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Abstract 

Many problems considered in the optimization and learning processes assume that solutions change 

dynamically. Hence, the algorithms are required that dynamically adapt with the new conditions of the 

problem through searching new conditions. Mostly, utilization of information from the past allows to quickly 

adapting changes right after they occur in the environment. This is the idea underlining the use of memory in 

this field, what involves the key design issues concerning the memory content, update process, and retrieval 

process. In this work, we use the chaotic genetic algorithm (GA) with memory for solving dynamic 

optimization problems. A chaotic system has a much more accurate prediction of the future compared with a 

random system. The proposed method uses a new memory with diversity maximization. Here, we propose a 

new strategy for updating memory and memory retrieval. An experimental study is conducted based on the 

moving peaks benchmark (MPB) in order to test the performance of the developed method in comparison 

with several state-of-the-art algorithms from the literature. The experimental results obtained show the 

superiority and more effectiveness of the proposed algorithm in dynamic environments. 

 

Keywords: Dynamic Environments, Explicit Memory, Moving Peaks Benchmark, Offline Error, Chaos. 

1. Introduction 

Nowadays in engineering problems, we are faced 

with what should be optimal in some of these 

issues with the purpose of optimization to reduce 

expenses (minimizing), or to increase quality 

(maximizing). In any of possible optimal solution, 

suitable quantities of all parameters are the best 

way to solve the problem. In optimization 

expression we may intend to find goal minima in 

dynamic or static environment. If the optima of 

the problem change during the evolution, we can 

assume the environment as a dynamic one; 

otherwise, we should assume the environment as a 

static one. Evolutionary algorithms may perform 

in static environments with good efficiency but 

these algorithms alone are not able to solve 

dynamic optimization with a good performance. 

Therefore, to solve optimization problems, 

dynamic optimization problems need to strong 

heuristics. In these environments, dynamic 

changes are the main reason for occurring the 

challenges. Some of these challenges may include 

the difficulty in updating the memory after each 

change in the population, preserve diversity in a 

convergence environment to optimize the desired 

particle size and limited memory capacity, and 

identify the changes in their environment. To 

solve the optimization problems in the dynamic 

environment, the various dynamic methods are 

presented where each of them solves one or many 

of these challenges. Among the methods proposed 

to solve the dynamic optimization problems, 

methods that use a combination of strategies are 

of special significance. The combination memory 

and diversity have been used in [1-9]. 

Many researchers have used a composition of 

memory and evolutionary algorithms to solve 

dynamic optimization problems but our proposed 

method has a main difference with the other 

methods. We used a proper memory with a novel 

storage and retrieval strategy. The main goal of 

this work was to provide maximum diversity for 

the GA evolutionary algorithm. We focused on 

mailto:parvin@alumni.iust.ac.ir%20(H


Parvin et al./ Journal of AI and Data Mining, Vol 6, No 1, 2018. 

192 

 

setting a memory that can be embedded with 

evolutionary algorithms and improved them to 

solve dynamic optimization problems (DOPs). 

The proposed method can be considered as an 

application or an algorithm. 

 

2. Related work 

In this section, we introduce different solutions to 

DOPs, each of which are able to overcome some 

of the DOP challenges. 

  

a. Methods based on memory for dynamic 

environments 

In [10], Mohammadpour and Parvin have 

presented a new method based on memory for the 

optimization problems. This paper presents a GA-

based memory to deal with DOPs, and focuses on 

explicit placement of memory schemes. 

The Memory Immigrant Genetic Algorithm 

(MIGA) [11], introduced by Yang et al., uses a 

combination of GA and memory-based 

immigrants. The random immigrant method aims 

to improve the GA performance in dynamic 

environments through maintaining the population 

diversity level with random immigrants, and the 

memory approach aims to move the GA directly 

into an old environment that is similar to the new 

one through reusing the better old solutions. In the 

memory/search method, the total population size 

can be divided into two populations including the 

"memory" and "search" populations. The first 

population is based upon the memory applied to 

memorize old and well solutions. The second one 

is based upon the search used to explore and 

introduce new peaks and their introduction to 

memory. The second population is randomly 

initialized after each change [12]. The MEGA 

method of memory combined with GA is used. 

The main populations are the randomly initialized 

memory and the memory used to store the 

previous solutions [11]. Mohammadpour and 

Parvin, in [13], have presented a new method for 

solving the optimization problems with the aid of 

memory and clustering in addition to the chaos 

theory for population creation. 

 

b. Methods based on clustering for dynamic 

environments 

Yang et al. have proposed the CPSOR (Clustering 

Particle Swarm Optimization), in which the 

particles to cluster are divided as the smallest 

particles existing in each cluster to search for the 

local cluster in practice. The PSO algorithm with 

the       model is used in the CPSOR algorithm 

where each particle’s neighborhood is defined as 

the whole swarm. In order to speed up the local 

search within the PSO algorithm, we introduce a 

learning method for the       particle used in 

CPSO. When a particle   in a sub-population finds 

a better position, we iteratively check each 

dimension of the       particle: replace the 

dimension with the corresponding dimensional 

value of particle   if the       particle is 

improved by doing so. [14]. The clustering 

method in CPSO will assign the particles that are 

close to each other into a sub-swarm, which is the 

same as the neighborhood defined in          . 
However, CPSO has several major advantages in 

comparison with          . First, CPSO can track 

multiple optimal in dynamic environments. In 

CPSO, if more than one sub-swarms cover a same 

peak, they will finally be combined with each 

other into one sub-swarm by the overlapping 

check function. Second, CPSO can control 

overcrowding in a single peak [15]. Yang and et 

al. [15] have proposed the CGAR algorithm. In 

this algorithm, the standard GA with simple 

crossover and mutation and also the k-means 

clustering are used. 

