers and Elite Club, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani, Iran.

Received 21 July 2015; Revised 21 July 2016; Accepted 26 August 2016

*Corresponding author: parvin@alumni.iust.ac.ir (H. Parvin).

Abstract

Many problems considered in the optimization and learning processes assume that solutions change

dynamically. Hence, the algorithms are required that dynamically adapt with the new conditions of the

problem through searching new conditions. Mostly, utilization of information from the past allows to quickly

adapting changes right after they occur in the environment. This is the idea underlining the use of memory in

this field, what involves the key design issues concerning the memory content, update process, and retrieval

process. In this work, we use the chaotic genetic algorithm (GA) with memory for solving dynamic

optimization problems. A chaotic system has a much more accurate prediction of the future compared with a

random system. The proposed method uses a new memory with diversity maximization. Here, we propose a

new strategy for updating memory and memory retrieval. An experimental study is conducted based on the

moving peaks benchmark (MPB) in order to test the performance of the developed method in comparison

with several state-of-the-art algorithms from the literature. The experimental results obtained show the

superiority and more effectiveness of the proposed algorithm in dynamic environments.

Keywords: Dynamic Environments, Explicit Memory, Moving Peaks Benchmark, Offline Error, Chaos.

1. Introduction

Nowadays in engineering problems, we are faced

with what should be optimal in some of these

issues with the purpose of optimization to reduce

expenses (minimizing), or to increase quality

(maximizing). In any of possible optimal solution,

suitable quantities of all parameters are the best

way to solve the problem. In optimization

expression we may intend to find goal minima in

dynamic or static environment. If the optima of

the problem change during the evolution, we can

assume the environment as a dynamic one;

otherwise, we should assume the environment as a

static one. Evolutionary algorithms may perform

in static environments with good efficiency but

these algorithms alone are not able to solve

dynamic optimization with a good performance.

Therefore, to solve optimization problems,

dynamic optimization problems need to strong

heuristics. In these environments, dynamic

changes are the main reason for occurring the

challenges. Some of these challenges may include

the difficulty in updating the memory after each

change in the population, preserve diversity in a

convergence environment to optimize the desired

particle size and limited memory capacity, and

identify the changes in their environment. To

solve the optimization problems in the dynamic

environment, the various dynamic methods are

presented where each of them solves one or many

of these challenges. Among the methods proposed

to solve the dynamic optimization problems,

methods that use a combination of strategies are

of special significance. The combination memory

and diversity have been used in [1-9].

Many researchers have used a composition of

memory and evolutionary algorithms to solve

dynamic optimization problems but our proposed

method has a main difference with the other

methods. We used a proper memory with a novel

storage and retrieval strategy. The main goal of

this work was to provide maximum diversity for

the GA evolutionary algorithm. We focused on

mailto:parvin@alumni.iust.ac.ir%20(H

Parvin et al./ Journal of AI and Data Mining, Vol 6, No 1, 2018.

192

setting a memory that can be embedded with

evolutionary algorithms and improved them to

solve dynamic optimization problems (DOPs).

The proposed method can be considered as an

application or an algorithm.

2. Related work

In this section, we introduce different solutions to

DOPs, each of which are able to overcome some

of the DOP challenges.

a. Methods based on memory for dynamic

environments

In [10], Mohammadpour and Parvin have

presented a new method based on memory for the

optimization problems. This paper presents a GA-

based memory to deal with DOPs, and focuses on

explicit placement of memory schemes.

The Memory Immigrant Genetic Algorithm

(MIGA) [11], introduced by Yang et al., uses a

combination of GA and memory-based

immigrants. The random immigrant method aims

to improve the GA performance in dynamic

environments through maintaining the population

diversity level with random immigrants, and the

memory approach aims to move the GA directly

into an old environment that is similar to the new

one through reusing the better old solutions. In the

memory/search method, the total population size

can be divided into two populations including the

"memory" and "search" populations. The first

population is based upon the memory applied to

memorize old and well solutions. The second one

is based upon the search used to explore and

introduce new peaks and their introduction to

memory. The second population is randomly

initialized after each change [12]. The MEGA

method of memory combined with GA is used.

The main populations are the randomly initialized

memory and the memory used to store the

previous solutions [11]. Mohammadpour and

Parvin, in [13], have presented a new method for

solving the optimization problems with the aid of

memory and clustering in addition to the chaos

theory for population creation.

b. Methods based on clustering for dynamic

environments

Yang et al. have proposed the CPSOR (Clustering

Particle Swarm Optimization), in which the

particles to cluster are divided as the smallest

particles existing in each cluster to search for the

local cluster in practice. The PSO algorithm with

the model is used in the CPSOR algorithm

where each particle’s neighborhood is defined as

the whole swarm. In order to speed up the local

search within the PSO algorithm, we introduce a

learning method for the particle used in

CPSO. When a particle in a sub-population finds

a better position, we iteratively check each

dimension of the particle: replace the

dimension with the corresponding dimensional

value of particle if the particle is

improved by doing so. [14]. The clustering

method in CPSO will assign the particles that are

close to each other into a sub-swarm, which is the

same as the neighborhood defined in .
However, CPSO has several major advantages in

comparison with . First, CPSO can track

multiple optimal in dynamic environments. In

CPSO, if more than one sub-swarms cover a same

peak, they will finally be combined with each

other into one sub-swarm by the overlapping

check function. Second, CPSO can control

overcrowding in a single peak [15]. Yang and et

al. [15] have proposed the CGAR algorithm. In

this algorithm, the standard GA with simple

crossover and mutation and also the k-means

clustering are used.

c. Methods based on multi-Populations

Self-organizing scouts (SOS) is a state-of-the-art

multi-population evolutionary algorithm approach

designed to overcome this limitation of a standard

memory [16]. SOS begins with some number of

base subpopulations searching for good solutions.

When a peak (region with good solutions) has

been found, the population splits. A scout

population is formed to keep track of the peak,

while the base population resumes searching for

other peaks [16]. In particle swarm algorithm

based on quantum particles that are known in this

algorithm (i.e. algorithm), the population is

divided into several groups and three quantum

particles called functional diversity, pluralism is

anti-convergence disposal. Quantum particles are

placed in random positions to maintain the

diversity of groups. If you find a real function that

overlaps between the two groups, the group will

reinitialize worse. Anti-convergence operation

will be taken when all groups are converging, i.e.

the group will re-initialize worse [17]. In [18], an

approach is proposed by making the number of

subpopulations adaptive, and it is named

“AMQSO”. The method of FMSO has been used

parent of a group as a group foundation for

identifying promising areas and group of children

for local search. Each child has its own search

area. In this way there is a kind of balance

between local search and global search. The

method of FMSO search area to form a circle

centered in the best particle group is considered.