 

c. Methods based on multi-Populations 

Self-organizing scouts (SOS) is a state-of-the-art 

multi-population evolutionary algorithm approach 

designed to overcome this limitation of a standard 

memory [16]. SOS begins with some number of 

base subpopulations searching for good solutions. 

When a peak (region with good solutions) has 

been found, the population splits. A scout 

population is formed to keep track of the peak, 

while the base population resumes searching for 

other peaks [16]. In particle swarm algorithm 

based on quantum particles that are known in this 

algorithm (i.e.      algorithm), the population is 

divided into several groups and three quantum 

particles called functional diversity, pluralism is 

anti-convergence disposal. Quantum particles are 

placed in random positions to maintain the 

diversity of groups. If you find a real function that 

overlaps between the two groups, the group will 

reinitialize worse. Anti-convergence operation 

will be taken when all groups are converging, i.e. 

the group will re-initialize worse [17]. In [18], an 

approach is proposed by making the number of 

subpopulations adaptive, and it is named 

“AMQSO”. The method of FMSO has been used 

parent of a group as a group foundation for 

identifying promising areas and group of children 

for local search. Each child has its own search 

area. In this way there is a kind of balance 

between local search and global search. The 

method of FMSO search area to form a circle 

centered in the best particle group is considered. 
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Each particle that has a shorter distance than the 

radius of the circle is (closer to the center of the 

particle) by virtue of belonging to the group of 

children [19]. In the ESCA [20] and CESO [21] 

methods, the populations are divided into different 

categories, where each group uses unlike search 

approaches. The generalized methods based on 

multi-population have been presented in [32-38]. 

 

3. Dynamic environments 

Most of the problems considered in optimization 

and learning assume that solutions exist in a static 

unchanging environment. If the environment does 

change, one may simply treat the new 

environment as a completely new version of the 

problem that can be solved as before. When a 

problem changes infrequently or only in small 

amounts, this can be a reasonable method. 

However, this assumption tends to break down 

when the environment undergoes frequent 

discontinuous changes. When this occurs, a search 

process may be slow to react; hurting performance 

in the time it takes to find a new solution. Instead 

of focusing only on finding the best solution to a 

dynamic problem, one must often balance the 

quality of solutions with the speed required to find 

good solutions. 

  

a. Moment changes in environment:  

When a dynamic event occurs, the fitness 

landscape changes. The term change is typically 

used to mean a change in the fitness landscape. 
The term environment is used to refer to the 

problem formulation and constraints at a given 

time. Typically, a change in the environment leads 

to a change in the fitness landscape. A dynamic 

environment changes cyclically over time. The 

cycle in which the optimization function should 

be changed, is considered as change frequency. 

The cycle at which a change occurs is referred to 

as a moment of change in the environment. 
 

b. Response of changes the environments:  

Many real world optimization problems are 

actually dynamic, and the optimization methods 

capable of continuously adapting the solution to a 

changing environment are required. 

Most of the research works in evolutionary 

computation focus on optimization in dynamic 

environments, where changes for environments 

are small and algorithms must track those changes 

quickly. When changes to the environment are 

much more severe, a very different approach 

is necessary. After a change in the 

environment occurs, the location of the global 

optimum may change drastically. For 

discontinuous problems, search must be able 

to find areas containing good solutions in 

addition to refining those solutions to find the 

best solutions possible. Search algorithms that 

are able to explore widely across the search 

space after a change will have an advantage 

over those that search only locally. If search is 

population-based, introducing diversity into 

the search may help explore the search space 

after a change. For many problems, changes 

in the search space, though discontinuous, are 

not completely random. 
 

3.1. Groups of dynamic environments 

Dynamic environments can be taxonomy in 

different approaches. Branke [22] have 

categorized the dynamic environments into 

several parameters: the frequency of changes, 

severity of changes, predictability of changes, 

detectability of changes, and influence of search 

on the environment. 

In the frequency of change, changes may be rare, 

while in others, changes may occur constantly. 

Problems are also not limited to one frequency of 

changes. Some problems may have small frequent 

changes, while others have large infrequent 

changes. The most important aspect of a 

frequency change is how long a learning or 

optimization algorithm has to find a solution both 

before it has an effect on performance and before 

another change occurs. 

As mentioned earlier, the severity of changes also 

defines a dynamic problem. Some problems may 

have changes that are small enough to be easily 

tracked, while others have large discontinuous 

changes. Small changes may not have a large 

effect on the fitness landscape, while large 

changes may completely change the landscape. 

The predictability expresses that, in some 

problems, changes follow a particular prototype. 

In others, changes are completely random. A 

problem with small predictable changes needs a 

very diverse algorithm than the ones with severe 

unpredictable changes. 

The detectability of the change express in some 

problems, changes to the fitness landscape are 

easy to detect; one knows exactly when a change 

has occurred. In others, it may take some time 

before it is clear that the environment has 

changed. This can have a large effect on how an 

algorithm solves a problem. 

Influence of search on the environment expresses 

that although every problem with dynamic 

environments suffers changes autonomous of the 
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results of search, the search can make extra 

changes in the environment. For some problems, 

solutions have no effect on the environment. For 

many others, though, the particular solution 

changes the environment. 

 

3.2. Benchmark Problems for Dynamic 

Environments 

Benchmark problems are used to examine the 

performance of the evolutionary algorithm in 

dynamic environments. The benchmark problems 

can simulate evolutionary algorithms in dynamic 

environments. 