Parvin et al./ Journal of AI and Data Mining, Vol 6, No 1, 2018.

193

Each particle that has a shorter distance than the

radius of the circle is (closer to the center of the

particle) by virtue of belonging to the group of

children [19]. In the ESCA [20] and CESO [21]

methods, the populations are divided into different

categories, where each group uses unlike search

approaches. The generalized methods based on

multi-population have been presented in [32-38].

3. Dynamic environments

Most of the problems considered in optimization

and learning assume that solutions exist in a static

unchanging environment. If the environment does

change, one may simply treat the new

environment as a completely new version of the

problem that can be solved as before. When a

problem changes infrequently or only in small

amounts, this can be a reasonable method.

However, this assumption tends to break down

when the environment undergoes frequent

discontinuous changes. When this occurs, a search

process may be slow to react; hurting performance

in the time it takes to find a new solution. Instead

of focusing only on finding the best solution to a

dynamic problem, one must often balance the

quality of solutions with the speed required to find

good solutions.

a. Moment changes in environment:

When a dynamic event occurs, the fitness

landscape changes. The term change is typically

used to mean a change in the fitness landscape.
The term environment is used to refer to the

problem formulation and constraints at a given

time. Typically, a change in the environment leads

to a change in the fitness landscape. A dynamic

environment changes cyclically over time. The

cycle in which the optimization function should

be changed, is considered as change frequency.

The cycle at which a change occurs is referred to

as a moment of change in the environment.

b. Response of changes the environments:

Many real world optimization problems are

actually dynamic, and the optimization methods

capable of continuously adapting the solution to a

changing environment are required.

Most of the research works in evolutionary

computation focus on optimization in dynamic

environments, where changes for environments

are small and algorithms must track those changes

quickly. When changes to the environment are

much more severe, a very different approach

is necessary. After a change in the

environment occurs, the location of the global

optimum may change drastically. For

discontinuous problems, search must be able

to find areas containing good solutions in

addition to refining those solutions to find the

best solutions possible. Search algorithms that

are able to explore widely across the search

space after a change will have an advantage

over those that search only locally. If search is

population-based, introducing diversity into

the search may help explore the search space

after a change. For many problems, changes

in the search space, though discontinuous, are

not completely random.

3.1. Groups of dynamic environments

Dynamic environments can be taxonomy in

different approaches. Branke [22] have

categorized the dynamic environments into

several parameters: the frequency of changes,

severity of changes, predictability of changes,

detectability of changes, and influence of search

on the environment.

In the frequency of change, changes may be rare,

while in others, changes may occur constantly.

Problems are also not limited to one frequency of

changes. Some problems may have small frequent

changes, while others have large infrequent

changes. The most important aspect of a

frequency change is how long a learning or

optimization algorithm has to find a solution both

before it has an effect on performance and before

another change occurs.

As mentioned earlier, the severity of changes also

defines a dynamic problem. Some problems may

have changes that are small enough to be easily

tracked, while others have large discontinuous

changes. Small changes may not have a large

effect on the fitness landscape, while large

changes may completely change the landscape.

The predictability expresses that, in some

problems, changes follow a particular prototype.

In others, changes are completely random. A

problem with small predictable changes needs a

very diverse algorithm than the ones with severe

unpredictable changes.

The detectability of the change express in some

problems, changes to the fitness landscape are

easy to detect; one knows exactly when a change

has occurred. In others, it may take some time

before it is clear that the environment has

changed. This can have a large effect on how an

algorithm solves a problem.

Influence of search on the environment expresses

that although every problem with dynamic

environments suffers changes autonomous of the

Parvin et al./ Journal of AI and Data Mining, Vol 6, No 1, 2018.

194

results of search, the search can make extra

changes in the environment. For some problems,

solutions have no effect on the environment. For

many others, though, the particular solution

changes the environment.

3.2. Benchmark Problems for Dynamic

Environments

Benchmark problems are used to examine the

performance of the evolutionary algorithm in

dynamic environments. The benchmark problems

can simulate evolutionary algorithms in dynamic

environments.

3.2.1. Moving Peaks Benchmark (MPB) for

simulation of Dynamic Environments

MPB is a multimodal, multidimensional dynamic

problem, proposed by Branke [23]. In Moving

Peaks, the landscape is composed of peaks in

an dimensional real-valued space.

At each point, the fitness is defined as the

maximum over all peak functions. This fitness

can be formulated as follows:

 (1)

1

, (, max (, , ,))i i i
i m

F x t max B x P x h t w t p t

where, (⃗ ⃗) is a function describing the

fitness of a given point (⃗) for a peak described by

height (), width (), and peak position (⃗).

Every evaluations, the height, width, and

position are changed for each peak, changing the

state of the environment. The height and width of

each peak are changed by the addition of

 variables scaled by height

severity () and width severity () parameters.

The position is shifted using a shift length and a

correlation factor . The shift length controls how

far the peak moves, while the correlation factor

determines how random a peak’s motion will be.

If , the motion of a peak will be

completely random, but if , the peak will

always move in the same direction until it reaches

a boundary of the coordinate space where its path

reflects like a ray of light. At the time of a change

in the environment, the changes in a single peak

can be described as

 1 . i i severityh t h t height (2)

 1 . i i severityw t w t width (3)

 1 ()ii ip t p t v t

 (4)

 0,1N (5)

The shift vector ()iv t

 combines a random vector

 r

 with the previous shift vector (1)iv t

 . The

random vector is created by drawing uniformly

from 0;1 for each dimension, and then scaling

the vector to have length s. ⃗ () is formulated by

(6).

 (6)

 () (1 1)

1

i i

i

s
v t r v t

r v t

Peak function for , and of each peak can be

calculated as follows:

 (7)

 2

1

, , , . ()j j

j n

P x h t w t p t h t w t x p

Part of the radical, the distance between the point

exist and the position of each peak is expressed

[23]. Figure 1 shows the trend of the changes in

the peaks.

Figure 1. Trend of changes in peaks in MPB.

3.3. Offline Error

The performance measure used is the

 Offline Error , which is defined as follows:

1

1

M

t

Offline Error h t f t
M

(8)

where, () is the best solution obtained by an

algorithm just before the -th environmental

change, () is the optimum value for the -th

environment, and is the total number of

evaluations.

Parvin et al./ Journal of AI and Data Mining, Vol 6, No 1, 2018.

195

4. Genetic algorithm

Genetic algorithm (GA) is based on learning

method of biological evolution [24]. For a genetic

algorithm to solve a particular problem, a set of

candidate solutions to that problem is randomly

created. This set of solutions is called population.