  

3.2.1. Moving Peaks Benchmark (MPB) for 

simulation of Dynamic Environments 

MPB is a multimodal, multidimensional dynamic 

problem, proposed by Branke [23]. In Moving 

Peaks, the landscape is composed of   peaks in 

an   dimensional real-valued space.  

At each point, the fitness is defined as the 

maximum over all   peak functions. This fitness 

can be formulated as follows: 

 (1) 

     
1

,   ( , max ( , , , ))i i i
i m

F x t max B x P x h t w t p t
   



   
   

   
                                                                                            

 

where,  ( ⃗         ⃗ ) is a function describing the 

fitness of a given point ( ⃗) for a peak described by 

height ( ), width ( ), and peak position ( ⃗). 

Every    evaluations, the height, width, and 

position are changed for each peak, changing the 

state of the environment. The height and width of 

each peak are changed by the addition of 

                variables scaled by height 

severity (  ) and width severity (  ) parameters. 

The position is shifted using a shift length   and a 

correlation factor  . The shift length controls how 

far the peak moves, while the correlation factor 

determines how random a peak’s motion will be. 

If      , the motion of a peak will be 

completely random, but if      , the peak will 

always move in the same direction until it reaches 

a boundary of the coordinate space where its path 

reflects like a ray of light. At the time of a change 

in the environment, the changes in a single peak 

can be described as 

       1   .  i i severityh t h t height     (2) 

        1    . i i severityw t w t width     (3) 

          1   ( )ii ip t p t v t
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The shift vector ( )iv t


 combines a random vector 
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 with the previous shift vector ( 1)iv t


 . The 

random vector is created by drawing uniformly 

from  0;1  for each dimension, and then scaling 

the vector to have length s.  ⃗ ( ) is formulated by 

(6). 

                                                                        (6) 

 
   ( ) ( 1 1 )

1

i i

i

s
v t r v t

r v t

 
  

 
   

 

 

 

Peak function for  ,    and   of each peak can be 

calculated as follows: 

                                                                          (7) 
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Part of the radical, the distance between the point 

exist and the position of each peak is expressed 

[23]. Figure 1 shows the trend of the changes in 

the peaks. 

 

Figure 1. Trend of changes in peaks in MPB. 

3.3. Offline Error  

The performance measure used is the

 Offline Error , which is defined as follows: 

    
1

1
 

M

t

Offline Error h t f t
M 

   
(8) 

 

where,  ( ) is the best solution obtained by an 

algorithm just before the  -th environmental 

change,  ( ) is the optimum value for the  -th 

environment, and   is the total number of 

evaluations. 
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4. Genetic algorithm 

Genetic algorithm (GA) is based on learning 

method of biological evolution [24]. For a genetic 

algorithm to solve a particular problem, a set of 

candidate solutions to that problem is randomly 

created. This set of solutions is called population. 

Then, the quality of each of these potential 

solutions is measured and the best ones are 

selected as parents. The chosen individuals 

reproduce and undergo a variation process by 

means of genetic operators, e.g., recombination 

and mutation, defining a new offspring 

population. Finally, the next generation of the 

population is formed by combining parent and 

offspring populations. This process is repeated 

until a certain stop condition, e.g., number of 

generations, is attained. Figure 2 shows the 

pseudo code of a GA. 

 
                               

1.                       
2.                     
3.        
4.                
5.                            
6.                      
7.                        
8.                                                  
9.                               

Figure 2. Pseudo-Code of GA. 

 

4.1. Population  

A population is formed by a set of individuals, 

also called chromosomes, typically of a fixed size. 

Each individual represents a possible solution to 

the problem, and consists of a sequence of smaller 

components, called genes. Each gene may assume 

different values, or alleles. 

 

4.2. Representation 

The choice for the representation of the 

individuals is made according to the type of 

problem to solve. The representation defines how 

the population individuals are encoded. 

 

4.3. Fitness function 

The fitness function is used to measure the quality 

of the population individuals. To measure it, a 

decoding process is needed to obtain the 

individual phenotype. The fitness is a real value 

obtained by applying the fitness function to the 

phenotype. 

 

4.4. Selection 

The selection method is used to choose a pool of 

parents based on their fitness. The solutions with 

higher fitness values have more probabilities to be 

chosen for mating. 

 

4.5. Genetic operators 

The role of genetic operators is to create 

variations among the population individuals. 

Genetic operators can be divided in two main 

categories: recombination (or crossover) and 

mutation. Recombination is applied using two (or 

more) selected parents and mixing their genetic 

content. Mutation is applied to the individual 

genes by making a small change in their 

corresponding alleles. 

 

5. Memory 

Generally, memory is divided into two categories: 

explicit memory and implicit memory. The 

implicit memory is used to store all information 

(including additional information). In fact, the 

memory is used to store all information in one 

chromosome (each chromosome has two or more 

alleles). The convergence data, i.e. distribution of 

alleles can be used as the normal view of the 

current environment. The diploid implicit memory 

functions have been presented in [25]. The 

implicit memory is divided into two categories: a 

dualism memory and a diploid memory. Explicit 

memory is used to store useful information about 

the environment, and unlike implicit memory that 

stores additional data, it only stores useful 

information. Explicit memory involves the two 

types of direct memory and associative memory 

[26]. In direct memory, good solutions obtained 

by each individual (local information) or solutions 

obtained by all members of the population 

(general information) are directly stored in 

memory and reused in new environments [27]. In 

associative memory, environmental information 

are stored as well as good solutions; among the 

data stored in the memory, are lists of the states of 

problem space or the likelihood of a good solution 

in problem space [28] and reused in the new 

environment. 