Then, the quality of each of these potential

solutions is measured and the best ones are

selected as parents. The chosen individuals

reproduce and undergo a variation process by

means of genetic operators, e.g., recombination

and mutation, defining a new offspring

population. Finally, the next generation of the

population is formed by combining parent and

offspring populations. This process is repeated

until a certain stop condition, e.g., number of

generations, is attained. Figure 2 shows the

pseudo code of a GA.

1.
2.
3.
4.
5.
6.
7.
8.
9.

Figure 2. Pseudo-Code of GA.

4.1. Population

A population is formed by a set of individuals,

also called chromosomes, typically of a fixed size.

Each individual represents a possible solution to

the problem, and consists of a sequence of smaller

components, called genes. Each gene may assume

different values, or alleles.

4.2. Representation

The choice for the representation of the

individuals is made according to the type of

problem to solve. The representation defines how

the population individuals are encoded.

4.3. Fitness function

The fitness function is used to measure the quality

of the population individuals. To measure it, a

decoding process is needed to obtain the

individual phenotype. The fitness is a real value

obtained by applying the fitness function to the

phenotype.

4.4. Selection

The selection method is used to choose a pool of

parents based on their fitness. The solutions with

higher fitness values have more probabilities to be

chosen for mating.

4.5. Genetic operators

The role of genetic operators is to create

variations among the population individuals.

Genetic operators can be divided in two main

categories: recombination (or crossover) and

mutation. Recombination is applied using two (or

more) selected parents and mixing their genetic

content. Mutation is applied to the individual

genes by making a small change in their

corresponding alleles.

5. Memory

Generally, memory is divided into two categories:

explicit memory and implicit memory. The

implicit memory is used to store all information

(including additional information). In fact, the

memory is used to store all information in one

chromosome (each chromosome has two or more

alleles). The convergence data, i.e. distribution of

alleles can be used as the normal view of the

current environment. The diploid implicit memory

functions have been presented in [25]. The

implicit memory is divided into two categories: a

dualism memory and a diploid memory. Explicit

memory is used to store useful information about

the environment, and unlike implicit memory that

stores additional data, it only stores useful

information. Explicit memory involves the two

types of direct memory and associative memory

[26]. In direct memory, good solutions obtained

by each individual (local information) or solutions

obtained by all members of the population

(general information) are directly stored in

memory and reused in new environments [27]. In

associative memory, environmental information

are stored as well as good solutions; among the

data stored in the memory, are lists of the states of

problem space or the likelihood of a good solution

in problem space [28] and reused in the new

environment.

5.1. Memory retrieval

The information stored in memory should be used

for new tracking of the optimum. Thus the best

time to retrieve data from memory is the moment

when the environment is changed. Several

strategies can be adopted to retrieve memory. One

of the memory retrieval methods is the replacing

the best person in the memory instead of the worst

person in the memory [29, 30].

Parvin et al./ Journal of AI and Data Mining, Vol 6, No 1, 2018.

196

5.2. Update strategy for memory

The previously described memory approaches

used different replacing methods [29].

In general, the remaining approaches used the

method called similar proposed by Branke [29].

Branke investigated and compared the following

replacing schemes:

Strategy 1: This strategy analyzed the two

individuals in memory with the minimum distance

between them and replaced the worst with the best

individual in the population. For example,

suppose that individuals and were chosen:

- () (), replaced the individual by

the current best.

- () (), replaced the individual i by

the current best.

Strategy 2:

- If ()

 () replaced

the individual by the current best

- otherwise, replaced the individual by the

current best

Where was the distance between the

individuals and and

Was the maximal possible distance between the

individuals and .

Strategy 3: In this similarity method, the current

best individual of the population replaced the

most similar individual stored in memory as long

as it was a better solution. The similarity measure

depended on the used representation. For binary

encodings, the similarity between to individuals

was measured using the Hamming distance.

6. Chaos theory

The chaos theory [27] refers to chaotic dynamical

systems. Chaotic systems are non-linear

dynamical systems that are very sensitive to initial

conditions. The behavior of chaotic systems is

apparently random, although these behaviors are

not random. The random element is not necessary

in creating a chaotic behavior. A famous example

of such a system is the logistic map model. The

features of the chaos theory can be, self-

organization (adapting to environmental

conditions) in dynamic environments, self-

similarity (each part of the system has the features

of the general form and it is similar to that form)

and sensitivity to initial conditions. Figure 3

presents the sensitivity of chaotic systems to the

initial conditions.

Figure 3. Sensitivity of chaotic systems to initial

conditions.

In this figure, it is obvious that, in chaotic

systems, not only a small initial divergence does

not remain small, but also it grows exponentially.

Also according to the figure, it can be clearly said

that if we start moving from the end point, we will

converge to the start point, which is one of the

properties of a chaotic system.

In a random system, the current state of the

system is independent from its previous state. In a

random model, it is not possible to have an

accurate prediction about the output of the model

even within a short time period. A famous

example is the formal logistic map as equation

(9).

1 (1)n n nr Ar r (9)

In this equation, is a a real number in the range

of [0, 1], and parameter which is known as the

logistic factor, causes unique features in this

function. In this work, the amount of parameter

was equal to 4.

7. Proposed algorithm

In this work, we proposed a chaotic genetic

algorithm based on the explicit memory to

maintain the appropriate solutions to increase the

efficiency of the algorithm. First the population

and the memory were initialized by means of the

chaos theory. If the memory was updated at

generation , the next update would happen at

generation (). The memory size

equal to . is the size of the population.

The memory was updated as follows. Every

individual in memory had a feature that specified

its age. When the memory was started, all

individuals had an age equal to zero. In every

generation, the age of all the memory individuals

was computed using a linear combination of its

actual age and a contribution of its fitness. This

contribution was set using a parameter called µ.

Parvin et al./ Journal of AI and Data Mining, Vol 6, No 1, 2018.

197

More formally, the age of an individual was

calculated using (10).

1 µi i iage age fit

 1 , (0,1)i m µ ò

(10)

In this equation, is the memory size. In this

strategy, the individual age was not set to zero, so

the older individuals were not penalized. When

the memory was full and it was necessary to start

replacing memory individuals, again the youngest

was selected to be deleted and replaced by a new

member if this individual was better. The pseudo-

code for the memory update is shown in

Algorithm 2 in figure 4.

 ()

 𝜖 ()

Initialize memory based chaos theory (logistic map)

 = 0
Every Generation:

 i s the best individual of the population

Select memory individual with the

 () ()

END of IF

Figure 4. Pseudo-code for update memory.

The memory was retrieved as follows. In order to

store the most relevant information to an

environment in the memory, each time an

environmental change was detected, the memory

was also retrieved. When the memory was

retrieved, the current best individual of the

memory or the elite from the previous memory

was stored, replacing the worst individual of the

population. After retrieval of memory individuals,

the GA readapts easier to the new environment.

The memory was also used to detect

environmental changes: the change in the

environment was analyzed in a way that if the

suitability of one of the members is changed in the

re-evaluate, the proposed algorithm finds that the

environment is changed. At this moment, a new

set of individuals was formed by merging the

memory and the main population. Then these

individuals were evaluated in the context of the

new environment, and the best population

individuals were selected to become the new

search population, which evolved through the

selection, crossover, and mutation. Through this

process, the memory remained unchanged. The

best individual from the previous population was

preserved and transferred to the next population,

replacing the worst individual. The pseudo-code

for the proposed algorithm is shown in figure 5.

For more explanations, we shall explain the

related stages of the pseudo-code proposed

method. In Step 2, the memory and population is

initialized using the logistic map function. Unlike

the standard GA that uses random numbers for

creating initial population; in the proposed

algorithm we use the chaos theory for creating

initial population. A chaotic system has a precise

prediction of the future compared with a random

system. Thus the chaos theory can help speed

convergence of the algorithm.

Input:

output: BEST Solution, BEST Fit, Error

1.
2.

3. ()
4. ()

 ()
5.

6. :

7.
8.
9. ()
10. ()
11. ()
 % is current POP and is genetic

algorithm
12. () % Fitness for Current POP

13.

% Change Detected

14. % Reuse Memory

1. ()
 ()

2. Select % is best individual in
memory

subject to
3. Select % is worst individual in

population

 subject to
4. %best individual in memory

replacement instead of worse individual in

population

15.

16.

17.
18.

Figure 5. Pseudo-code for proposed algorithm.

In the proposed algorithm, we used a logistic map

function for the chaos theory. In this algorithm,

instead of using random behaviors for individuals,

we used the chaotic behaviors for each individual

in the main population and memory population.

For example, to create initial population, we used

(11).

 (11)

 1 i n n i iPOP LB Ar r UB LB

 0,1 , 1,2, , , (1,2, ,)nr j SN i N ò

Parvin et al./ Journal of AI and Data Mining, Vol 6, No 1, 2018.

198

In this equation, is the lower band, is the

upper band, and is the population. In this

equation, instead of a random value, we used a

chaotic value.

In steps 3 and 4, as a function of efficiency, the

competence for each individual memory of the

main population and the memory population was

calculated. If the memory update time occurs in

cycle iteration then the next update for memory is

in () . The algorithm cycle

begins at stage 5. Steps 6 and 7 state the function

of updating for the individual and memory

population. In step 8 the reassess is performed to

calculate the efficiency of the individual and if the

efficiency is changed even for a single individual,

we understand that the environment has changed.

In step 12, evaluation to calculate the fitness of

individuals is done if fitness for even an

individual be changed in that case alone in that

environment has changed. Step 14 based on the

changes in the environment, the data stored in the

memory should be applied foe the new

environment which is done in 4 various phases as

follows:

Phase 1- Fitness is calculated for the memory

population.

Phase 2- The best individual of the memory is

selected; in fact, the best individual out of this

memory is the individual that has the more

fitness.

Phase 3- The worst individual of the population

is selected; in fact, the worst individual out of

this population is the individual that has the

lowest fitness.

Phase 4- A replacement strategy chooses

whether to replace the best individual of the

memory instead of the worst individual of the

main population.

Explicit memory maintains diversity for the

proposed approach throughout the run. In this

work, the worst individuals of the population were

replaced by the new ones.

One of the approaches for increasing efficiency of

the proposed algorithm is to maintain diversity

throughout the run. If a population always remains

diverse, then convergence may be avoided at all

times, and optimization may be more adaptive to

changes. The proposed approach maintains the

diversity of the population by inserting chaotic

initialized individuals into the population at every

generation.

Step 15 explains that "if time update cycle of the

algorithm is larger than a threshold, the algorithm

will activate an update memory flag; otherwise, if

finally reaches the end".

The general flowchart of this model is shown in

figure 6.

Figure 6. Flowchart of proposed algorithm.

8. Experimental settings
Branke [12] has introduced a dynamic benchmark

problem called the moving peaks benchmark

(MPB) problem. Numerical experiments

concerning MPB, scenario 2, as proposed by

Branke [12], were performed in order to test the

behavior of the proposed method. The default

settings and definition of the benchmark used in

the experiments of this paper can be found in table

1.

The default parameter setting of MPB used in the

experiments is presented in table 1 [12].

The default parameter setting of proposed method

is presented in table 2. Giving different values for

the parameters, different results can be obtained,

through which we can reach the proper (optimal)

values for the parameters used in the proposed

method.

Start

Initialization

Update memory in

random time

Evaluation

Change

detected?

Memory retrieval

Modify population with memory

information

Yes

N

Parvin et al./ Journal of AI and Data Mining, Vol 6, No 1, 2018.

199

To demonstrate the dynamics of the proposed

algorithm, we gave the contour-plot of the

population distribution at different instances of the

sample run (as shown in Figure 7). A 2D MPB

problem landscape was considered with 10

optima. Figure 7 shows that in the proposed

algorithm, a very high percentage of the peaks

was covered in each assessment. We

implemented all algorithms using Matlab 2012,

and run all algorithms on a PC with a core

i5 processor and a 8 G Bytes RAM memory. The

proposed algorithm was compared with AmQSO,

mQSO, FMSO, cellular PSO, rPSO, and CPSO.

For mQSO, we adapted the configuration 10

(5+5q), which created 10 swarms with 5

neutral (standard) particles and 5 quantum

particles with and
 , as suggested in [17].

For FMSO, there are at most 10 child swarms;

each has a radius of 25.0. The size of the parent

and the child swarms were set to 100 and 10

particles, respectively [19]. For FMSO, there are

at most 10 child swarms each has a radius of 25.0.

The size of the parent and the child swarms are set

to 100 and 10 particles, respectively [16].

For cellular PSO, a 5-dimensional cellular

automaton with 105 cells and Moore

neighborhood with radius of two cells is

embedded into the search space. The maximum

velocity of particles is set to the neighborhood

radius of the cellular automaton and the radius for

the random local search () is set to 0.5 for all

experiments. The cell capacity is set to 10

particles for every cell [31].

In CPSO, each particle learns from its own

historical best position and the historical best

position of its nearest neighbor other than the

global best position, as in the basic PSO

algorithm. Using a hierarchical clustering method,

the whole swarm in CPSO can be divided into

sub-swarms that cover different local regions. In

order to accelerate the local search, a learning

strategy for the global best particle was also

introduced in CPSO [15]. Hu and Eberhart

proposed re-randomization PSO (RPSO) for

optimization in dynamic environments [29] in

which some particles randomly are relocated after

a change is detected or when the diversity is lost,

to prevent losing the diversity.