 

5.1. Memory retrieval 

The information stored in memory should be used 

for new tracking of the optimum. Thus the best 

time to retrieve data from memory is the moment 

when the environment is changed. Several 

strategies can be adopted to retrieve memory. One 

of the memory retrieval methods is the replacing 

the best person in the memory instead of the worst 

person in the memory [29, 30]. 
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5.2. Update strategy for memory 

The previously described memory approaches 

used different replacing methods [29]. 

In general, the remaining approaches used the 

method called similar proposed by Branke [29]. 

Branke investigated and compared the following 

replacing schemes: 

 

Strategy 1: This strategy analyzed the two 

individuals in memory with the minimum distance 

between them and replaced the worst with the best 

individual in the population. For example, 

suppose that individuals   and   were chosen: 

-         ( )     ( ), replaced the individual   by 

the current best. 

-       ( )     ( ), replaced the individual i by 

the current best. 

 

Strategy 2: 

-  If    ( )  
   

    
    (   ) replaced 

the individual   by the current best  
 

- otherwise, replaced the individual   by the 

current best  

Where    was the distance between the 

individuals   and   and      

Was the maximal possible distance between the 

individuals   and  . 
 

Strategy 3: In this similarity method, the current 

best individual of the population replaced the 

most similar individual stored in memory as long 

as it was a better solution. The similarity measure 

depended on the used representation. For binary 

encodings, the similarity between to individuals 

was measured using the Hamming distance. 

 

6. Chaos theory 

The chaos theory [27] refers to chaotic dynamical 

systems. Chaotic systems are non-linear 

dynamical systems that are very sensitive to initial 

conditions. The behavior of chaotic systems is 

apparently random, although these behaviors are 

not random. The random element is not necessary 

in creating a chaotic behavior. A famous example 

of such a system is the logistic map model. The 

features of the chaos theory can be, self-

organization (adapting to environmental 

conditions) in dynamic environments, self-

similarity (each part of the system has the features 

of the general form and it is similar to that form) 

and sensitivity to initial conditions. Figure 3 

presents the sensitivity of chaotic systems to the 

initial conditions.  

 
Figure 3. Sensitivity of chaotic systems to initial 

conditions. 
 

In this figure, it is obvious that, in chaotic 

systems, not only a small initial divergence does 

not remain small, but also it grows exponentially. 

Also according to the figure, it can be clearly said 

that if we start moving from the end point, we will 

converge to the start point, which is one of the 

properties of a chaotic system. 

In a random system, the current state of the 

system is independent from its previous state. In a 

random model, it is not possible to have an 

accurate prediction about the output of the model 

even within a short time period. A famous 

example is the formal logistic map as equation 

(9).  

1 (1 )n n nr Ar r    (9) 

In this equation,     is a a real number in the range 

of [0, 1], and parameter    which is known as the 

logistic factor, causes unique features in this 

function. In this work, the amount of parameter   

was equal to 4. 

 

7. Proposed algorithm 

In this work, we proposed a chaotic genetic 

algorithm based on the explicit memory to 

maintain the appropriate solutions to increase the 

efficiency of the algorithm. First the population 

and the memory were initialized by means of the 

chaos theory. If the memory was updated at 

generation  , the next update would happen at 

generation         (     ). The memory size 

equal to      .   is the size of the population. 

The memory was updated as follows. Every 

individual in memory had a feature that specified 

its age. When the memory was started, all 

individuals had an age equal to zero. In every 

generation, the age of all the memory individuals 

was computed using a linear combination of its 

actual age and a contribution of its fitness. This 

contribution was set using a parameter called µ. 
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More formally, the age of an individual was 

calculated using (10). 

1 µi i iage age fit   
 

  1 ,       (0,1)i m µ    ò  

(10) 

 

In this equation,   is the memory size. In this 

strategy, the individual age was not set to zero, so 

the older individuals were not penalized. When 

the memory was full and it was necessary to start 

replacing memory individuals, again the youngest 

was selected to be deleted and replaced by a new 

member if this individual was better. The pseudo-

code for the memory update is shown in 

Algorithm 2 in figure 4. 

 

                         (   ) 

                          𝜖 (   )  
          

Initialize memory based chaos theory (logistic map) 

    = 0 
Every Generation: 

                   
                                

       i s the best individual of the population 

Select memory individual          with the            

          (         )            (       ) 

                                                  

          
END of IF 

Figure 4. Pseudo-code for update memory. 
 

The memory was retrieved as follows. In order to 

store the most relevant information to an 

environment in the memory, each time an 

environmental change was detected, the memory 

was also retrieved. When the memory was 

retrieved, the current best individual of the 

memory or the elite from the previous memory 

was stored, replacing the worst individual of the 

population. After retrieval of memory individuals, 

the GA readapts easier to the new environment. 

The memory was also used to detect 

environmental changes: the change in the 

environment was analyzed in a way that if the 

suitability of one of the members is changed in the 

re-evaluate, the proposed algorithm finds that the 

environment is changed. At this moment, a new 

set of individuals was formed by merging the 

memory and the main population. Then these 

individuals were evaluated in the context of the 

new environment, and the best population 

individuals were selected to become the new 

search population, which evolved through the 

selection, crossover, and mutation. Through this 

process, the memory remained unchanged. The 

best individual from the previous population was 

preserved and transferred to the next population, 

replacing the worst individual. The pseudo-code 

for the proposed algorithm is shown in figure 5. 

For more explanations, we shall explain the 

related stages of the pseudo-code proposed 

method. In Step 2, the memory and population is 

initialized using the logistic map function. Unlike 

the standard GA that uses random numbers for 

creating initial population; in the proposed 

algorithm we use the chaos theory for creating 

initial population. A chaotic system has a precise 

prediction of the future compared with a random 

system. Thus the chaos theory can help speed 

convergence of the algorithm. 