Blackwell et al. [18] introduced compound particle

swarm optimization (AmQSO) utilizing a new

type of particles which helps explore the search

space more comprehensively after a change

occurred in the environment. For all algorithms,

we reported the average offline error and 95%

confidence interval for 100 runs.

Table 1. Standard configuration parameters for

MPB problem [22].

 (number of peaks) 10

Frequency of change () 5000

Height severity 7.0

Width severity 1.0

Peak shape Con

Basic function No

Shift length s 1.0

Number of dimensions () 5

Correlation coefficient () 0

Percentages of changing peaks 1.0

 [0, 100]

 [30.0, 70.0]

 [1, 12]

 50.0

Table 2. Parameter values for proposed algorithm.

 ()

a

b

Parvin et al./ Journal of AI and Data Mining, Vol 6, No 1, 2018.

200

Figure 7. Trend of convergence individuals for peaks in

through the run of the algorithm with population size =

100, peaks number = 10, frequency of change = 5000, and

shift length = 1.

8.1. Influence of different parameter values on

proposed algorithm

Table 3 shows the average offline error for the

proposed method and the other methods of

frequency change of 500 and different numbers of

peaks.

From the results of the table 3, it can be easily

seen that the proposed method outperforms all the

other peer algorithms when the number of peaks is

larger than one. Table 4 shows the mean offline

error for the proposed method and the other

methods in the frequency change of 1000 and

varying the number of peaks.

Table 5 shows the mean offline error for the

proposed method and the other methods in the

frequency change of 5000 and varying the number

of peaks. It can be seen in table 5 that the

performance of the proposed algorithm was not

influenced too much when the number of peaks

increased. Generally, increasing the number of

peaks makes it harder for algorithms to track the

optima. However, the offline error decreases when

the number of peaks is larger than 50 for the

proposed algorithm. Figures 8, 9, 10, and 11 show

the offline error for the proposed algorithm,

respectively, with frequency changes of 500 and

5000 and 10 peaks and 50 peaks. Table 6 shows

the results of the proposed method with different

dimensions involving peaks number 10, frequency

change of 5000, and shift length of 1, in addition

to those of mQSO, adaptive mQSO, rPSO, and

mPSO [31]. Result of exist in table 6 shows with

dimension 3, 4, 5, 10, 15, 20 of the landscape

space; the performance of the proposed algorithm

was better than the other algorithms. Table 7

shows the offline error for the proposed algorithm

with frequency change of 500 and different

dimension and different numbers of peaks. Table

8 shows offline error for the proposed algorithm

with different severity of change and different

number of peaks. Figure 12 shows the offline

error for the proposed algorithm with shift lengths

of 5 and 7. Figure 13 shows that the percentage

cover of peaks for the proposed algorithm with

population size is 300 and high frequency change

applying as well. Increase of population size help

at the speed convergence of the proposed

algorithm. Figure 14 shows comparison proposed

algorithm with AmQSO algorithm with different

correlation coefficients, frequency of change of

500, number of peaks of 10, and shift length of 1.

Figure 15 shows the average offline error for the

proposed algorithm with different memory sizes

and default values for MPB problem.

Table 3. Average offline error for different algorithms on MPB problem with different numbers of peaks and frequency 500.

CPSO AmQSO
Cellular

PSO[32]
FMSO rPSO mQSO

Proposed

algorithm

Peak

number

14.25(-) 3.02(0.32) 13.46(0.3) 7.58(0.9) 4.27(-) 33.67(3.4) 2.85(0.22) 1

36.40(-) 5.77(0.56) 9.63(0.49) 9.45(0.4) 16.19(-) 11.91(0.7) 3.57(0.25) 5

20.91(-) 5.37(0.42) 9.35(0.37) 18.26(0.3) 17.34(-) 9.62(0.34) 3.96(0.21) 10

13.11(-) 6.82(0.34) 8.84(0.28) 17.34(0.3) 17.06(-) 9.07(0.25) 4.05(0.18) 20

10.83(-) 7.10(0.39) 8.81(0.24) 16.39(0.4) 16.98(-) 8.80(0.21) 4.67(0.20) 30

10.12(-) 7.05(0.41) 8.94(0.24) 15.34(0.4) 16.64(-) 8.55(0.21) 4.95(0.15) 40

9.28(-) 8.97(0.32) 8.62(0.23) 5.54(0.2) 15.77(-) 8.72(0.20) 5.23(0.17) 50

7.77(-) 7.34(0.31) 8.54(0.21) 2.87(0.6) 14.55(-) 8.54(0.16) 5.06(0.16) 100

6.83(-) 7.48(0.19) 8.28(0.18) 11.52(0.6) 13.40(-) 8.19(0.17) 4.81(0.13) 200

c

d

Parvin et al./ Journal of AI and Data Mining, Vol 6, No 1, 2018.

201

Table 4. Average offline errors for different algorithms on MPB problem with different numbers of peaks and frequency

1000.

CPSO AmQSO Cellular PSO FMSO rPSO mQSO
Proposed

 algorithm

Peak

number

8.93(-) 2.33(0.31) 6.77(0.38) 14.42(0.9) 1.94(-) 18.60(1.3) 1.10(0.10) 1

8.62(-) 2.90(0.32) 5.30(0.32) 10.59(0.4) 13.77(-) 6.56(0.38) 1.12(0.11) 5

7.48(-) 4.56(0.40) 5.15(0.19) 10.40(0.3) 15.55(-) 5.71(0.22) 1.28(0.13) 10

6.10(-) 5.36(0.47) 5.23(0.18) 10.33(0.3) 15.54(-) 5.85(0.15) 1.76(0.9) 20

5.44(-) 5.20(0.38) 5.33(0.16) 10.06(0.4) 14.38(-) 5.81(0.15) 2.01(0.14) 30

5.57(-) 5.25(0.37) 5.61(0.16) 9.85(0.4) 14.11(-) 5.70(0.14) 2.23(0.16) 40

5.17(-) 6.06(0.14) 5.55(0.14) 9.54(0.2) 13.75(-) 5.87(0.13) 2.56(0.10) 50

4.26(-) 4.77(0.45) 5.57(0.12) 8.77(0.6) 12.27(-) 5.83(0.13) 2.42(0.14) 100

3.74(-) 5.75(0.26) 5.50(0.12) 8.06(0.6) 11.32(-) 5.54(0.11) 2.20(0.11) 200

Table 5. Average offline errors for different algorithms on MPB Problem with different numbers of peaks and frequency

5000.