 
                               

Input:           
      

               

output: BEST Solution, BEST Fit, Error 

1.       
2.                                          

3.                (     )     
4.                (    )              

                (    ) 
5.            

         
6.          : 

7.             
8.              
9.                        (       ) 
10.                 (    )        
11.                        (   )  
 %      is current  POP and             is genetic 

algorithm  
12.               (     ) % Fitness for Current POP 

13.                                   

% Change Detected 

14.                       % Reuse Memory 

1.            (     )         
       (     )  

2. Select          %    is best individual in 
memory 

subject to              
3. Select         %    is worst individual in 

population 

 subject to           
4.          %best individual in memory 

replacement instead of worse individual in 

population                          

15.                        
                     

16.                    

17.                    
18.     

Figure 5. Pseudo-code for proposed algorithm. 
 

In the proposed algorithm, we used a logistic map 

function for the chaos theory. In this algorithm, 

instead of using random behaviors for individuals, 

we used the chaotic behaviors for each individual 

in the main population and memory population. 

For example, to create initial population, we used 

(11). 

                                                                    (11) 

  1  i n n i iPOP LB Ar r UB LB     

       0,1 ,  1,2, , ,    (1,2, , )nr j SN i N     ò  
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In this equation,     is the lower band,     is the 

upper band, and     is the population. In this 

equation, instead of a random value, we used a 

chaotic value. 

In steps 3 and 4, as a function of efficiency, the 

competence for each individual memory of the 

main population and the memory population was 

calculated. If the memory update time occurs in 

cycle iteration then the next update for memory is 

in     (    )       . The algorithm cycle 

begins at stage 5. Steps 6 and 7 state the function 

of updating for the individual and memory 

population. In step 8 the reassess is performed to 

calculate the efficiency of the individual and if the 

efficiency is changed even for a single individual, 

we understand that the environment has changed. 

In step 12, evaluation to calculate the fitness of 

individuals is done if fitness for even an 

individual be changed in that case alone in that 

environment has changed. Step 14 based on the 

changes in the environment, the data stored in the 

memory should be applied foe the new 

environment which is done in 4 various phases as 

follows: 

Phase 1- Fitness is calculated for the memory 

population. 

Phase 2- The best individual of the memory is 

selected; in fact, the best individual out of this 

memory is the individual that has the more 

fitness. 

Phase 3- The worst individual of the population 

is selected; in fact, the worst individual out of 

this population is the individual that has the 

lowest fitness. 

Phase 4- A replacement strategy chooses 

whether to replace the best individual of the 

memory instead of the worst individual of the 

main population.    

Explicit memory maintains diversity for the 

proposed approach throughout the run. In this 

work, the worst individuals of the population were 

replaced by the new ones. 

One of the approaches for increasing efficiency of 

the proposed algorithm is to maintain diversity 

throughout the run. If a population always remains 

diverse, then convergence may be avoided at all 

times, and optimization may be more adaptive to 

changes. The proposed approach maintains the 

diversity of the population by inserting chaotic 

initialized individuals into the population at every 

generation.  

Step 15 explains that "if time update cycle of the 

algorithm is larger than a threshold, the algorithm 

will activate an update memory flag; otherwise, if 

finally reaches the end".  

The general flowchart of this model is shown in 

figure 6. 

 
Figure 6. Flowchart of proposed algorithm. 

 

8. Experimental settings 
Branke [12] has introduced a dynamic benchmark 

problem called the moving peaks benchmark 

(MPB) problem. Numerical experiments 

concerning MPB, scenario 2, as proposed by 

Branke [12], were performed in order to test the 

behavior of the proposed method. The default 

settings and definition of the benchmark used in 

the experiments of this paper can be found in table 

1.  

The default parameter setting of MPB used in the 

experiments is presented in table 1 [12]. 

The default parameter setting of proposed method 

is presented in table 2.  Giving different values for 

the parameters, different results can be obtained, 

through which we can reach the proper (optimal) 

values for the parameters used in the proposed 

method. 

Start 

Initialization 

Update memory in 

random time 

Evaluation 

Change 

detected? 

Memory retrieval 

Modify population with memory 

information 

Yes 

N
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To demonstrate the dynamics of the proposed 

algorithm, we gave the contour-plot of the 

population distribution at different instances of the 

sample run (as shown in Figure 7). A 2D MPB 

problem landscape was considered with 10 

optima. Figure 7 shows that in the proposed 

algorithm, a very high percentage of the peaks 

was covered in each assessment. We    

implemented  all  algorithms  using  Matlab 2012, 

and    run  all  algorithms  on  a PC with  a  core  

i5 processor and a 8 G Bytes RAM memory. The 

proposed algorithm was compared with AmQSO, 

mQSO, FMSO, cellular PSO, rPSO, and CPSO. 

For mQSO, we adapted the  configuration 10 

(5+5q), which  created  10  swarms  with  5  

neutral (standard) particles and 5 quantum 

particles with            and        
             , as  suggested in [17]. 

For FMSO, there are at most 10 child swarms; 

each has a radius of 25.0. The size of the parent 

and  the  child  swarms  were  set  to  100  and  10 

particles, respectively  [19]. For FMSO, there are 

at most 10 child swarms each has a radius of 25.0. 

The size of the parent and the child swarms are set 

to 100 and 10 particles, respectively [16].  

For cellular PSO, a 5-dimensional cellular 

automaton with 105 cells and Moore 

neighborhood with radius of two cells is 

embedded into the search space. The maximum 

velocity of particles is set to the neighborhood 

radius of the cellular automaton and the radius for 

the random local search ( ) is set to 0.5 for all 

experiments. The cell capacity   is set to 10 

particles for every cell [31]. 

In CPSO, each particle learns from its own 

historical best position and the historical best 

position of its nearest neighbor other than the 

global best position, as in the basic PSO 

algorithm. Using a hierarchical clustering method, 

the whole swarm in CPSO can be divided into 

sub-swarms that cover different local regions. In 

order to accelerate the local search, a learning 

strategy for the global best particle was also 

introduced in CPSO [15]. Hu and Eberhart 

proposed re-randomization PSO (RPSO) for 

optimization in dynamic environments [29] in 

which some particles randomly are relocated after 

a change is detected or when the diversity is lost, 

to prevent losing the diversity. 

Blackwell et al. [18] introduced compound particle 

swarm optimization (AmQSO) utilizing  a new 

type of particles which helps explore the search 

space more comprehensively  after a change 

occurred in the environment. For all algorithms, 

we reported the average offline error and 95% 

confidence interval for 100 runs. 

Table 1. Standard configuration parameters for 

MPB problem [22]. 

                

      (number of peaks) 10 

Frequency of change ( ) 5000 

Height severity 7.0 

Width severity 1.0 

Peak shape Con 

Basic function No 

Shift length s 1.0 

Number of dimensions ( ) 5 

Correlation coefficient ( ) 0 

Percentages of changing peaks        1.0 

  [0, 100] 

  [30.0, 70.0] 

  [1, 12] 

  50.0 

 

Table 2. Parameter values for proposed algorithm. 

                

              

                

                     

               

                             

                            

                ( )   

 

 

 

a 

b 
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Figure 7.  Trend of convergence individuals for peaks in 

through the run of the algorithm with population size = 

100, peaks number = 10, frequency of change = 5000, and 

shift length = 1. 

 

8.1. Influence of different parameter values on 

proposed algorithm  

Table 3 shows the average offline error for the 

proposed method and the other methods of 

frequency change of 500 and different numbers of 

peaks.  

From the results of the table 3, it can be easily 

seen that the proposed method outperforms all the 

other peer algorithms when the number of peaks is 

larger than one. Table 4 shows the mean offline 

error for the proposed method and the other 

methods in the frequency change of 1000 and 

varying the number of peaks.  

Table 5 shows the mean offline error for the 

proposed method and the other methods in the 

frequency change of 5000 and varying the number 

of peaks. It can be seen in table 5 that the 

performance of the proposed algorithm was not 

influenced too much when the number of peaks 

increased. Generally, increasing the number of 

peaks makes it harder for algorithms to track the 

optima. However, the offline error decreases when 

the number of peaks is larger than 50 for the 

proposed algorithm. Figures 8, 9, 10, and 11 show 

the offline error for the proposed algorithm, 

respectively, with frequency changes of 500 and 

5000 and 10 peaks and 50 peaks. Table 6 shows 

the results of the proposed method with different 

dimensions involving peaks number 10, frequency 

change of 5000, and shift length of 1, in addition 

to those of mQSO, adaptive mQSO, rPSO, and 

mPSO [31]. Result of exist in table 6 shows with 

dimension 3, 4, 5, 10, 15, 20 of the landscape 

space; the performance of the proposed algorithm 

was better than the other algorithms. Table 7 

shows the offline error for the proposed algorithm 

with frequency change of 500 and different 

dimension and different numbers of peaks. Table 

8 shows offline error for the proposed algorithm 

with different severity of change and different 

number of peaks. Figure 12 shows the offline 

error for the proposed algorithm with shift lengths 

of 5 and 7. Figure 13 shows that the percentage 

cover of peaks for the proposed algorithm with 

population size is 300 and high frequency change 

applying as well. Increase of population size help 

at the speed convergence of the proposed 

algorithm. Figure 14 shows comparison proposed 

algorithm with AmQSO algorithm with different 

correlation coefficients, frequency of change of 

500, number of peaks of 10, and shift length of 1. 

Figure 15 shows the average offline error for the 

proposed algorithm with different memory sizes 

and default values for MPB problem. 
 

 

 

Table 3. Average offline error for different algorithms on MPB problem with different numbers of peaks and frequency 500. 

CPSO AmQSO 
Cellular 

PSO[32] 
FMSO rPSO mQSO 

Proposed 

algorithm 

Peak 

number 

14.25(-) 3.02(0.32) 13.46(0.3) 7.58(0.9) 4.27(-) 33.67(3.4) 2.85(0.22) 1 

36.40(-) 5.77(0.56) 9.63(0.49) 9.45(0.4) 16.19(-) 11.91(0.7) 3.57(0.25) 5 

20.91(-) 5.37(0.42) 9.35(0.37) 18.26(0.3) 17.34(-) 9.62(0.34) 3.96(0.21) 10 

13.11(-) 6.82(0.34) 8.84(0.28) 17.34(0.3) 17.06(-) 9.07(0.25) 4.05(0.18) 20 

10.83(-) 7.10(0.39) 8.81(0.24) 16.39(0.4) 16.98(-) 8.80(0.21) 4.67(0.20) 30 

10.12(-) 7.05(0.41) 8.94(0.24) 15.34(0.4) 16.64(-) 8.55(0.21) 4.95(0.15) 40 

9.28(-) 8.97(0.32) 8.62(0.23) 5.54(0.2) 15.77(-) 8.72(0.20) 5.23(0.17) 50 

7.77(-) 7.34(0.31) 8.54(0.21) 2.87(0.6) 14.55(-) 8.54(0.16) 5.06(0.16) 100 

6.83(-) 7.48(0.19) 8.28(0.18) 11.52(0.6) 13.40(-) 8.19(0.17) 4.81(0.13) 200 

c 

d 
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Table 4. Average offline errors for different algorithms on MPB problem with different numbers of peaks and frequency 

1000. 