CPSO AmQSO Cellular PSO FMSO rPSO mQSO
Proposed

algorithm

Peak

number

0.14(0.11) 0.51(0.0) 2.54(0.1) 3.44(0.1) 0.56(0.04) 3.82(0.35) 0.92(0.09) 1

0.72(0.72) 1.01(0.0) 1.72(0.1) 2.94(0.0) 12.58(0.76) 1.90(0.08) 1.06(0.7) 5

1.05(0.24) 1.51(0.1) 1.76(0.1) 3.11(0.0) 12.98(0.48) 1.91(0.08) 1.15(0.10) 10

1.59(0.22) 2.00(0.1) 2.59(0.1) 3.36(0.0) 12.79(0.06) 2.56(0.10) 1.18(0.06) 20

1.58(0.17) 2.19(0.1) 2.95(0.1) 3.28(0.0) 12.35(0.54) 2.68(0.10) 1.35(0.05) 30

1.51(0.12) 2.28(0.1) 3.11(0.1) 3.26(0.0) 11.23(0.62) 2.65(0.08) 1.53(0.09) 40

1.54(0.12) 2.43(0.1) 3.22(0.1) 3.22(0.0) 11.34(0.29) 2.63(0.08) 1.65(0.07) 50

1.41(0.08) 2.68(0.1) 3.39(0.1) 3.06(0.0) 9.73(0.28) 2.52(0.06) 1.80(0.06) 100

1.24(0.06) 2.62(0.1) 3.36(0.0) 2.84(0.0) 8.90(0.19) 2.30(0.05) 1.71(0.05) 200

Figure 8. Offline error for proposed algorithm in

frequency = 500 and peaks number = 10.

Figure 9. Offline error and current error for proposed

algorithm in frequency = 500 and peak number = 50.

Figure 10. Offline error and current error for proposed

algorithm in frequency = 5000 and peak number = 50

Figure 11. Offline error for proposed algorithm in frequency

= 5000 and peak number = 10

Parvin at al./ Journal of AI and Data Mining, Vol 6, No 1, 2018.

202

Figure 12. Offline error for proposed algorithm with shift

lengths of 5 and 7 with frequency of 5000, and peaks number of

10.

Figure 13. Cover of peaks with iteration = 500000,

frequency change = 10000, peak number = 10, population

size = 300, shift length = 1, and other default parameter

values for MPB benchmark.

Figure 14. Comparison between proposed algorithm with

AmQSO in frequency change = 500, peak number = 10, and

different correlation coefficients ().

Figure 15. Average offline error for proposed algorithm

with different memory sizes and default values for MPB

problem.

Table 6. Result of proposed method with different dimensions involving peak number of 10, frequency change of 5000, and

shift length of 1, in comparison with mQSO, AmQSO, rPSO, and mPSO.

Algorithm
Dimension

2 3 4 5 10 15 20

Proposed method 0.96(0.09) 1.08(0.11) 1.11(0.10) 1.15(0.13) 2.45(0.28) 3.85(0.31) 4.25(0.35)

Adaptive mQSO 0.71(0.05) 1.16(0.10) 1.33(0.08) 1.51(0.10) 3.37(0.22) 4.91(0.31) 5.83(0.29)

mQSO 1.01(0.04) 1.49(0.09) 1.47(0.08) 1.85(0.08) 4.22(0.20) 6.50(0.33) 8.88(0.34)

rPSO 2.62(0.08) 6.61(0.33) 10.43(0.54) 12.98(0.48) 16.87(0.83) 18.48(0.97) 18.48(0.94)

mPSO 1.24(0.07) 1.42(0.10) 1.35(0.09) 1.51(0.12) 4.32(0.26) 7.07(0.25) 10.77(0.40)

Table 7. Offline error for proposed algorithm with frequency change = 5000 and different peaks and different dimensions

and shift length = 1.

 Dimension
peaks

20 15 10 7 5

3.15(0.41) 2.80(0.20) 2.09(0.17) 1.11(0.14) 0.92(0.08) 1

3.26(0.40) 2.95(0.25) 2.25(0.21) 1.23(0.13) 1.06(0.09) 5

4.25(0.39) 3.85(0.28) 2.45(0.23) 2.09(0.16) 1.15(0.13) 10

6.85(0.39) 4.23(0.27) 3.56(0.25) 2.45(0.11) 1.18(0.09) 20

6.92(0.46) 5.25(0.29) 3.84(0.19) 2.66(0.16) 1.35(0.10) 30

7.12(0.48) 5.63(0.31) 3.96(0.18) 2.90(0.12) 1.53(0.12) 40

7.93(0.45) 5.91(0.33) 4.25(0.21) 3.56(0.10) 1.85(0.08) 50

7.76(0.53) 5.64(0.37) 4.15(0.21) 3.42(0.14) 1.80(0.13) 100

7.60(0.51) 5.45(0.30) 4.03(0.20) 3.36(0.11) 1.71(0.15) 200

Parvin at al./ Journal of AI and Data Mining, Vol 6, No 1, 2018.

203

Table 8. Offline error for proposed algorithm with frequency change = 5000 and different peaks and different dimensions

and shift length = 1.

Table 9 shows Min, Max and Std (standard

divation) error for the proposed algorithm with

frequency change = 5000 and different peaks and

different dimension and shift length = 1.

Table 9. Min, Max, and std error for proposed algorithm

with frequency change = 5000 and different peaks and

different dimensions and shift length = 1.

peaks Min error Max error Std error

1 0.62 0.11 0.09

5 1.00 1.21 0.7

10 1.02 1.27 0.10

20 1.07 1.29 0.06

50 1.10 1.35 0.05

100 1.12 1.41 0.09

200 1.16 1.62 0.07

9. Conclusion

In dynamic problems, storing and maintaining the

memory has been one of the largest problems

examined in the prior works. First, it must be

decided how often to update the memory.

Secondly, we should decide what should continue

to be stored in the memory as one tries to add a

new environment.

Memory usage information to remember

environment and good storage solutions that are

not too old can increase the efficiency of the

algorithm. The solutions maintained from the past

can be tracked for future exploration. The novel

strategy designed for updating memory at the

proposed algorithm maintains diversity among

population through the run. The retrieval of

memorized individuals, which usually occurs after

a change, takes place before the re-adaptation of

the proposed algorithm to the new environment.

A chaotic system has a precise prediction of the

future in comparison with a random system. Using

the chaos theory for initializing population helps

speed up the convergence of individuals in the

proposed algorithm. However, it is worth

mentioning that in the dynamic environment, the

diversity and convergence dilemma is foundation

of local search and global search dilemma where

it is gained by keeping old solutions in a memory.

Therefore, the mechanism design and new

algorithm change proposal to solve the issues with

dynamic optimization qualities and the challenges

of different options can be suitable for future

works.