CPSO AmQSO Cellular PSO FMSO rPSO mQSO 
Proposed 

 algorithm 

Peak 

number 

8.93(-) 2.33(0.31) 6.77(0.38) 14.42(0.9) 1.94(-) 18.60(1.3) 1.10(0.10) 1 

8.62(-) 2.90(0.32) 5.30(0.32) 10.59(0.4) 13.77(-) 6.56(0.38) 1.12(0.11) 5 

7.48(-) 4.56(0.40) 5.15(0.19) 10.40(0.3) 15.55(-) 5.71(0.22) 1.28(0.13) 10 

6.10(-) 5.36(0.47) 5.23(0.18) 10.33(0.3) 15.54(-) 5.85(0.15) 1.76(0.9) 20 

5.44(-) 5.20(0.38) 5.33(0.16) 10.06(0.4) 14.38(-) 5.81(0.15) 2.01(0.14) 30 

5.57(-) 5.25(0.37) 5.61(0.16) 9.85(0.4) 14.11(-) 5.70(0.14) 2.23(0.16) 40 

5.17(-) 6.06(0.14) 5.55(0.14) 9.54(0.2) 13.75(-) 5.87(0.13) 2.56(0.10) 50 

4.26(-) 4.77(0.45) 5.57(0.12) 8.77(0.6) 12.27(-) 5.83(0.13) 2.42(0.14) 100 

3.74(-) 5.75(0.26) 5.50(0.12) 8.06(0.6) 11.32(-) 5.54(0.11) 2.20(0.11) 200 

 

Table 5. Average offline errors for different algorithms on MPB Problem with different numbers of peaks and frequency 

5000. 

CPSO AmQSO Cellular PSO FMSO rPSO mQSO 
Proposed 

algorithm 

Peak 

number 

0.14(0.11) 0.51(0.0) 2.54(0.1) 3.44(0.1) 0.56(0.04) 3.82(0.35) 0.92(0.09) 1 

0.72(0.72) 1.01(0.0) 1.72(0.1) 2.94(0.0) 12.58(0.76) 1.90(0.08) 1.06(0.7) 5 

1.05(0.24) 1.51(0.1) 1.76(0.1) 3.11(0.0) 12.98(0.48) 1.91(0.08) 1.15(0.10) 10 

1.59(0.22) 2.00(0.1) 2.59(0.1) 3.36(0.0) 12.79(0.06) 2.56(0.10) 1.18(0.06) 20 

1.58(0.17) 2.19(0.1) 2.95(0.1) 3.28(0.0) 12.35(0.54) 2.68(0.10) 1.35(0.05) 30 

1.51(0.12) 2.28(0.1) 3.11(0.1) 3.26(0.0) 11.23(0.62) 2.65(0.08) 1.53(0.09) 40 

1.54(0.12) 2.43(0.1) 3.22(0.1) 3.22(0.0) 11.34(0.29) 2.63(0.08) 1.65(0.07) 50 

1.41(0.08) 2.68(0.1) 3.39(0.1) 3.06(0.0) 9.73(0.28) 2.52(0.06) 1.80(0.06) 100 

1.24(0.06) 2.62(0.1) 3.36(0.0) 2.84(0.0) 8.90(0.19) 2.30(0.05) 1.71(0.05) 200 

 
Figure 8. Offline error for proposed algorithm in 

frequency = 500 and peaks number = 10. 

 

 
Figure 9. Offline error and current error for proposed 

algorithm in frequency = 500 and peak number = 50. 

 

 
Figure 10. Offline error and current error for proposed 

algorithm in frequency  = 5000 and peak number = 50 

 
Figure 11. Offline error for proposed algorithm in frequency 

= 5000 and peak number = 10 
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Figure 12. Offline error for proposed algorithm with shift 

lengths of 5 and 7 with frequency of 5000, and peaks number of 

10. 

 
Figure 13. Cover of peaks with iteration = 500000, 

frequency change = 10000, peak number = 10, population 

size = 300, shift length = 1, and other default parameter 

values for MPB benchmark. 
 

 

Figure 14. Comparison between proposed algorithm with 

AmQSO in frequency change = 500, peak number = 10, and 

different correlation coefficients ( ). 

 

Figure 15. Average offline error for proposed algorithm 

with different memory sizes and default values for MPB 

problem. 

 

Table 6. Result of proposed method with different dimensions involving peak number of 10, frequency change of 5000, and 

shift length of 1, in comparison with mQSO, AmQSO, rPSO, and mPSO. 

Algorithm 
Dimension 

2 3 4 5 10 15 20 

Proposed method 0.96(0.09) 1.08(0.11) 1.11(0.10) 1.15(0.13) 2.45(0.28) 3.85(0.31) 4.25(0.35) 

Adaptive mQSO 0.71(0.05) 1.16(0.10) 1.33(0.08) 1.51(0.10) 3.37(0.22) 4.91(0.31) 5.83(0.29) 

mQSO 1.01(0.04) 1.49(0.09) 1.47(0.08) 1.85(0.08) 4.22(0.20) 6.50(0.33) 8.88(0.34) 

rPSO 2.62(0.08) 6.61(0.33) 10.43(0.54) 12.98(0.48) 16.87(0.83) 18.48(0.97) 18.48(0.94) 

mPSO 1.24(0.07) 1.42(0.10) 1.35(0.09) 1.51(0.12) 4.32(0.26) 7.07(0.25) 10.77(0.40) 

 

Table 7. Offline error for proposed algorithm with frequency change = 5000 and different peaks and different dimensions 

and shift length = 1. 

  Dimension   
peaks 

20 15 10 7 5 

3.15(0.41) 2.80(0.20) 2.09(0.17) 1.11(0.14) 0.92(0.08) 1 

3.26(0.40) 2.95(0.25) 2.25(0.21) 1.23(0.13) 1.06(0.09) 5 

4.25(0.39) 3.85(0.28) 2.45(0.23) 2.09(0.16) 1.15(0.13) 10 

6.85(0.39) 4.23(0.27) 3.56(0.25) 2.45(0.11) 1.18(0.09) 20 

6.92(0.46) 5.25(0.29) 3.84(0.19) 2.66(0.16) 1.35(0.10) 30 

7.12(0.48) 5.63(0.31) 3.96(0.18) 2.90(0.12) 1.53(0.12) 40 

7.93(0.45) 5.91(0.33) 4.25(0.21) 3.56(0.10) 1.85(0.08) 50 

7.76(0.53) 5.64(0.37) 4.15(0.21) 3.42(0.14) 1.80(0.13) 100 

7.60(0.51) 5.45(0.30) 4.03(0.20) 3.36(0.11) 1.71(0.15) 200 



Parvin at al./ Journal of AI and Data Mining, Vol 6, No 1, 2018. 

 

203 

 

Table 8. Offline error for proposed algorithm with frequency change = 5000 and different peaks and different dimensions 

and shift length = 1. 

 

Table 9 shows Min, Max and Std (standard 

divation) error for the proposed algorithm with 

frequency change = 5000 and different peaks and 

different dimension and shift length = 1. 

Table 9. Min, Max, and std error for proposed algorithm 

with frequency change = 5000 and different peaks and 

different dimensions and shift length = 1. 

peaks Min error Max error Std error 

1 0.62 0.11 0.09 

5 1.00 1.21 0.7 

10 1.02 1.27 0.10 

20 1.07 1.29 0.06 

50 1.10 1.35 0.05 

100 1.12 1.41 0.09 

200 1.16 1.62 0.07 

 

9. Conclusion 

In dynamic problems, storing and maintaining the 

memory has been one of the largest problems 

examined in the prior works. First, it must be 

decided how often to update the memory. 

Secondly, we should decide what should continue 

to be stored in the memory as one tries to add a 

new environment. 

Memory usage information to remember 

environment and good storage solutions that are 

not too old can increase the efficiency of the 

algorithm. The solutions maintained from the past 

can be tracked for future exploration. The novel 

strategy designed for updating memory at the 

proposed algorithm maintains diversity among 

population through the run. The retrieval of 

memorized individuals, which usually occurs after 

a change, takes place before the re-adaptation of 

the proposed algorithm to the new environment.   

 
 

 

A chaotic system has a precise prediction of the 

future in comparison with a random system. Using 

the chaos theory for initializing population helps 

speed up the convergence of individuals in the 

proposed algorithm. However, it is worth 

mentioning that in the dynamic environment, the 

diversity and convergence dilemma is foundation 

of local search and global search dilemma where 

it is gained by keeping old solutions in a memory. 

Therefore, the mechanism design and new 

algorithm change proposal to solve the issues with 

dynamic optimization qualities and the challenges 

of different options can be suitable for future 

works. 
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 نشریه هوش مصنوعی و داده کاوی

 

 

 

روزرسانی و بازیابی از کاری جدید برای بهگونه مبتنی بر حافظه صریح با راهریتم ژنتیک آشوبالگو

 های پویاحافظه در محیط

 

  3مجید سینا و 2حمید پروین، ،*1مجید محمدپور
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 چکیده:

صورت پویا باا هایی نیاز است که بهسازی ویادگیری دارای ماهیت پویا هستند. بنابراین برای حل این مسائل، الگوریتماکثر مسائل موجود در فرآیند بهینه

شود کاه الگاوریتم اغلب اوقات استفاده از اطلاعات گذشته باعث میجستجو نمایند.  شرایط این مسائل سازگاری یافته و شرایط جدید را برای این مسائل

روزرساانی و باشد که شامل فرآینادهای بههای ارائه شده در این زمینه استفاده از حافظه مییکی از ایده سرعت سازگاری پیدا کند.با شرایط تغییریافته به

گوناه یاک سیساتم آشاوب ایم.سازی پویاا ارائاه نماودهگونه با حافظه برای حل مسائل بهینهدر این مقاله ما یک الگوریتم ژنتیک آشوب باشد.بازیابی می

برای حافظاه  ایم.در روش پیشنهادی ما یک حافظه جدید با حداکثر تنوع پیشنهاد دادهتری از آینده نسبت به یک سیستم تصادفی دارد. بینی دقیقپیش

هاای برای آزمایش کاارآیی روش پیشانهادی از مسا له محاک قلاه روزرسانی و بازیابی اطلاعات استفاده شده است.کار جدیدی برای بهشنهادی از راهپی

یساه باا روش پیشانهادی را در مقا برتاریهاا نتایج آزمایش کند.سازی میمتحرک استفاده شده که رفتاری شبیه به مسائل پویا در دنیای واقعی را شبیه

 دهد.نشان میهای پویا برای محیطها دیگر روش

 خطی، آشوب.، خطای برونهای متحرکهای پویا، حافظه صریح، محک قلهمحیط :کلمات کلیدی

 