References
[1] Ramsey, C. L. & Grefenstette, J. J. (1993). Case-

based initialization of genetic algorithms. In S. Forrest,

editor, Proceedings of the Fifth International

Conference on Genetic Algorithms, pp. 84-91. Morgan

Kaufmann.

[2] Louis, S. J. & Xu, Z. (1996). Genetic algorithms for

open shop scheduling and re- scheduling. In M. E.

Cohen and D. L. Hudson, editors, Proceedings of the

Eleventh International Conference on Computers and

their Applications (ISCA), pp. 99-102.

[3] Mori, N., Kita, H. & Nishikawa, Y. (1996).

Adaptation to a changing environment by means of the

thermo dynamical genetic algorithm. In H.-M. Voigt,

editor, Parallel Problem Solving from Nature (PPSN

IV), volume 1141 of Lecture Notes in Computer

Science, pp. 513-52.

[4] Mori, N., Kita, H. & Nishikawa, Y. (1997).

Adaptation to changing environments by means of the

memory-based thermo dynamical genetic algorithm. In

I. Back, editor, Proceedings of the Seventh

International Conference on Genetic Algorithms

(ICGA 1997), pp. 299-306. Morgan Kaufmann.

 shift length

peaks
6 5 4 3 2

8.09(0.56) 6.12(0.43) 5.09(0.32) 3.02(0.19) 1.89(0.13) 1

8.12(0.56) 6.26(0.40) 5.23(0.30) 3.16(0.22) 2.06(0.10) 5

8.15(0.68) 6.45(0.45) 5.35(0.35) 3.31(0.25) 2.19(0.15) 10

8.53(0.70) 6.52(0.42) 5.41(0.35) 3.65(0.20) 2.36(0.17) 20

8.65(0.50) 6.58(0.42) 5.49(0.37) 3.74(0.22) 2.52(0.14) 30

8.69(0.55) 6.69(0.45) 5.62(0.33) 3.86(0.25) 2.70(0.17) 40

8.74(0.52) 6.87(0.47) 5.87(0.36) 3.95(0.27) 2.92(0.16) 50

8.79(0.60) 6.80(0.49) 5.96(0.35) 3.90(0.25) 2.80(0.14) 100

8.98(0.53) 6.96(0.46) 5.90(0.30) 3.86(0.26) 2.71(0.14) 200

Parvin at al./ Journal of AI and Data Mining, Vol 6, No 1, 2018.

204

[5] Mori, N., Kita, H. & Nishikawa, Y. (1998).

Adaptation to a changing environment by means of the

feedback thermo dynamical genetic algorithm. In

Parallel Problem Solving from Nature (PPSN V), vol.

1498 of Lecture Notes in Computer Science, pp. 149-

158.

[6] Uyar, A. S. & Harmanci, A. E. (2002). Preserving

diversity in changing environments through diploidy

with adaptive dominance. In W. B. Langdon and et al.,

editors, Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO 2002), page 679.

Morgan Kaufmann.

[7] Simoes, A & Costa, E. (2003). An immune system-

based genetic algorithm to deal with dynamic

environments: Diversity and memory. In D. W.

Pearson, N. C. Steele, and R. Albrecht, editors,

Proceedings of the 6th International Conference on

Artificial Neural Networks (ICANNGA 2003), pp.

168-174. Springer-Verlag.

[8] Yang, S. (2006). A comparative study of immune

system based genetic algorithms in dynamic

environments. In M. Keijzer and et al., editors,

Proceedings of the Eighth International Genetic and

Evolutionary Computation. Conference (GECCO

2006), pp. 1377-1384. ACM Press.

[9] Liu, L., Wang, D. & Yang, S. (2009). An immune

system based genetic algorithm using permutation-

based dualism for dynamic traveling salesman

problems. In M. Giacobini and et al., editors, Evo

Workshops 2009: Applications of Evolutionary

Computing (EVOSTOC 2009), vol. 5484 of Lecture

Notes on Computer Science, pp. 725-734. Springer.

[10] Mohammadpour, M. & Parvin, H. (2016).

"Genetic Algorithm Based on Explicit Memory for

Solving Dynamic Problems", In Journal of Advances in

Computer Research Sari Branch Islamic Azad

University. vol. 7, no. 2, pp. 53-68.

[11] Yang, S. (2005). Memory-based immigrants for

genetic algorithms in dynamic environments. In H.-G.

Beyer, editor, Proceedings of the Seventh International

Genetic and Evolutionary Computation Conference

(GECCO2005), vol. 2, pp. 1115-1122. ACM Press.

[12] Branke, J. (1999). Memory enhanced evolutionary

algorithms for changing optimization problems. In

Proceedings of the IEEE Congress on Evolutionary

Computation (CEC 1999), pp. 1875-1882. IEEE Press.

[13] Mohammadpour, M. & Parvin, H. (2016). Chaotic

genetic algorithm based on clustering and memory for

solving dynamic optimization problem. Tabriz Journal

of Electrical Engineering, vol. 46, no. 3 (Persian

Journal).

[14] Yang, S. & Li, C. (2012). A clustering particle

swarm optimizer for locating and tracking multiple

optima in dynamic environments. IEEE Trans. vol. 16,

no. 4. pp. 959-974.

[15] Yang, S. & Li, C. (2009). A clustering particle

swarm optimizer for dynamic optimization. in Proc.

Congr. Evol. Comput., pp. 439–446.

[16] Branke, J., Kauler, T. & Schmidt, C. (2000). A

multi-population approach to dynamic optimization

problems. In I. Parmee, editor, Proceedings of

Adaptsim03ive Computing in Design and Manufacture

(ACDM 2000), pp. 299-308. Spriger-Verlag.

[17] Blackwell, T. & Branke, J. (2006). Multi-Swarms,

Exclusion, and Anti-Convergence in Dynamic

Environments. IEEE Transactions on Evolutionary

Computation 10, pp. 459–472.

[18] Blackwell, T., Branke, J. & Li, X. (2008). Particle

swarms for dynamic optimization problems. Swarm

Intelligence. Springer Berlin Heidelberg,. pp. 193-217.

[19] Yang, S. & Li, C. (2008). Fast Multi-Swarm

Optimization for Dynamic Optimization Problems.

Proc, Int’l Conf. Natural Computation, vol. 7, no. 3,

pp. 624-628.

[20] Lung, R. I. & Dumitrescu, D. (2010).

Evolutionary swarm cooperative optimization in

dynamic environments. Natural Comput., vol. 9, no. 1,

pp. 83–94.

[21] Lung, R. I. & Dumitrescu, D. (2007). A

collaborative model for tracking optima in dynamic

environments. In Proc. Congr. Evol. Comput, pp. 564–

567.

[22] Branke, J. (2002). Evolutionary Optimization in

Dynamic Environments. Kluwer Academic Publishers.

[23] Branke, J. (1999). Memory enhanced evolutionary

algorithms for changing optimization problems. In

Proceedings of the IEEE Congress on Evolutionary

Computation (CEC 1999), pp. 1875-1882. IEEE Press.

[24] Holland, J. (1975). Adaptation in Natural and

Artificial Systems. University of Michigan Press, Ann

Arbor, MI.

[25] Ryan, C. (1997). Diploidy without dominance. In

Nordic Workshop on Genetic Algorithms, pp. 45–52.

[26] Yang, S. (2007). Explicit memory schemes for

evolutionary algorithms in dynamic environments. In

S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary

Computation in Dynamic and Uncertain Environments,

volume 51 of Studies in Computational Intelligence,

pp. 3-28. Springer-Verlag.

[27] Ramsey, C. & Grefenstette, J. (1993). Case-based

initialization of genetic algorithms. In S. Forrest,

editor, Proceedings of the Fifth International

Conference on Genetic Algorithms, pp. 84-91. Morgan

Kaufmann.

[28] Trojanowski, K. & Michalewicz, Z. (1999)

Searching for optima in non-stationary environments.

in Proc of the IEEE Congress on Evolutionary

Computation (CEC 1999), pp. 1843-1850. IEEE Press.

Parvin at al./ Journal of AI and Data Mining, Vol 6, No 1, 2018.

205

[29] Branke, J. (1999). Memory enhanced evolutionary

algorithms for changing optimization problems. In

Congress on Evolutionary Computation, pp. 1875–

1882.

[30] Wang, H. & Yang, S. (2012). Ip WH, Wang D, A

memetic particle swarm optimization algorithm for

dynamic multi modal optimization problems. Int J Syst

Sci, vol. 43, no. 7, pp. 1268-1283.

[31] Hashemi, B. & Meybodi, M. R. (2009). Cellular

PSO: A PSO for Dynamic Environments. In Advances

in Computation and ntelligence, Lecture Notes in

Computer Science, vol. 5821, pp. 422-433.

[32] Kamosi, M., Hashemi, A. B. & Meybodi, M. R.

(2010). A new particle swarm optimization algorithm

for dynamic environment. Swarm, Evolutionary, and

Memetic Computing, SEMCO 2010, Lect. Notes in

Comput. Sci. 6466, pp. 129–138.

[33] Ozsoydan, F. B. & Baykasoglu, A., (2015). A

multi-population firefly algorithm for dynamic

optimization problems, Evolving and Adaptive

Intelligent Systems (EAIS), 2015 IEEE International

Conference. pp. 1-7.

[34] Sadeghi, S., Parvin, H. & Rad, F. (2015). Particle

Swarm Optimization for Dynamic Environments,

Springer International Publishing, 14
th

 Mexican

International Conference on Artificial intelligence,

MICAI 2015, pp. 260-269, October 2015.

[35] Nguyen, T. T., (2013). Solving dynamic

optimization problems by combining Evolutionary

Algorithms with KD-Tree, Soft Computing and Pttern

Recogonition (SoCPaR), International Conference, pp.

247-25.

[36] Yildiz, A., Lekesiz, H. & Yi;diz A. R. (2016).

"Structural design of vehicle components using

gravitational search and charged system search

algorithm, Material Testing, vol. 58, no, 1, pp. 79-91.

[37] Kiani, M. & Yildiz, A. R, (2015). A Comparative

Study of Non-traditional Methods for Vehicle

Crashworthiness and NVH Optimization, In J

Crashworthiness, pp. 1-12, doi: 10.1007/s11831-015-

9155-y.

[38] Motameni, H. (2016). PSO for multi-objective

problems: Criteria for leader selection and uniformity

distribution. Journal of Artificial Intelligence and

Data Mining, vol. 4, no. 1, pp. 67-76. doi:

10.5829/idosi.JAIDM.2016.04.01.08.

 نشریه هوش مصنوعی و داده کاوی

روزرسانی و بازیابی از کاری جدید برای بهگونه مبتنی بر حافظه صریح با راهریتم ژنتیک آشوبالگو

 های پویاحافظه در محیط

 3مجید سینا و 2حمید پروین، ،*1مجید محمدپور

 .ایران ،یاسوج، واحد علوم تحقیقات یاسوج دانشگاه آزاد اسلامی ،کامپیوترو دانشکده مهندسی برق 1

 .ایران ،فارس، واحد نورآباد ممسنی دانشگاه آزاد اسلامی، دانشکده مهندسی کامپیوتر 2

 .ایران ،یاسوج، واحد علوم تحقیقات یاسوج دانشگاه آزاد اسلامی ،دانشکده مهندسی برق و کامپیوتر 3

 12/70/1722 پذیرش ؛12/70/1722 بازنگری ؛12/70/1722 ارسال

 چکیده:

صورت پویا باا هایی نیاز است که بهسازی ویادگیری دارای ماهیت پویا هستند. بنابراین برای حل این مسائل، الگوریتماکثر مسائل موجود در فرآیند بهینه

شود کاه الگاوریتم اغلب اوقات استفاده از اطلاعات گذشته باعث میجستجو نمایند. شرایط این مسائل سازگاری یافته و شرایط جدید را برای این مسائل

روزرساانی و باشد که شامل فرآینادهای بههای ارائه شده در این زمینه استفاده از حافظه مییکی از ایده سرعت سازگاری پیدا کند.با شرایط تغییریافته به

گوناه یاک سیساتم آشاوب ایم.سازی پویاا ارائاه نماودهگونه با حافظه برای حل مسائل بهینهدر این مقاله ما یک الگوریتم ژنتیک آشوب باشد.بازیابی می

برای حافظاه ایم.در روش پیشنهادی ما یک حافظه جدید با حداکثر تنوع پیشنهاد دادهتری از آینده نسبت به یک سیستم تصادفی دارد. بینی دقیقپیش

هاای برای آزمایش کاارآیی روش پیشانهادی از مسا له محاک قلاه روزرسانی و بازیابی اطلاعات استفاده شده است.کار جدیدی برای بهشنهادی از راهپی

یساه باا روش پیشانهادی را در مقا برتاریهاا نتایج آزمایش کند.سازی میمتحرک استفاده شده که رفتاری شبیه به مسائل پویا در دنیای واقعی را شبیه

 دهد.نشان میهای پویا برای محیطها دیگر روش

 خطی، آشوب.، خطای برونهای متحرکهای پویا، حافظه صریح، محک قلهمحیط :کلمات کلیدی

